亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Inverse of Adjacency Matrix of a Graph with Matrix Weights

        2014-09-07 10:28:47CUIDenglan
        湖南師范大學自然科學學報 2014年3期
        關(guān)鍵詞:鄰接矩陣湖南師范大學階數(shù)

        CUI Deng-lan

        (Department of Mathematics, College of Mathematics and Computer Science, Hunan Normal University, Changsha 410081, China)

        ?

        Inverse of Adjacency Matrix of a Graph with Matrix Weights

        CUI Deng-lan

        (Department of Mathematics, College of Mathematics and Computer Science, Hunan Normal University, Changsha 410081, China)

        The weighted graphs that the edge weights are square matrices with fixed orders are considered. The adjacency and skew-adjacency matrix of a weighted graph is defined in a natural way. The formula is obtained for the inverses of the adjacency and skew-adjacency matrices of a weighted graph when its underlying graph is a bipartite graph with a unique perfect matching, and some applications are given in inverse of block matrices.

        weighted graph; adjacency matrix; skew-adjacency matrix; inverse matrix

        1 Introduction

        We only consider graphs which have no loops or multiple edges. LetG=(V,E) be a connected graph with vertex setV={1,2,…,n} and edge setE. A weighted graph is a graph in which each edge is assigned a weight, which is usually positive number. An unweighted graph, or simply a graph, is thus a weighted graph with each of the edges bearing weight 1.

        A weighted graph is a graph, each edge of which has been assigned a square matrix, called the weight of the edge. All the weight matrices will be assumed to be of the same order and nonnull. In this note, by “weighted graph” we will mean a “weighted graph with each of its edges bearing a non-null matrix as weight”, unless otherwise stated. The spectra of these weighted graph were investigated by Das in [1~4] recently. We now introduce some more notation. LetGbe a weighted graph on n vertices. Denote bywi,jthe non-null weight matrix of orderpof the edgeij, and assume thatwi,j=wj,i. We writeij∈Eif verticesiandjare adjacent.

        The adjacency matrix of a weighted graph is a block matrix, denoted and defined as A(G)=(ai,j),where

        Notethatinthedefinitionabove,thezerodenotesthep×pzeromatrix.ThusA(G)isasquarematrixofordernp.NotealsothattheadjacencymatrixA=(ai,j)ofaweighteddigraphsatisesai,j=aj,ibutisnotnesessarysymmetricingeneral.A(weightedorunweighted)graphGissaidtobenonsingularifitsadjacencymatrixA(G)isnonsingular.

        A combinatorial description of the inverse of the adjacency matrix of nonsingular tree has been given in[12]and in[13]. A combinatorial description of the inverse of the adjacency matrix of a bipartite graph without a cycle of length 4mis given in Cvetkovic[10]. A combinatorial description of the inverse of the adjacency matrix of a bipartite graph with a unique matching is given in[14]. In this note we supply a simple combinatorial description of the inverse of the adjacency matrix and skew-adjacency matrix of a weighted bipartite graph with a unique perfect matching, which contains the formula due to [14] as a special case.

        2 The Main Results

        Lemma 1[14]LetGbe a bipartite graph with a unique perfect matching M and the edgeii′ in M. If a vertexv≠i′ is adjacent toisuch that there exists an alternating pathP(v,j)=[v=x1,x2,…,xn=jbetween verticesvandj, thenP′=[i′,i,P(v,j)]=[i′,i,v,x2,…,x2k=j] is an alternating path fromi′ toj.

        Note that the converse of Lemma 1 holds clearly. That is, if there is an alternating pathP(i′,j) fromi′ toj, it must have the form [i′,i,x1,x2,…,xm=j]. Thus there must exist a vertexv=x1≠i′ adjacent toisuch that an alternating path fromvtojexists.

        Lemma 2[15]LetGbe a graph, thenGis bipartite and has a unique perfect matching if and only if the adjacency matrix ofGcan be expressed as

        whereLis a lower-triangular, square (0,1)-matrix with every diagonal entry equal is 1.

        It follows that the determinants of the adjacency and skew-adjacency matrix of a weighted bipartite graph with a unique perfect matching are ±∏i,j∈M(detwi,j)2. Thus, the adjacency and skew-adjacency matrix of a weighted bipartite graph with a unique perfect matching is nonsingular if and only if all weight matriceswi,j, whereij∈M, are nonsingular.

        The following result gives a combinatorial description of the inverse of the adjacency matrix of a weighted bipartite graph with a unique perfect matching.

