黎興鍵 吳智兵 于征淼 張小梅
(廣州中醫(yī)藥大學第一附屬醫(yī)院腦病科,廣東 廣州 510405)
黃連解毒湯合定癇丸治療陽癇大鼠的實驗研究
黎興鍵 吳智兵 于征淼△張小梅
(廣州中醫(yī)藥大學第一附屬醫(yī)院腦病科,廣東 廣州 510405)
目的觀察黃連解毒湯合定癇丸(湯劑)對陽癇大鼠的抗癇作用。方法以高脂飼料和制附子煎液預飼養(yǎng)并采用匹羅卡品注射法制成陽癇大鼠模型,以黃連解毒湯合定癇丸(湯劑)灌胃治療(陽癇中藥組),同時設正常組、陽癇組和陽癇中藥反治組進行對照,每組各9只觀測癲癇發(fā)作潛伏期、到達癲癇持續(xù)狀態(tài)(SE)時間等癥狀學指標,高效液相色譜法檢測腦內谷氨酸(Glu)、天門冬氨酸(Asp)、γ-氨基丁酸(GABA)、甘氨酸(Gly)、丙氨酸(Ala)等5種氨基酸類神經(jīng)遞質的含量,伊紅-蘇木素(HE)切片觀察肺、腎、肝、海馬、腦皮質的病理變化,免疫組化法測定腦內caspase-3表達。結果陽癇組、陽癇中藥反治組、陽癇中藥組大鼠均出現(xiàn)4級以上癲癇發(fā)作。癲癇發(fā)作潛伏期以陽癇組最長,陽癇中藥組次之,陽癇中藥反治組最短;到達SE時間以陽癇中藥組最長,陽癇中藥反治組次之,陽癇組最短。各致癇組大鼠腦內5種氨基酸含量較正常組均降低。陽癇組Glu、Asp與正常組比較差異有統(tǒng)計學意義(P<0.05,P<0.01),GABA、Gly、Ala與正常組比較差異無統(tǒng)計學意義(P>0.05);陽癇中藥反治組中各種氨基酸與正常組比較差異有統(tǒng)計學意義(P<0.05,P<0.01);陽癇中藥組Glu、Asp、GABA、Gly與正常組比較差異有統(tǒng)計學意義(P<0.05,P<0.01),Ala與正常組比較差異無統(tǒng)計學意義(P>0.05)。HE切片顯示,正常組大鼠各組織基本正常,其余組大鼠肺、腎、肝、海馬、腦皮質等組織均出現(xiàn)明顯病理損害。陽癇組和陽癇中藥反治組的腦內caspase-3水平高于正常組,其中,陽癇中藥反治組升高較明顯,而陽癇中藥組則略低于正常組,但比較差異均無統(tǒng)計學意義(P>0.05)。結論黃連解毒湯合定癇丸可能能推遲陽癇大鼠SE的到達時間,改變部分腦內氨基酸神經(jīng)遞質水平,并減少神經(jīng)元凋亡,但作用程度較輕。
癲癇;黃連解毒湯;定癇丸;動物實驗
對于發(fā)作期癲癇,中醫(yī)常分為陽癇和陰癇進行辨證論治。治療陽癇的代表方是黃連解毒湯合定癇丸,治療陰癇的代表方是五生飲合二陳湯[1]。本研究擬建立陽癇大鼠模型,并以黃連解毒湯合定癇丸(湯劑)干預,從動物癥狀學、神經(jīng)遞質、主要臟器病理變化、神經(jīng)元凋亡等角度探討其抗癇作用。
1.1 動物 Wistar大鼠36只,合格證號:SCXK(粵)2006-0015,SPF級,雄性,實驗前體質量約(160±20)g,飼養(yǎng)于廣州中醫(yī)藥大學第一附屬醫(yī)院SPF動物實驗室內[恒溫(26±2) ℃]。實驗動物環(huán)境合格證號:SYXK(粵)2008-0092。實驗動物設施使用證明號:0019724。
1.2 試劑 匹羅卡品(PILO,Sigma,批號1001059533)、氯化鋰(LiCl,Sigma,批號MFCD00011078)、硫酸阿托品注射液(天津藥業(yè)集團新鄭股份有限公司,國藥準字H41021257);氨基酸對照品(amino acid stadard H,PIERCE)、GABA對照品(Sigma)、衍生劑AQC(Waters,批號1383803631)、醋酸鈉緩沖液(Waters,批號4082110911);Rabbit anti caspase-3(cell signaling)、EnVision試劑(Dako)。
1.3 儀器 Waters 2695高效液相色譜(HPLC)儀,Waters 2475熒光檢測器,Empower色譜工作站(Waters)。
