靳桂英 楊 青
(復(fù)旦大學(xué)生命科學(xué)學(xué)院生物化學(xué)系 上海 200433)
siRNA干擾Caco-2細(xì)胞鞘磷脂合酶2(SMS2)基因?qū)λ幬镛D(zhuǎn)運(yùn)體的影響
靳桂英 楊 青△
(復(fù)旦大學(xué)生命科學(xué)學(xué)院生物化學(xué)系 上海 200433)
目的研究鞘磷脂合酶2(sphingomyelin synthase 2,SMS2)缺損對(duì)人結(jié)腸癌細(xì)胞(colon cancer cell,Caco-2)中藥物轉(zhuǎn)運(yùn)體P-糖蛋白(P-glycoprotein,P-gp)及多藥耐藥相關(guān)蛋白2(multidrug resistance-associated protein 2,MRP2)的表達(dá)與功能的影響。方法SMS2特異性siRNA轉(zhuǎn)染至Caco-2細(xì)胞。采用RT-PCR和real-time PCR檢測(cè)SMS2-特異性siRNA的干擾效率;采用Western blot法檢測(cè)siRNA轉(zhuǎn)染后P-gp和MRP2蛋白表達(dá)的變化;采用胞內(nèi)蓄積試驗(yàn),通過HPLC檢測(cè)P-gp及MRP2專一性底物羅丹明123及普伐他汀的蓄積含量,分析下調(diào)SMS2水平對(duì)Caco-2細(xì)胞中P-gp及MRP2功能的影響。結(jié)果應(yīng)用siRNA下調(diào)SMS2水平后,P-gp和MRP2的蛋白質(zhì)水平均顯著下調(diào);胞內(nèi)蓄積實(shí)驗(yàn)結(jié)果顯示羅丹明123及普伐他汀的蓄積量明顯增加,說明P-gp和MRP2的外排功能減弱。結(jié)論SMS2基因表達(dá)下調(diào)對(duì)Caco-2細(xì)胞中P-gp和MRP2的表達(dá)以及功能均有顯著影響。
siRNA干擾;鞘磷脂合酶2(SMS2);P-糖蛋白(P-gp);多藥耐藥相關(guān)蛋白2(MRP2)
*This work was supported by the National Natural Science Foundation of China(81373396),the Research Fund for the Doctoral Program of High Education of China(20130071110037)and the Key Research Project of biological medicine of Shanghai Committee of Science and Technology(12431900204).
藥物轉(zhuǎn)運(yùn)體(drug transporter)是細(xì)胞膜上介導(dǎo)藥物跨膜轉(zhuǎn)運(yùn)的特殊轉(zhuǎn)運(yùn)蛋白。在藥物的吸收、分布和排泄過程中起著重要的作用,其表達(dá)異常增高是造成多藥耐藥現(xiàn)象的重要原因之一[1],嚴(yán)重影響藥物的治療及腫瘤的化療效果。
人類基因組織術(shù)語委員會(huì)(human gene nomenclature committee,HGNC)根據(jù)藥物轉(zhuǎn)運(yùn)體序列的相似性,將其主要分為兩大類:溶質(zhì)轉(zhuǎn)運(yùn)蛋白(solute carriers,SLC)家族和ATP結(jié)合盒(ATP-binding cassette,ABC)轉(zhuǎn)運(yùn)體家族。SLC家族由43個(gè)亞家族組成,共有298個(gè)成員,ABC轉(zhuǎn)運(yùn)體家族由7個(gè)亞家族組成,共有49個(gè)成員[2]。多藥耐藥蛋白和多藥耐藥相關(guān)蛋白是ABC轉(zhuǎn)運(yùn)體兩種主要的亞家族,其中多藥耐藥蛋白中的P-糖蛋白(P-glycoprotein,P-gp)及多藥耐藥相關(guān)蛋白2(multidrug resistanceassociated protein 2,MRP2)負(fù)責(zé)多種藥物的外排,在腫瘤治療的多藥耐藥中扮演重要角色[3-4]。因此,研究影響P-gp和MRP2表達(dá)和功能的因素對(duì)于藥物的吸收和分布具有重要影響。
