亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Inverse of Adjacency Matrix of a Graph with Matrix Weights

        2014-09-07 10:28:47CUIDenglan

        CUI Deng-lan

        (Department of Mathematics, College of Mathematics and Computer Science, Hunan Normal University, Changsha 410081, China)

        ?

        Inverse of Adjacency Matrix of a Graph with Matrix Weights

        CUI Deng-lan

        (Department of Mathematics, College of Mathematics and Computer Science, Hunan Normal University, Changsha 410081, China)

        The weighted graphs that the edge weights are square matrices with fixed orders are considered. The adjacency and skew-adjacency matrix of a weighted graph is defined in a natural way. The formula is obtained for the inverses of the adjacency and skew-adjacency matrices of a weighted graph when its underlying graph is a bipartite graph with a unique perfect matching, and some applications are given in inverse of block matrices.

        weighted graph; adjacency matrix; skew-adjacency matrix; inverse matrix

        1 Introduction

        We only consider graphs which have no loops or multiple edges. LetG=(V,E) be a connected graph with vertex setV={1,2,…,n} and edge setE. A weighted graph is a graph in which each edge is assigned a weight, which is usually positive number. An unweighted graph, or simply a graph, is thus a weighted graph with each of the edges bearing weight 1.

        A weighted graph is a graph, each edge of which has been assigned a square matrix, called the weight of the edge. All the weight matrices will be assumed to be of the same order and nonnull. In this note, by “weighted graph” we will mean a “weighted graph with each of its edges bearing a non-null matrix as weight”, unless otherwise stated. The spectra of these weighted graph were investigated by Das in [1~4] recently. We now introduce some more notation. LetGbe a weighted graph on n vertices. Denote bywi,jthe non-null weight matrix of orderpof the edgeij, and assume thatwi,j=wj,i. We writeij∈Eif verticesiandjare adjacent.

        The adjacency matrix of a weighted graph is a block matrix, denoted and defined as A(G)=(ai,j),where

        Notethatinthedefinitionabove,thezerodenotesthep×pzeromatrix.ThusA(G)isasquarematrixofordernp.NotealsothattheadjacencymatrixA=(ai,j)ofaweighteddigraphsatisesai,j=aj,ibutisnotnesessarysymmetricingeneral.A(weightedorunweighted)graphGissaidtobenonsingularifitsadjacencymatrixA(G)isnonsingular.

        A combinatorial description of the inverse of the adjacency matrix of nonsingular tree has been given in[12]and in[13]. A combinatorial description of the inverse of the adjacency matrix of a bipartite graph without a cycle of length 4mis given in Cvetkovic[10]. A combinatorial description of the inverse of the adjacency matrix of a bipartite graph with a unique matching is given in[14]. In this note we supply a simple combinatorial description of the inverse of the adjacency matrix and skew-adjacency matrix of a weighted bipartite graph with a unique perfect matching, which contains the formula due to [14] as a special case.

        2 The Main Results

        Lemma 1[14]LetGbe a bipartite graph with a unique perfect matching M and the edgeii′ in M. If a vertexv≠i′ is adjacent toisuch that there exists an alternating pathP(v,j)=[v=x1,x2,…,xn=jbetween verticesvandj, thenP′=[i′,i,P(v,j)]=[i′,i,v,x2,…,x2k=j] is an alternating path fromi′ toj.

        Note that the converse of Lemma 1 holds clearly. That is, if there is an alternating pathP(i′,j) fromi′ toj, it must have the form [i′,i,x1,x2,…,xm=j]. Thus there must exist a vertexv=x1≠i′ adjacent toisuch that an alternating path fromvtojexists.

        Lemma 2[15]LetGbe a graph, thenGis bipartite and has a unique perfect matching if and only if the adjacency matrix ofGcan be expressed as

        whereLis a lower-triangular, square (0,1)-matrix with every diagonal entry equal is 1.

        It follows that the determinants of the adjacency and skew-adjacency matrix of a weighted bipartite graph with a unique perfect matching are ±∏i,j∈M(detwi,j)2. Thus, the adjacency and skew-adjacency matrix of a weighted bipartite graph with a unique perfect matching is nonsingular if and only if all weight matriceswi,j, whereij∈M, are nonsingular.

        The following result gives a combinatorial description of the inverse of the adjacency matrix of a weighted bipartite graph with a unique perfect matching.