1.4 藥物 制附子煎液:制附子15g,加水300mL煮沸1 h,約得溶液220mL。黃連解毒湯合定癇丸(湯劑):丹參、麥門冬各90g,明天麻、浙貝母、法半夏、茯苓、茯神、生姜各45g,天竺黃、甘草、黃連、梔子各27 g,黃芩、黃柏、膽南星、石菖蒲、全蝎、僵蠶、陳皮、遠志各15g,琥珀4.5g,朱砂1.5g,以350mL水煎沸除琥珀和朱砂以外的中藥40min,后將琥珀和朱砂兌入拌勻,約得150mL藥液(含生藥約4.5g/mL)。減味五生飲合二陳湯:法半夏、橘紅、生姜各45g,茯苓、烏梅各27 g,黑豆衣、生天南星、生半夏、白附子、炙甘草各15g,以300mL水先煎生半夏、生天南星,煮沸40min,加入其余藥物再煎30min,約得150mL藥液(含生藥約1.8 g/mL)。
1.5 分組及造模 隨機區(qū)組設計,按體質量將動物分成9個區(qū)組,4只/區(qū)組。然后隨機分入4組:正常組、陽癇組、陽癇中藥反治組、陽癇中藥組,每組9只。以普通飼料及過濾水喂養(yǎng)正常組,以高脂飼料及制附子煎液喂養(yǎng)其它3組。高脂飼料由普通飼料摻入膽固醇、奶粉、白糖、豬油等制成,每1 g提供熱量約18.84kJ。每次取制附子煎液45mL,加水稀釋至300mL,供1籠大鼠(9只)飲用24h,為惟一水源,各組喂養(yǎng)時間均為10周。然后,正常組予0.9%氯化鈉注射液腹腔注射。其余3組予LiCl+PILO腹腔注射:共進行3次注射,第1次用LiCl 127 mg/kg,17.5h后用阿托品1 mg/kg,再30min后用PILO 50mg/kg。實驗動物癲癇發(fā)作級別評定根據(jù)Racine分級[2]。本研究規(guī)定出現(xiàn)4級或以上發(fā)作或癲癇持續(xù)狀態(tài)(SE)者為造模成功。
1.6 給藥 各組均在首次腹腔注射后17 h灌胃給藥(20mL/kg):正常組、陽癇組予0.9%氯化鈉注射液,陽癇中藥反治組予減味五生飲合二陳湯,陽癇中藥組予黃連解毒湯合定癇丸(湯劑)。
1.7 觀察指標 記錄各組大鼠癲癇發(fā)作潛伏期(自注射PILO到大鼠首次出現(xiàn)癲癇發(fā)作的時間)、發(fā)作程度分級及到達SE時間(自注射PILO到大鼠SE的時間)。注射PILO后60min予腹腔注射10%水合氯醛(300mg/kg)終止發(fā)作并處死所有大鼠。HPLC法檢測腦內谷氨酸(Glu)、天門冬氨酸(Asp)、γ-氨基丁酸(GABA)、甘氨酸(Gly)、丙氨酸(Ala)5種氨基酸類神經(jīng)遞質的含量;伊紅-蘇木素(HE)切片觀察肺、腎、肝、海馬、腦皮質等的病理變化;免疫組化法測定腦內caspase-3表達(每張切片隨機取3個視野測定陽性面積,取均值作為測定結果)。HE切片及免疫組化實驗結果由中山大學達安基因股份有限公司提供。
2.1 各組氨基酸類神經(jīng)遞質比較 見表1。
組 別nGluAspGABAGlyAla正常組90.057±0.0310.029±0.0160.080±0.0250.058±0.0140.023±0.008陽癇組90.034±0.006?0.013±0.005??0.067±0.0180.050±0.0100.019±0.005陽癇中藥反治組90.033±0.005??0.012±0.003??0.056±0.009??0.045±0.007??0.017±0.003?陽癇中藥組90.033±0.005?0.015±0.004??0.064±0.010?0.048±0.008?0.019±0.004
與正常組比較,*P<0.05,**P<0.01