影響藥物轉(zhuǎn)運(yùn)蛋白表達(dá)的因素有很多,如細(xì)胞因子、細(xì)胞應(yīng)激以及轉(zhuǎn)錄因子等。Blokzijl等[5]發(fā)現(xiàn)炎癥細(xì)胞因子TNF-α、IFN-γ89和IL-1β共同孵育人腸黏膜活體組織會(huì)導(dǎo)致MDR1的mRNA表達(dá)下降;由各種化學(xué)物質(zhì)和生理病理?xiàng)l件引起的細(xì)胞應(yīng)激影響藥物轉(zhuǎn)運(yùn)體的表達(dá)[6-8];在BSEP/Bsep啟動(dòng)子區(qū)域存在IR-1反應(yīng)元件,是核轉(zhuǎn)錄因子FXR/RXR異源二聚體的結(jié)合位點(diǎn),結(jié)合后可激活BSEP/Bsep的轉(zhuǎn)錄[9]。除此以外,藥物轉(zhuǎn)運(yùn)體作為一種重要的膜蛋白,其表達(dá)和功能也受到膜脂的調(diào)控。藥物轉(zhuǎn)運(yùn)體所處的脂環(huán)境可能影響藥物轉(zhuǎn)運(yùn)體的催化活性,并能為其提供裝載底物的平臺(tái)[10];有研究表明,鞘磷脂(sphingomyelin,SM)和膽固醇影響ABC轉(zhuǎn)運(yùn)體的定位和功能[11];另外,膽固醇的消耗可降低P-gp的功能[12-14];但是SM對(duì)P-gp和MRP2的影響的研究尚不多見。
SM是重要的膜組分,占動(dòng)物細(xì)胞膜成分50%以上。由親水頭部(磷酸膽堿)和兩條疏水尾巴(鞘胺醇和脂肪酸鏈)組成。鞘磷脂合酶(sphingomyelin synthase,SMS)是SM合成途徑中的最后一個(gè)酶,催化神經(jīng)酰胺(ceramide,Cer)和卵磷脂(phosphatidylcholine,PC)生成SM和二酰甘油(diacylglycerol,DAG)。哺乳動(dòng)物SMS有兩個(gè)亞型,即SMS1和SMS2,SMS1定位于順面高爾基體,而SMS2定位于細(xì)胞膜[15-16]。目前對(duì)SM和SMS的研究多為SMS異常表達(dá)與動(dòng)脈粥樣硬化發(fā)生的關(guān)系以及對(duì)細(xì)胞凋亡的影響。有臨床研究認(rèn)為,人血漿SM水平是心血管疾病的危險(xiǎn)因子[17];有研究證實(shí)SMS1/2 siRNA減少了DAG和SM的水平,從而降低了動(dòng)脈粥樣硬化的風(fēng)險(xiǎn)[18]。SMS1和SMS2的過表達(dá)增加了CHO細(xì)胞的SMS活性和細(xì)胞膜SM水平,增強(qiáng)了DAG和蛋白激酶C(protein kinase C,PKC)的激活介導(dǎo)的細(xì)胞凋亡效能,也增加了TNF-α誘導(dǎo)的CHO細(xì)胞凋亡[19]。雖然SM是一種重要的膜組分,但其對(duì)藥物轉(zhuǎn)運(yùn)體表達(dá)影響的研究尚不多見。在巨噬細(xì)胞中,SMS2的缺失可以顯著下調(diào)ABCA1與ABCG1蛋白的表達(dá)[20];在SMS2敲除的小鼠腦中P-gp蛋白表達(dá)量顯著下調(diào)[21]。
人結(jié)腸癌細(xì)胞(colon cancer cell,Caco-2)是研究藥物轉(zhuǎn)運(yùn)體的常用模型。實(shí)驗(yàn)證實(shí)P-gp和MRP2在該細(xì)胞中均有較高表達(dá)[22]。目前尚無采用該細(xì)胞株研究SM水平與藥物轉(zhuǎn)運(yùn)體P-gp和MRP2之間的關(guān)系。本文運(yùn)用RNA干擾技術(shù),研究SMS2缺損對(duì)Caco-2細(xì)胞中P-gp和MRP2表達(dá)與功能的影響,以期為尋找增加口服藥物吸收攝取的潛在靶標(biāo)提供新的思路,對(duì)于逆轉(zhuǎn)由多藥耐藥引起的腫瘤治療失敗具有重要意義。
藥品和試劑DMEM培養(yǎng)基、非必需氨基酸、青鏈霉素和0.25%胰蛋白酶-0.02%EDTA(美國(guó)Gibco公司);標(biāo)準(zhǔn)蛋白標(biāo)記[天根生化科技(北京)有限公司];96孔酶標(biāo)板(上海精睿生物科技發(fā)展有限公司);RT-PCR Kit、Trizol試劑(北京博大泰克生物基因技術(shù)有限公司);DNA標(biāo)記(加拿大Fermentas公司);PCR薄壁管(美國(guó)Axygen公司);GAPDH一抗、BCA蛋白定量試劑盒、基因組DNA小量抽提試劑盒(碧云天生物技術(shù)研究所);P-gp一抗(英國(guó)Abcam公司);MRP2一抗(美國(guó)CST公司);HRP標(biāo)記二抗(北京鼎國(guó)昌盛生物有限責(zé)公司);引物(美國(guó)Invitrogen公司);PVDF膜(美國(guó)Millipore公司);羅丹明123(百靈威生物技術(shù)有限公司);普伐他?。ㄘ愡_(dá)醫(yī)藥開發(fā)有限公司);SYBR Premix EX Tag(日本Takara公司);ECL顯色液(美國(guó)GE Healthcare公司)。