        Theorem 1 LetGbe a weighted bipartite graph with a unique perfect matching M and let A(G)=(aij)beitsadjacencymatrix.Ifallweightmatriceswi,jwhereij∈M, are nonsingular, then A(G)isnonsingularanditsinverseistheblockmatrixB=(bi,j),where

        (1)

        Proof The (i,j)-th block matrix ofABis given by

        (2)

        Thus for eachi=1,2,…,n, as there exists exactly one vertex, sayi′, such that the edgei′i∈M, we have

        hereIis the identity matrix of orderp,pis the order of the weight matrices.Now leti,jbe two distinct vertices inG. Suppose that for each vertexvadjacent toi, there is no alternating path fromvtoj, so that by (1)bv,j=0. Then from (2) we have that (AB)i,j=0.

        Assumenowthatthereisavertexv≠i′adjacenttoisuchthatP(v,j)=[v=x1,x2,…,x2k=j]isanalternatingpathandletN={v1,v2,…,vr},withvl≠i′,betheverticesadjacenttoisuchthattherearealternatingpathsfromvltoj.ByLemma1wehavealreadyseenthatthealternatingpathfromi′tojarepreciselyoftheform[i′, i, P(vl,j)],whereP(vl,j)isanalternatingpathfromvltoj.Hence

        andtheproofiscompleted.

        Foratreewithaperfectmatching,thereisatmostonealternatingpathbetweenanypairofvertices.Thuswehave

        Corollary 1 LetGbe a weighted tree with perfect matching M and Abeitsadjacencymatrix.Ifallweightmatriceswi,j,whereij∈M, are nonsingular, then AisnonsingularanditsinverseistheblockmatrixB=(bi,j),where

        Foranunweightedgraph,wehave

        Corollary 2[14]LetGbe a bipartite graph with a unique perfect matching M and let A be its adjacency matrix. Then A is nonsingular and its inverse is the matrix B=(bi,j), where

        Next we consider the inverse of skew-adjacency matrix of a weighted graph.

        (3)

        Proof The (i,j)-th block matrix of ST is given by

        (4)

        Thus for eachi=1,2,…,n, as there exists exactly one vertex, sayi′, such that the edgei′i∈M, we have

        hereIis the identity matrix of orderp,pis the order of weight matrices.

        Now leti,jbe two distinct vertices inG. Suppose that for each vertexvadjacent toi, there is no alternating path fromvtoj, so that by (3)bv,j=0. Then from (2) we have that (ST)i,j=0.

        Assumenowthatthereisavertexv≠i′adjacenttoisuchthatP(v,j)=[v=x1,x2,…,x2k=j]isanalternatingpathandletN={v1,v2,…,vr},withvl≠i′,betheverticesadjacenttoisuchthattherearealternatingpathsfromvltoj.LetN={v1,v2,…,vr},withvl≠i′,betheverticesadjacenttoisuchthattherearealternatingpathsfromvltoj.ByLemma1wehavealreadyseenthatthealternatingpathfromi′tojarepreciselyoftheform[i′,i,P(vl,j)],whereP(vl,j)isanalternatingpathfromvltoj.Hence

        andtheproofiscompleted.

        Corollary 3 LetGbe a weighted tree with perfect matching M and S=(si,j)beitsskew-adjacencymatrix.Ifallweightmatriceswi,jwhereij∈M, are nonsingular, then SisnonsingularanditsinverseistheblockmatrixT=(ti,j),where

        Asanapplicationofourresults,wegiveanexampleasfollows.

        LetA,B,C,D,E,Farep×pmatricesandA,C,Fbenonsingular,Thenwehavethefollowingformulaformatrixinverse.

        whereX=A-1BC-1DF-1-A-1EF-1,Y=F-1DC-1BA-1-F-1EA-1,W=-C-1DF-1,Z=-F-1DC-1.

        Infact,wetaketheweightedgraphandanorientationasFig.1.

        Fig.1 A weighted graph G and its an orientation

        NotethatP={[1,2]},P(1,3)=P(1,5)=?,P(1,4)={[1,2,3,4]},P(1,6)={[1,2,3,4,5,6],[1,2,4,6]},P(2,3)=P(2,4)=P(2,5)=?,P(3,4)={[3,4]},P(3,5)=?,P(3,6)=[3,4,5,6],P(4,5)=P(4,6)=?,P(5,6)={[5,6]}. Then by Theorems 2 and 5 we can get the above formula for matrices inverses.

        [1] BAPAT R. Determinant of the distance matrix of a tree with matrix weights[J]. Linear Algebra Appl, 2006,416:2-7.

        [2] DAS K. A sharp upper bound on the largest Laplacian eigenvalue of weighted graphs[J].Linear Algebra Appl, 2005,407: 55-69.

