王 蓉,王 輝,胡志興,馬萬彪,廖福成
(北京科技大學(xué)數(shù)理學(xué)院, 北京 100083)
伴隨飽和感染率和分布時滯并具有體液免疫的病毒感染模型的全局動力學(xué)研究
王 蓉*,王 輝,胡志興,馬萬彪,廖福成
(北京科技大學(xué)數(shù)理學(xué)院, 北京 100083)
提出并研究了伴隨體液反應(yīng)且?guī)в袃蓚€分布時滯的病毒感染模型. 通過構(gòu)造合適的Lyapunov函數(shù)得出了該模型的全局穩(wěn)定性是由兩個基本再生數(shù)R0和R1決定的, 并且當(dāng)R0≤1時, 無感染平衡點E0是全局漸近穩(wěn)定的. 此時, 病毒會被清除. 當(dāng)R1≤1
全局穩(wěn)定性; 體液免疫; 飽和感染率; 分布時滯
體液免疫是一種以B淋巴細胞產(chǎn)生抗體來達到保護目的的免疫機制, 對于瘧疾等一些傳染病,體液免疫比細胞免疫更加有效[1-6], 國內(nèi)外許多文章為體液免疫構(gòu)造了一些數(shù)學(xué)模型[7-11]. Wang[12]提出了一個帶有兩個確定時滯并伴隨體液免疫的感染模型.
(1)
其中T代表未感染細胞,I代表感染細胞,V為病毒,B是B細胞.λ和d分別代表無感染細胞的出生率和死亡率.β為感染率,N代表感染細胞在生命周期內(nèi)產(chǎn)生的游離的病毒數(shù),d1為感染細胞的死亡率,c為病毒的死亡率,g和u分別代表B細胞的出生率和死亡率, 而q則代表B細胞的中和率.
本文中, 作者在(1) 的基礎(chǔ)上加以改進, 將雙線性感染率變?yōu)轱柡透腥韭蔥13]并引入分布時滯, 假設(shè)未感染的細胞在t時刻被病毒侵入后經(jīng)過. 單位時間后才會被感染,f1(τ) 是一個概率分布函數(shù),m1則為健康細胞變?yōu)楦腥炯毎乃劳雎? 同時假設(shè)在t時刻受感染的細胞在. 單位時間后才開始產(chǎn)生病毒,f2(τ) 也為一個概率分布函數(shù), 在t時刻的產(chǎn)生病毒的細胞數(shù)取決于t-τ時刻被感染并且t時刻仍然存活的感染細胞的數(shù)量,m2則為被感染但尚未產(chǎn)生病毒的細胞的死亡率. 由此模型則變?yōu)?/p>
(2)
其中假設(shè)fi:[0,∞)→[0,∞)分段連續(xù)并且滿足
系統(tǒng)(2) 的初始條件為如下形式:
T(θ)=φ1(θ),I(θ)=φ2(θ),V(θ)=φ3(θ),B(θ)=φ4(θ),
φi(θ)≥0,θ∈(-∞,0),φi(0)>0(i=1,2,3,4),
(3)
定理1對系統(tǒng)(2), 當(dāng)R0≤1時, 無感染平衡點E0是全局漸近穩(wěn)定的. 此時, 病毒會被清除.
(4)
構(gòu)造Lyapunov函數(shù)
定理2對系統(tǒng)(2), 當(dāng)R1≤1 定義Lyapunov函數(shù) (5) 定理3對系統(tǒng)(2), 當(dāng)R1>1時, 攜帶B細胞感染平衡點E2是全局漸近穩(wěn)定的. 在這種情況下,感染為慢性的且伴隨持久的B細胞反應(yīng). k2cV2+k2qV2B-k3uB-k3gB2V+k3uB2. 定義Lyapunov函數(shù) (6) V3(t)的全導(dǎo)數(shù)可化簡為 本文取fi(τ)=δ(τ), 首先在圖1中取參數(shù)為:λ=10 mm-3day-1,d=0.1day-1,β=0.01 mm-3day-1,a=0.000 1day-1,m1=0.4day-1,τ=1.5day,δ=0.1day-1,N=2 mm-3,m2=0.4day-1,c=0.1day-1,q=0.01mm-3day-1,g=0.1mm-3day-1,u=0.1day-1.此時可計算出R0=0.602 388<1且E0(50,0,0,0), 由定理1證明了無感染平衡點E0是全局漸近穩(wěn)定的,圖1證實了結(jié)論. 圖2中,作者將參數(shù)取為λ=20mm-3day-1,g=0.1mm-3day-1, 其余參數(shù)不變.則可以得到R1=0.802 649<1,R0=1.204 78>1, 圖2證實了定理2的結(jié)論,即無B細胞感染平衡點E1的全局穩(wěn)定性. 圖3中,作者將參數(shù)取為λ=28mm-3day-1,g=0.1mm-3day-1, 其余參數(shù)不變.則可以得到R1=20.066 2>1, 圖3說明了攜帶B細胞感染平衡點E2的全局漸近穩(wěn)定性. 圖1 平衡點E0是全局漸近穩(wěn)定的 圖2 平衡點E1是全局漸近穩(wěn)定的Fig.1 The equilibrium E0 is globally asymptotically stable Fig.2 The equilibrium E1 is globally asymptotically stable 圖3 平衡點E2是全局漸近穩(wěn)定的Fig.1 The equilibrium E2 is globally asymptotically stable 本文研究了伴隨體液反應(yīng)且?guī)в袃蓚€分布時滯的病毒感染模型, 這兩個分布時滯一個代表病毒進入健康細胞到此細胞變?yōu)楦腥炯毎臏螅涣硪粋€則代表被感染的細胞到可以產(chǎn)生新游離病毒的滯后.通過構(gòu)造合適的Lyapunov函數(shù)以及運用LaSalle不變集原理, 完全討論出了無感染平衡點,無B細胞感染平衡點以及攜帶B細胞感染平衡點的全局穩(wěn)定性,得到了時滯和飽和發(fā)生率對模型的穩(wěn)定性沒有影響. [1] NOWAK M A, BANGHAM C R M. Population dynamics of immune responses to persistent viruses [J].Science, 1996,272(5258):74-79. [2] ZHU H, ZOU X. Dynamics of a HIV-1 Infection model with cell-mediated immune response and intracellular delay [J]. Discrete Continuous Dyn Syst Ser, 2009,B12(2):511-524. [3] WANG X, TAO Y. Lyapunov function and global