儀器和設(shè)備722分光光度計(jì)(上海分析儀器總廠);垂直平板電泳槽(北京百晶生物技術(shù)有限公司);轉(zhuǎn)膜儀、PCR儀(美國(guó)Bio-Rad公司);高速離心機(jī)、Thermo Muliskan MK3酶標(biāo)儀、超低溫冰箱(美國(guó)Thermo Scientific公司);SCS-24恒溫?fù)u床(江蘇太倉(cāng)實(shí)驗(yàn)設(shè)備廠);凝膠成像系統(tǒng)(上海實(shí)驗(yàn)設(shè)備儀器廠);安捷倫1260高效液相色譜儀(美國(guó)Agilent公司);Typhoon FLA9000(美國(guó)GE Healthcare公司)。
細(xì)胞培養(yǎng)和轉(zhuǎn)染在含有10%胎牛血清的高糖DMEM培養(yǎng)液中,于37℃,5%CO2條件下常規(guī)培養(yǎng)Caco-2細(xì)胞,隔天換液。選取對(duì)數(shù)生長(zhǎng)期細(xì)胞,胰酶消化,細(xì)胞計(jì)數(shù)板計(jì)數(shù)并調(diào)整細(xì)胞濃度為5×105/mL,傳代接種至6孔板中,待細(xì)胞生長(zhǎng)至60%~70%匯合度,更換培養(yǎng)液(不含血清),進(jìn)行siRNA轉(zhuǎn)染。實(shí)驗(yàn)分為空白對(duì)照組(即未處理細(xì)胞組)、陰性對(duì)照組和SMS2 siRNA干擾組。轉(zhuǎn)染操作按照LipofectamineTM2000(美國(guó)Invitrogen公司)說明書進(jìn)行,各組siRNA和Opti-MEM充分混合,室溫放置20min。將轉(zhuǎn)染復(fù)合物加入相應(yīng)孔板中,培養(yǎng)6h,換為含10%FBS的DMEM培養(yǎng)液,轉(zhuǎn)染48h后收集細(xì)胞進(jìn)行相關(guān)實(shí)驗(yàn)。
siRNA制備根據(jù)GENE BANK公布的人SMS2(NC-000004.11)全長(zhǎng)序列,采用文獻(xiàn)中已經(jīng)公布的有效siRNA序列[23],并設(shè)計(jì)陰性對(duì)照,由上海吉瑪制藥技術(shù)有限公司設(shè)計(jì)合成。序列如下:SMS2 siRNA正義鏈5′-AGAAGTGACGAGGCGAAT-3′,反義鏈5′-GATACAAGTCAATAGTGGGACG-3′;陰性對(duì)照正義鏈5′-UUCUCCGAACGUGUCACGUTT-3′,反義鏈5′-ACGUGACACGUUCGGAGAATT-3′。
RT-PCR檢測(cè)轉(zhuǎn)染(方法如前)的Caco-2細(xì)胞(48h后)用Trizol試劑,按說明書提供操作方法抽提總RNA后進(jìn)行UV分光光度準(zhǔn)確定量,以1μg RNA進(jìn)行逆轉(zhuǎn)錄,β-actin作為內(nèi)參,引物序列如表1所示。PCR反應(yīng)條件為:96℃預(yù)變性5min;96℃變性1min,54℃退火1min,72℃延長(zhǎng)1min,反應(yīng)循環(huán)25次(β-actin)或35次(SMS2)。采用1.5%瓊脂糖凝膠電泳分析PCR產(chǎn)物。
表1 RT-PCR檢測(cè)的引物序列Tab 1 Primer sequence of RT-PCR
real-time PCR檢測(cè)取1μg總RNA進(jìn)行反轉(zhuǎn)錄,使用SYBER Green法對(duì)目的基因進(jìn)行相對(duì)定量,β-actin作為內(nèi)參,引物序列如表1所示。PCR反應(yīng)條件:96℃預(yù)變性5min,96℃變性1min,60℃退火1min,72℃延伸1min,反應(yīng)循環(huán)38次。數(shù)據(jù)分析采用MyIQ軟件。