由表1可見,各致癇組大鼠腦內5種氨基酸含量較正常組均降低。陽癇組Glu、Asp與正常組比較差異有統(tǒng)計學意義(P<0.05,P<0.01),GABA、Gly、Ala與正常組比較差異無統(tǒng)計學意義(P>0.05);陽癇中藥反治組中各種氨基酸與正常組比較差異有統(tǒng)計學意義(P<0.05,P<0.01);陽癇中藥組Glu、Asp、GABA、Gly與正常組比較差異有統(tǒng)計學意義(P<0.05,P<0.01),Ala與正常組比較差異無統(tǒng)計學意義(P>0.05),其中Asp、Ala水平在所有致癇組中降幅最小。
2.2 各組癥狀學比較 見表2。
組 別n癲癇發(fā)作潛伏期到達SE時間正常組9--陽癇組91.591±0.46117.886±8.880陽癇中藥反治組91.305±0.54623.912±6.617陽癇中藥組91.383±0.54626.069±10.512
由表2可見,除正常組大鼠未見癲癇發(fā)作外,陽癇組、陽癇中藥反治組、陽癇中藥組大鼠均出現(xiàn)4級以上癲癇發(fā)作。癲癇發(fā)作潛伏期以陽癇組最長,陽癇中藥組次之,陽癇中藥反治組最短;到達SE時間以陽癇中藥組最長,陽癇中藥反治組次之,陽癇組最短。
2.3 各組肺、腎、肝、海馬、腦皮質病理變化 HE切片顯示,正常組大鼠各組織基本正常。其余組大鼠肺、腎、肝、海馬、腦皮質等組織均出現(xiàn)明顯病理損害:肺泡壁增厚,炎細胞浸潤,部分出血嚴重,部分損傷嚴重;腎小球結構輕度破壞,系膜增生,腎小管結構破壞,部分大鼠腎小管結構模糊,重度水腫;肝細胞濁腫,肝索排列混亂,炎細胞浸潤;海馬結構破壞嚴重,神經(jīng)元細胞嚴重損傷;腦皮質星形細胞和小膠質細胞增多,部分大鼠皮層組織破壞。各致癇組損害嚴重程度無明顯差別。見封3,圖1-20。
2.4 各組腦內caspase-3表達比較 見表3。
組 別ncaspase-3表達陽性面積正常組98.833±2.758陽癇組98.917±6.156陽癇中藥反治組913.500±10.405陽癇中藥組98.417±4.379
由表3可見,陽癇組和陽癇中藥反治組的腦內caspase-3水平高于正常組,其中陽癇中藥反治組升高較明顯,而陽癇中藥組則略低于正常組,但比較差異均無統(tǒng)計學意義(P>0.05)。
陰癇和陽癇中的“陰”和“陽”指癲癇頻繁發(fā)作之時的證候寒熱屬性,陽癇的病機為痰熱蒙蔽心神。本研究使用黃連解毒湯合定癇丸(湯劑)治療陽癇大鼠模型。
首先觀測了發(fā)作潛伏期、到達SE時間等癥狀學指標,結果顯示,到達SE時間以陽癇中藥組最長,陽癇中藥反治組次之,陽癇組最短。
其次,使用HPLC檢測腦內5種氨基酸類神經(jīng)遞質。氨基酸類神經(jīng)遞質是中樞神經(jīng)系統(tǒng)(CNS)內一類重要的遞質。Glu、Asp為興奮性氨基酸,對CNS有興奮效應。GABA、Gly、Ala為抑制性氨基酸,對CNS有抑制效應[3]。這些遞質的失衡參與了癲癇的發(fā)病過程[4-7]。關于癲癇動物腦內氨基酸類神經(jīng)遞質的變化,文獻報道結果不一。PILO致癇大鼠腦皮質 Glu、Gly,海馬區(qū)Gly、Asp[8]及其外液中GABA濃度升高[9]。PILO致癇小鼠的小腦內Ala濃度亦顯著增高[10]。但戊四唑點燃癲癇大鼠海馬、紋狀體內 Glu、Ala、Gly濃度則降低,GABA濃度無變化[11]。氯化鐵微注射誘導的癲癇大鼠可出現(xiàn)腦皮質內Asp、GABA濃度下降,Ala、Gly濃度上升,而Glu濃度則無變化[12]。本研究結果顯示,各致癇組大鼠腦內5種氨基酸濃度均較正常組降低,陽癇中藥組的Asp、Ala降幅最小,最接近正常大鼠的水平,其中Asp降幅差異有統(tǒng)計學意義。各文獻報道的結果并不一致,提示氨基酸類神經(jīng)遞質在癲癇中雖然具有肯定的病理意義,但其機制卻具有復雜性。
再次,HE切片觀察肺、腎、肝、海馬、腦皮質的病理變化,結果顯示,各致癇組大鼠肺、腎、肝、海馬、大腦皮質等組織均出現(xiàn)明顯病理損害,提示癲癇頻繁發(fā)作對多個重要臟器均有明顯損害作用。