properties of virus dynamics with CTL immune response[J]. Int J Biomath, 2008,1(4):443-448. [4] WANG K, WANG W, PANG H,etal. Complex dynamic behavior in a viral model with delayed immune response [J]. Phys D, 2007,226(2):197-208. [5] ANDERSON R, MAY R, GUPTA S. Non-linear phenomena in host-parasite interactions [J]. Parasitology, 1989(Suppl),99:59-79. [6] MURASE A, SASAKI T, KAJIWARA T. Stability analysis of pathogen-immune interaction dynamics [J]. J Math Biol, 2005,51(3):247-267. [7] WODARZ D, MAY R, NOWAK M. The role of antigen-independent persistence of memory cytotoxicTlymphocytes [J]. Int Immunol, 2000,12(4):467-477. [8] CHIYAKA C, GARIRA W, DUBE S. Modelling immune response and drug therapy in human malaria infection[J]. Comput Math Method, 2008,9(2):143-163. [9] PERELSON A. Modelling viral and immune system dynamics [J]. Nature Rev Immunol, 2002,2(1):28-36. [10] BONHOEFFER S, MAY R, SHAW G,etal. Global dynamics of a cell mediated immunity in viral infection models with distributed delays [J]. J Math Anal Appl, 2011,375(1):14-27. [11] KOROBEINIKOV A. Global properties of basic virus dynamics models [J]. Bull Math Biol, 2004,66(4):879-883. [12] WANG S, ZOU D. Global stability of in-host viral models with humoral immunity and intracellular delays[J]. Appl Math Modelling, 2012,36(3):1313-1322. [13] KUANG Y. Delay differential equations with applications in population dynamics[M].London: Academic Press, 1993. [14] XU R. Global dynamics of an HIV-1 infection model with distributed intracellular delays [J]. Comput Math Appl, 2011,61(9):2799-2805. (編輯 沈小玲) Global Dynamics of an In-Host Viral Model of B Cells with Saturated Infection Rate and Distributed Intracellular Delays WANGRong*,WANGHui,HUZhi-xing,MAWan-biao,LIAOFu-cheng (Mathematics and Physics School, Science and Technologe University of Beijing, Beijing 100083, China) The global stability of an in-host viral model of B cells with saturated infection rate and distributed intracellular delays is investigated. By structuring suitable Lyapunov function and using LaSalle’s invariance principle, the global stability of the three equilibriums is obtained. The uninfected equilibrium is globally asymptotically stable ifR0≤1. The infected equilibrium without B cells response is globally asymptotically stable ifR1≤1 andR0>1. The infected equilibrium with B cells response is globally asymptotically stable ifR1>1. Finally, each analysis is confirmed by the numerical simulations. global stability; humoral immunity; saturated infection rate; distributed intracellular delays 2013-04-16 國家自然科學(xué)基金資助項目(61174209, 11071013); 中央高?;A(chǔ)研究基金資助項目(FRF-BR-11-048B,FRF-BR-12-004); 北京科技大學(xué)冶金工程研究院基礎(chǔ)研究基金資助項目(YJ2012-001) * ,E-mail:bkwangrong@163.com O29 A 1000-2537(2014)04-0077-054 數(shù)值模擬
5 結(jié)論