        Theorem 1 LetGbe a weighted bipartite graph with a unique perfect matching M and let A(G)=(aij)beitsadjacencymatrix.Ifallweightmatriceswi,jwhereij∈M, are nonsingular, then A(G)isnonsingularanditsinverseistheblockmatrixB=(bi,j),where

        (1)

        Proof The (i,j)-th block matrix ofABis given by

        (2)

        Thus for eachi=1,2,…,n, as there exists exactly one vertex, sayi′, such that the edgei′i∈M, we have

        hereIis the identity matrix of orderp,pis the order of the weight matrices.Now leti,jbe two distinct vertices inG. Suppose that for each vertexvadjacent toi, there is no alternating path fromvtoj, so that by (1)bv,j=0. Then from (2) we have that (AB)i,j=0.

        Assumenowthatthereisavertexv≠i′adjacenttoisuchthatP(v,j)=[v=x1,x2,…,x2k=j]isanalternatingpathandletN={v1,v2,…,vr},withvl≠i′,betheverticesadjacenttoisuchthattherearealternatingpathsfromvltoj.ByLemma1wehavealreadyseenthatthealternatingpathfromi′tojarepreciselyoftheform[i′, i, P(vl,j)],whereP(vl,j)isanalternatingpathfromvltoj.Hence

        andtheproofiscompleted.

        Foratreewithaperfectmatching,thereisatmostonealternatingpathbetweenanypairofvertices.Thuswehave

        Corollary 1 LetGbe a weighted tree with perfect matching M and Abeitsadjacencymatrix.Ifallweightmatriceswi,j,whereij∈M, are nonsingular, then AisnonsingularanditsinverseistheblockmatrixB=(bi,j),where

        Foranunweightedgraph,wehave

        Corollary 2[14]LetGbe a bipartite graph with a unique perfect matching M and let A be its adjacency matrix. Then A is nonsingular and its inverse is the matrix B=(bi,j), where

        Next we consider the inverse of skew-adjacency matrix of a weighted graph.

        (3)

        Proof The (i,j)-th block matrix of ST is given by

        (4)

        Thus for eachi=1,2,…,n, as there exists exactly one vertex, sayi′, such that the edgei′i∈M, we have

        hereIis the identity matrix of orderp,pis the order of weight matrices.

        Now leti,jbe two distinct vertices inG. Suppose that for each vertexvadjacent toi, there is no alternating path fromvtoj, so that by (3)bv,j=0. Then from (2) we have that (ST)i,j=0.

        Assumenowthatthereisavertexv≠i′adjacenttoisuchthatP(v,j)=[v=x1,x2,…,x2k=j]isanalternatingpathandletN={v1,v2,…,vr},withvl≠i′,betheverticesadjacenttoisuchthattherearealternatingpathsfromvltoj.LetN={v1,v2,…,vr},withvl≠i′,betheverticesadjacenttoisuchthattherearealternatingpathsfromvltoj.ByLemma1wehavealreadyseenthatthealternatingpathfromi′tojarepreciselyoftheform[i′,i,P(vl,j)],whereP(vl,j)isanalternatingpathfromvltoj.Hence

        andtheproofiscompleted.

        Corollary 3 LetGbe a weighted tree with perfect matching M and S=(si,j)beitsskew-adjacencymatrix.Ifallweightmatriceswi,jwhereij∈M, are nonsingular, then SisnonsingularanditsinverseistheblockmatrixT=(ti,j),where

        Asanapplicationofourresults,wegiveanexampleasfollows.

        LetA,B,C,D,E,Farep×pmatricesandA,C,Fbenonsingular,Thenwehavethefollowingformulaformatrixinverse.

        whereX=A-1BC-1DF-1-A-1EF-1,Y=F-1DC-1BA-1-F-1EA-1,W=-C-1DF-1,Z=-F-1DC-1.

        Infact,wetaketheweightedgraphandanorientationasFig.1.

        Fig.1 A weighted graph G and its an orientation

        NotethatP={[1,2]},P(1,3)=P(1,5)=?,P(1,4)={[1,2,3,4]},P(1,6)={[1,2,3,4,5,6],[1,2,4,6]},P(2,3)=P(2,4)=P(2,5)=?,P(3,4)={[3,4]},P(3,5)=?,P(3,6)=[3,4,5,6],P(4,5)=P(4,6)=?,P(5,6)={[5,6]}. Then by Theorems 2 and 5 we can get the above formula for matrices inverses.

        [1] BAPAT R. Determinant of the distance matrix of a tree with matrix weights[J]. Linear Algebra Appl, 2006,416:2-7.

        [2] DAS K. A sharp upper bound on the largest Laplacian eigenvalue of weighted graphs[J].Linear Algebra Appl, 2005,407: 55-69.

        [3] DAS K, BAPAT R. A sharp upper bound on the largest Laplacian eigenvalue of weighted graphs[J]. Linear Algebra Appl, 2005,405:153-165.

        [4] DAS K, BAPAT R. A sharp upper bound on the spectral radius of weighted graph[J].Discrete Math, 2008,308(15):3180-3186.

        [5] HOU Y, LEI T. Characteristic polynomials of skew-adjacency matrices of oriented graphs[J]. Electron J Combinat, 2011,18:156-162.