        [3] DAS K, BAPAT R. A sharp upper bound on the largest Laplacian eigenvalue of weighted graphs[J]. Linear Algebra Appl, 2005,405:153-165.

        [4] DAS K, BAPAT R. A sharp upper bound on the spectral radius of weighted graph[J].Discrete Math, 2008,308(15):3180-3186.

        [5] HOU Y, LEI T. Characteristic polynomials of skew-adjacency matrices of oriented graphs[J]. Electron J Combinat, 2011,18:156-162.

        [6] SHADER R, SO W. Skew spectra of oriented graphs[J]. Electron J Combinat, 2009,16:32-35.

        [7] TIAN G. On the skew energy of orientations of hypercubes[J]. Linear Algebra Appl, 2011,435:2140-2149.

        [8] YAN W, ZHANG F. Enumeration of perfect matchings of a type of Cartesian products of graphs[J].Discrete Appl Math, 2006,154(1):145-157.

        [9] ZHANG F, YAN W. Enumeration of perfect matchings in type of graphs with reflective symmetry[J]. MATCH Commun Math Comput Chem, 2003,48(1):117-124.

        [10] CVETKOVIC D, DOOB M, SACHS H. Spectra of graphs[M]. New York: Academic Press, 1980.

        [11] LOVASE L, PLUMMER M. Matching theory[M]. Annual of Dicscrete Mathematics 29, New York: North-Holland, 1988.

        [12] BAPAT R. Graphs and matrices[M]. Hindustan: Springer, 2010.

        [13] BUCKLEY L, DOTY L, HARAARY F. On graphs with signed inverses [J].Networks, 1988,18(3):151-157.

        [14] BARIK S, NEUMANN M, PATI S. On nonsingular trees and a reciprocal eigenvalue property[J]. Linear Mulitlinear Alge, 2006,54(6):453-465.

        [15] SIMION R, CAO D. Solution to a problem of C.D Godsil regarding bipartite graphs with unique perfect matching[J]. Combinatorica, 1989,9(1):85-89.

        (編輯 沈小玲)

        2013-02-27

        國家自然科學(xué)基金資助項目(11171102)

        O157

        A

        1000-2537(2014)03-0069-05

        賦矩陣權(quán)圖的鄰接矩陣的逆矩陣

        崔登蘭*

        (湖南師范大學(xué)數(shù)學(xué)與計算機(jī)科學(xué)學(xué)院數(shù)學(xué)系,中國 長沙 410081)

        考慮邊賦權(quán)圖,其權(quán)是階數(shù)相同的方陣.加權(quán)圖的鄰接矩陣和定向加權(quán)圖的斜鄰接矩陣以自然的方式定義.給出了具有唯一完美匹配的二部圖的賦權(quán)圖的鄰接矩陣和斜鄰接矩陣的逆矩陣的表達(dá)式,并說明這些公式在分塊矩陣求逆中的應(yīng)用.

        加權(quán)圖;鄰接矩陣;斜鄰接矩陣;逆矩陣

        *通訊作者,E-mail:cuidl88ji@126.com

        亚洲av无码一区二区一二区| 毛片色片av色在线观看| 天堂一区二区三区精品| 玩弄少妇人妻中文字幕| 亚洲欧洲日本综合aⅴ在线| 美女污污网站| 亚洲精品综合久久国产二区 | 91在线视频在线视频| 亚洲av手机在线播放| 亚洲av无码一区二区一二区| 国产又色又爽无遮挡免费| 丰满岳乱妇在线观看中字无码 | av一区二区不卡久久| 国产精品三区四区亚洲av| 国产精品久久国产精品99 | 精品人妻少妇一区二区不卡| 蜜桃视频色版在线观看| 24小时在线免费av| gv天堂gv无码男同在线观看| 色综合久久天天综线观看| 东京道一本热码加勒比小泽| 文字幕精品一区二区三区老狼 | 免费福利视频二区三区| 激情在线一区二区三区视频| 国产成人av大片大片在线播放| 国产一级毛片卡| 日韩精品一区二区三区av| 亚洲欧美v国产一区二区| 亚洲欧美国产双大乳头| 日本一区二区三区小视频| 国产成人亚洲一区二区| 激情第一区仑乱| 日韩爱爱视频| 国产亚洲3p一区二区| 成人免费直播| 亚洲中文无码久久精品1| 国产精品一区二区三区黄片视频| 日韩欧美中文字幕公布| 大伊香蕉在线精品视频75| 黄片在线观看大全免费视频| 国产一区二区三区激情视频|