Western blot檢測(cè)轉(zhuǎn)染的Caco-2細(xì)胞(48h后)提取總蛋白,經(jīng)BCA法測(cè)定蛋白濃度。10%聚丙烯酰胺凝膠電泳(SDS-PAGE)后轉(zhuǎn)移至聚偏二氟乙烯(PVDF)膜上,5%脫脂奶粉封閉1h,一抗為1∶1 000稀釋的P-gp,1∶1 000稀釋的MRP2和GAPDH。經(jīng)PBS-Tween(0.3%)洗膜后孵育相應(yīng)二抗并使用ECL PLUS試劑盒顯色,雜交信號(hào)由Typhoon FLA9000掃描,條帶密度由Image Quant軟件分析,以GAPDH作為內(nèi)參,數(shù)據(jù)處理以目的蛋白/GAPDH的比值確定。
羅丹明123或普伐他汀的Caco-2細(xì)胞內(nèi)蓄積試驗(yàn)將轉(zhuǎn)染(方法如前)的Caco-2細(xì)胞(48h后)用PBS洗凈,每孔加5μmol/L羅丹明123,或0.5mmol/L普伐他汀。37℃放置1h,迅速吸走藥物溶液,冰冷的PBS清洗3次。制成200μL細(xì)胞懸液,細(xì)胞破碎儀超聲破碎。3000×g離心15min,取上清,加等體積甲醇,4℃下放置30min去除蛋白后,17 000×g離心60min取上清,用于HPLC定量分析。同時(shí)每孔取0.125mL的細(xì)胞懸液按照BCA蛋白濃度測(cè)定方法進(jìn)行蛋白定量。將每孔的細(xì)胞內(nèi)的羅丹明123或普伐他汀濃度除以相應(yīng)的總蛋白含量,用以消除每孔細(xì)胞數(shù)量帶來的誤差。
HPLC樣品測(cè)定用HPLC測(cè)定羅丹明123和普伐他汀的含量,色譜條件:采用Agilent C18柱(4.6mm×250mm,5μm),柱溫為25℃;流動(dòng)相為50mmol/L磷酸二氫鉀溶液(pH=3.0)∶乙腈=67∶33;流速為1.0mL/min;進(jìn)樣量為20μL;羅丹明123的熒光檢測(cè)器:激發(fā)波長(zhǎng)為485nm,發(fā)射波長(zhǎng)為565nm;普伐他汀的紫外檢測(cè)器波長(zhǎng)為239nm。
統(tǒng)計(jì)學(xué)分析統(tǒng)計(jì)學(xué)分析采用SPSS 11.0統(tǒng)計(jì)軟件。從轉(zhuǎn)染到檢測(cè)的整體試驗(yàn)重復(fù)3次以上,所有數(shù)據(jù)以xˉ±s表示。兩組數(shù)據(jù)間的差異用t檢驗(yàn)分析,P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
Caco-2細(xì)胞中SMS2、P-gp、MRP2基因的表達(dá)水平觀察Caco-2細(xì)胞中是否有SMS2、P-gp、MRP2基因的表達(dá),未處理的Caco-2細(xì)胞匯合度達(dá)90%后提取RNA,RT-PCR結(jié)果顯示Caco-2細(xì)胞中SMS2、P-gp、MRP2基因均有表達(dá)(圖1)。
圖1 RT-PCR檢測(cè)Caco-2細(xì)胞中SMS2、P-gp、MRP2基因的表達(dá)水平Fig 1 Gene expressions of SMS2,P-gp and MRP2 in Caco-2 cells detected by RT-PCR
SMS2 siRNA下調(diào)SMS2 mRNA的表達(dá)水平觀察SMS2敲低后Caco-2細(xì)胞中SMS2 mRNA水平上表達(dá)的變化(圖2)。siRNA轉(zhuǎn)染后,Caco-2細(xì)胞中SMS2敲低組SMS2的表達(dá)水平較空白對(duì)照組、陰性對(duì)照組表達(dá)水平下調(diào)50%左右,與RT-PCR的結(jié)果一致。
SMS2基因敲低后P-gp和MRP2蛋白表達(dá)水平顯著下調(diào)觀察SMS2敲低后Caco-2細(xì)胞中藥物轉(zhuǎn)運(yùn)體P-gp、MRP2蛋白水平上表達(dá)的變化(圖3)。siRNA轉(zhuǎn)染后Caco-2細(xì)胞中SMS2敲低組P-gp蛋白水平的表達(dá)較空白對(duì)照組、陰性對(duì)照組降低了40%;SMS2敲低組MRP2蛋白水平的表達(dá)較空白對(duì)照組、陰性對(duì)照組降低了45%。