        [6] SHADER R, SO W. Skew spectra of oriented graphs[J]. Electron J Combinat, 2009,16:32-35.

        [7] TIAN G. On the skew energy of orientations of hypercubes[J]. Linear Algebra Appl, 2011,435:2140-2149.

        [8] YAN W, ZHANG F. Enumeration of perfect matchings of a type of Cartesian products of graphs[J].Discrete Appl Math, 2006,154(1):145-157.

        [9] ZHANG F, YAN W. Enumeration of perfect matchings in type of graphs with reflective symmetry[J]. MATCH Commun Math Comput Chem, 2003,48(1):117-124.

        [10] CVETKOVIC D, DOOB M, SACHS H. Spectra of graphs[M]. New York: Academic Press, 1980.

        [11] LOVASE L, PLUMMER M. Matching theory[M]. Annual of Dicscrete Mathematics 29, New York: North-Holland, 1988.

        [12] BAPAT R. Graphs and matrices[M]. Hindustan: Springer, 2010.

        [13] BUCKLEY L, DOTY L, HARAARY F. On graphs with signed inverses [J].Networks, 1988,18(3):151-157.

        [14] BARIK S, NEUMANN M, PATI S. On nonsingular trees and a reciprocal eigenvalue property[J]. Linear Mulitlinear Alge, 2006,54(6):453-465.

        [15] SIMION R, CAO D. Solution to a problem of C.D Godsil regarding bipartite graphs with unique perfect matching[J]. Combinatorica, 1989,9(1):85-89.

        (編輯 沈小玲)

        2013-02-27

        國家自然科學基金資助項目(11171102)

        O157

        A

        1000-2537(2014)03-0069-05

        賦矩陣權(quán)圖的鄰接矩陣的逆矩陣

        崔登蘭*

        (湖南師范大學數(shù)學與計算機科學學院數(shù)學系,中國 長沙 410081)

        考慮邊賦權(quán)圖,其權(quán)是階數(shù)相同的方陣.加權(quán)圖的鄰接矩陣和定向加權(quán)圖的斜鄰接矩陣以自然的方式定義.給出了具有唯一完美匹配的二部圖的賦權(quán)圖的鄰接矩陣和斜鄰接矩陣的逆矩陣的表達式,并說明這些公式在分塊矩陣求逆中的應用.

        加權(quán)圖;鄰接矩陣;斜鄰接矩陣;逆矩陣

        *通訊作者,E-mail:cuidl88ji@126.com

        猜你喜歡
        鄰接矩陣湖南師范大學階數(shù)
        一類樹的鄰接矩陣的Moore-Penrose廣義逆
        輪圖的平衡性
        關(guān)于無窮小階數(shù)的幾點注記
        確定有限級數(shù)解的階數(shù)上界的一種n階展開方法
        湖南師范大學作品
        大眾文藝(2021年8期)2021-05-27 14:05:54
        湖南師范大學美術(shù)作品
        大眾文藝(2020年11期)2020-06-28 11:26:50
        湖南師范大學作品
        大眾文藝(2019年16期)2019-08-24 07:54:00
        湖南師范大學作品欣賞
        大眾文藝(2019年10期)2019-06-05 05:55:32
        基于鄰接矩陣變型的K分網(wǎng)絡社團算法
        一種判定的無向圖連通性的快速Warshall算法
        日韩在线第二页| 欧美激情在线播放| 欧美极品色午夜在线视频| 亚洲午夜精品久久久久久一区| 国产人成在线成免费视频| 国产一区二区三区啊啊| 国产色xx群视频射精| 夜色阁亚洲一区二区三区| 国产99精品精品久久免费| 在线精品国产亚洲av麻豆| 精品久久久无码人妻中文字幕豆芽 | 欧美 日韩 国产 成人 在线观看| 久久亚洲第一视频黄色| 国产又大大紧一区二区三区| 在线观看特色大片免费视频| 伦人伦xxxx国语对白| 无码一区二区三区在| 午夜理论片日本中文在线| 亚洲国产一区二区三区在线观看| 精品乱码久久久久久中文字幕| 青青草视频在线视频播放| 在线天堂av一区二区| 国模丽丽啪啪一区二区| 综合无码一区二区三区四区五区| 亚洲中文字幕在线精品2021| 国产精品人成在线观看免费| 国产精品无码久久久久久久久久| 国产亚洲女在线线精品| 精品国产av一区二区三区| 午夜时刻免费入口| 久久国产精品无码一区二区三区| 亚洲情精品中文字幕有码在线| 国产精品日韩经典中文字幕| 无码人妻精品丰满熟妇区| 亚洲成a人片在线观看导航| 草青青在线视频免费观看| 国产免费a∨片在线软件| 大香视频伊人精品75| 久久亚洲精精品中文字幕早川悠里 | 亚洲最大一区二区在线观看| 99视频30精品视频在线观看|