圖2 SMS2基因敲低后SMS2 mRNA水平的變化Fig 2 SMS2 RNA level after SMS2 gene knockdown
圖3 SMS2基因敲低后P-gp和MRP2蛋白的表達(dá)變化Fig 3 P-gp and MRP2 protein expressions after SMS2 gene knockdown
SMS2基因敲低后P-gp和MRP2蛋白的功能明顯減弱觀察SMS2敲低后Caco-2細(xì)胞中藥物轉(zhuǎn)運(yùn)體P-gp和MRP2功能變化(圖4)。Caco-2細(xì)胞內(nèi)P-gp和MRP2的專一性底物蓄積量能反映其外排功能,蓄積量越小,外排功能越強(qiáng)。繪制標(biāo)準(zhǔn)曲線,得到峰面積與底物濃度的關(guān)系曲線(圖4A和4B)。siRNA轉(zhuǎn)染后Caco-2細(xì)胞中SMS2敲低組胞內(nèi)羅丹明123的蓄積較空白對(duì)照組、陰性對(duì)照組增加了45%,即P-gp外排功能明顯減弱(圖4C);SMS2敲低組胞內(nèi)普伐他汀的蓄積較空白對(duì)照組、陰性對(duì)照組增加了50%左右,即MRP2外排功能明顯減弱(圖4D)。
圖4 SMS2基因敲低后P-gp和MRP2蛋白的功能變化Fig 4 Functions of P-gp and MRP2 after SMS2 gene knockdown
由于Caco-2細(xì)胞形態(tài)及生化性質(zhì)與小腸上皮細(xì)胞相似,該細(xì)胞已廣泛用于藥物分子腸吸收的體外模型研究。實(shí)驗(yàn)證實(shí),在Caco-2細(xì)胞中PEPT1、MDR1、MRP2和OATP-B均有較高水平表達(dá)[22]。其中P-gp和MRP2負(fù)責(zé)多種藥物的外排[4],因此其表達(dá)和功能的變化對(duì)于藥物的吸收和分布具有重要影響。
藥物轉(zhuǎn)運(yùn)體作為一種特殊的膜蛋白家族,其表達(dá)受其所屬脂環(huán)境的影響[11,24]。SM是動(dòng)物細(xì)胞膜的重要組分,SMS2是SM合成的關(guān)鍵酶,其表達(dá)異常影響細(xì)胞中SM的含量。
本研究用SMS2 siRNA轉(zhuǎn)染Caco-2細(xì)胞,觀察SMS2缺損對(duì)Caco-2細(xì)胞中藥物轉(zhuǎn)運(yùn)體P-gp及MRP2表達(dá)與功能的影響。結(jié)果顯示,應(yīng)用SMS2 siRNA干擾Caco-2細(xì)胞后,SMS2 m RNA水平表達(dá)顯著下降,說明RNA干擾是有效的。SMS2 siRNA干擾Caco-2細(xì)胞48h后,P-gp的蛋白表達(dá)水平相對(duì)于空白對(duì)照組、陰性對(duì)照組降低了40%;胞內(nèi)特異性底物蓄積實(shí)驗(yàn)結(jié)果顯示P-gp的外排功能減弱,且減弱水平與蛋白表達(dá)下調(diào)水平程度相當(dāng),推測(cè)P-gp外排功能的減弱是由其表達(dá)水平降低引起的。在前期研究中,我們發(fā)現(xiàn)在SMS2基因缺失的小鼠腦中P-gp的表達(dá)與功能均有顯著下調(diào)[21],與我們?cè)贑aco-2細(xì)胞中得到的結(jié)果一致,再次驗(yàn)證了SMS2與P-gp之間的關(guān)系。
本實(shí)驗(yàn)首次發(fā)現(xiàn)SMS2敲低后MRP2的蛋白水平較空白對(duì)照組、陰性對(duì)照組降低了45%,且外排功能也相應(yīng)減弱,說明SMS2與MRP2的表達(dá)及功能密切相關(guān)。因此,SMS2基因缺損對(duì)Caco-2細(xì)胞中P-gp和MRP2的表達(dá)以及功能均有顯著作用。預(yù)示SMS2可能成為增加口服藥物吸收攝取的潛在靶標(biāo),為逆轉(zhuǎn)腫瘤治療中出現(xiàn)的多藥耐藥現(xiàn)象提供了新的思路。
[1]Gillet JP,Gottesman MM.Mechanisms of multidrug resistance in cancer[J].Methods Mol Btol,2010,596:47-76.
[2]Terada T,Inui K.Gene expression and regulation of drug transporters in the intestine and kidney[J].Btochem Pharmacol,2007,7(3):440-449.
[3]Nishijima T,Komatsu H,Higasa K,et al.Single nucleotide polymorphisms in ABCC2 associate with tenofovir-induced kidney tubular dysfunction in Japanese patients with HIV-1 infection:a pharmacogenetic study[J].Cltn Infect Dts,2012,55(11):1558-1567.
[4]Borst P,Evers R,Kool M,et al.The multidrug resistance protein family[J].Btochtm Btophys Acta,1999,1461(2):347-357.
[5]Blokzijl H,Vander BS,Bok LI,et al.Decreased P-glycoprotein(P-gp/MDR1)expression in inflamed human intestinal epithelium is independent of PXR protein levels[J].Inflamm Bowel Dts,2007,13(6):710-720.
[6]Fouassier L,Beaussier M,Schiffer E,et al.Hypoxiainduced changes in the expression of rat hepatobiliary transporter genes[J].Am J Phystol Gastrotntest Ltver Phystol,2007,293(1):G25-G35.
[7]Mc Rae MP,Brouwer K,Kashuba A.Cytokine regulation of P-glycoprotein[J].Drug Metab Rev,2003,35(1):19-33.
[8]Tchenio T,Havard M,Martinez LA,et al.Heat shockindependent induction of multidrug resistance by heat shock factor 1[J].Mol Cell Btol,2006,26(2):580-591.
[9]Geier A,Wagner M,Dietrich CG,et al.Principles of hepatic organic anion transporter regulation during cholestasis,inflammation and liver regeneration[J].Btochtm Btophys Acta,2007,1773(3):283-308.
[10]Bacso Z,Nagy H,Goda K,et al.Raft and cytoskeleton associations of an ABC transporter:P-glycoprotein[J].Cytometry A,2004,61(2):105-116.
[11]Klappe K,Hummel I,Hoekstra D,et al.Lipid dependence of ABC transporter localization and function[J].Chem Phys Ltptds,2009,161(2):57-64.
[12]Troost J,Lindenmaier H,Haefeli WE,et al.Modulation of cellular cholesterol alters P-glycoprotein activity in multidrug-resistant cells[J].Mol Pharmacol,2004,66(5):1332-1339.
[13]Yunomae K,Arima H,Hirayama F,et al.Involvement of cholesterol in the inhibitory effect of dimethyl-betacyclodextrin on P-glycoprotein and MRP2 function in Caco-2 cells[J].FEBS Lett,2003,536(1-3):225-231.
[14]Luker GD,Pica CM,Kumar AS,et al.Effects of cholesterol and enantiomeric cholesterol on P-glycoprotein localization and function in low-density membrane domains[J].Btochemtstry,2000,39(26):7651-7661.
[15]Huitema K,van den Dikkenberg J,Brouwers JF,et al.Identification of a family of animal sphingomyelin synthases[J].EMBO J,2004,23(1):33-44.
[16]Rietveld A,Neutz S,Simons K,et al.Association of sterol-and glycosylphosphatidylinositol-linked proteins with Drosophila raft lipid microdomains[J].J Btol Chem,1999,274(17):12049-12054.
[17]Schlitt A,Blankenberg S,Yan D,et al.Further evaluation of plasma sphingomyelin levels as a risk factor for coronary artery disease[J].Nutr Metab(Lond),2006,3:5.
[18]Hailemariam TK,Huan C,Liu J,et al.Sphingomyelin synthase 2 deficiency attenuates NF-κB activation[J].Artertoscler Thromb Vasc Btol,2008,28(8):1519-1526.
[19]Ding T,Li Z,Hailemariam T,et al.SMS overexpression and knockdown:impact on cellular sphingomyelin and diacylglycerol metabolism,and cell apoptosis[J].J Ltptd Res,2008,49(2):376-385.
[20]Liu J,Huan C,Chakraborty M,et al.Macrophage sphingomyelin synthase 2 deficiency decreases atherosclerosis in mice[J].Ctrc Res,2009,105(3):295-303.
[21]Zhang Y,Dong J,Zhu X,et al.The effect of sphingomyelin synthase 2(SMS2)deficiency on the expression of drug transporters in mouse brain[J].Btochem Pharmacol,2011,82(3):287-294.
[22]Hayeshi R,Hilgendorf C,Artursson P,et al.Comparison of drug transporter gene expression and functionality in Caco-2 cells from 10 different laboratories[J].Eur J Pharm Sct,2008,35(5):383-396.
[23]Li Z,Hailemariam TK,Zhou H,et al.Inhibition of sphingomyelin synthase(SMS)affects intracellular sphingomyelin accumulation and plasma membrane lipid organization[J].Btochtm Btophys Acta,2007,1771(9):1186-1194.
[24]Callaghan R,Berridge G,F(xiàn)erry DR,et al.The functional purification of P-glycoprotein is dependent on maintenance of a lipid-protein interface[J].Btochtm Btophys Acta,1997,1328(2):109-124.
Effects of sphingomyelin synthase 2(SMS2)interefered by siRNA on drug transporters in Caco-2 cells
JIN Gui-ying,YANG Qing△
(Department of Btochemtstry,School of Ltfe Sctences,F(xiàn)udan Untverstty,Shanghat200433,Chtna)
ObjectiveTo study the effect of sphingomyelin synthase 2(SMS2)defect on the expression and function of drug transporters P-glycoprotein(P-gp)and multidrug resistance-associated protein 2(MRP2)in human colon cancer(Caco-2)cells.MethodsSMS2-specific siRNA was transfected into Caco-2 cell.RT-PCR and real-time PCR were employed to detect the efficiency of siRNA.Western blot was used to examine the protein expressions of P-gp and MRP2.Intracellular accumulation experiment was carried out to evaluate the effect of SMS2 down-regulation level on the functions of P-gp and MRP2 in Caco-2 cells.HPLC analysis was used to decect the accumulation amounts of parvastain and rhodamine 123,the specific substrates of P-gp and MRP2.ResultsThe expressions of P-gp and MRP2 were down-regulated in SMS2 knockdown cells treated by siRNA.Cellular accumulation experiments revealed that the excretion function of P-gp and MRP2 in SMS2 deficient cells was decreased,as the accumulation of rhodamine 123 and parvastain was increased significantly.ConclusionsThe down-regulation of SMS2 gene on the expression and function of P-gp,MRP2 in Caco-2 cell.
siRNA interference;sphingomyelin synthase 2(SMS2);P-glycoprotein(P-gp);multidrug resistance-associated protein 2(MRP2)
△Corresponding author E-mail:yangqing68@fudan.edu.cn
Q 241
A
10.3969/j.issn.1672-8467.2014.05.001
(81373396);教育部博士點(diǎn)基金(20130071110037);上海市科委生物醫(yī)藥重點(diǎn)課題(12431900204)
2013-12-17;編輯:段佳)