最后,使用免疫組化技術測定了腦內caspase-3表達。天冬氨酸特異性半胱氨酸蛋白酶(caspase)是介導細胞凋亡級聯(lián)反應的蛋白酶家族,其核心蛋白是caspase-3[13-14]。研究表明,癲癇患者及動物腦內caspase-3較正常水平顯著升高,抑制caspase-3的激活對癲癇具有治療作用[15-16]。本研究結果顯示,陽癇組和陽癇中藥反治組腦內caspase-3水平高于正常組,而陽癇組則略低于正常組,但均無統(tǒng)計學意義。
上述結果雖然大多缺乏統(tǒng)計學意義,但可發(fā)現(xiàn)陽癇中藥組的某些指標具有病情減輕的趨勢,可以推測,黃連解毒湯合定癇丸可能能夠推遲陽癇大鼠SE的到達時間,改變腦內部分氨基酸神經(jīng)遞質的水平,并減少神經(jīng)元凋亡。
缺乏有統(tǒng)計學意義陽性結果的原因可能有三:①數(shù)據(jù)標準差大;②指標不夠敏感;③黃連解毒湯合定癇丸的藥效特點是同時對癲癇的多個環(huán)節(jié)進行細微的干預。
另外,目前國內癲癇動物實驗均使用西醫(yī)病理模型,尚無具備中醫(yī)證候特點的癲癇動物模型。本研究使用高脂飼料和制附子煎液預飼養(yǎng),PILO注射法制作陽癇大鼠模型,并予治療陽癇的代表方黃連解毒湯合定癇丸進行干預,同時用藥性相反的減味五生飲合二陳湯作為反治對照方,以評價模型的證候特點。結果顯示,陽癇中藥組到達SE時間長于陽癇中藥反治組和陽癇組,陽癇中藥組的Asp、Ala最接近正常大鼠水平,caspase-3表達量最低。這些結果都提示了該模型可能具有陽癇的中醫(yī)證候特點。
[1] 田德祿,蔡淦.中醫(yī)內科學[M].上海:上海科學技術出版社,2006:176-181.
[2] Racine RJ.Modification of seizure activity by electrical stimulation:cortical areas[J].Electroencephalogr Clin Neurophysiol,1975,38(1):1-12.
[3] Tiedje KE,Stevens K,Barnes S,et al.Beta-alanine as a small molecule neurotransmitter[J].Neurochem Int,2010,57(3):177-188.
[4] Ronne-Engstr?m E,Hillered L,F(xiàn)link R,et al.Intracerebral microdialysis of extracellular amino acids in the human epileptic focus[J].J Cereb Blood Flow Metab,1992,12(5):873-876.
[5] Alvestad S,Hammer J,Qu H,et al.Reduced astrocytic contribution to the turnover of glutamate,glutamine,and GABA characterizes the latent phase in the kainate model of temporal lobe epilepsy[J].J Cereb Blood Flow Metab,2011,31(8):1675-1686.
[6] van der Hel WS,van Eijsden P,Bos IW,et al.In vivo MRS and histochemistry of status epilepticus-induced hippocampal pathology in a juvenile model of temporal lobe epilepsy[J].NMR Biomed,2013,26(2):132-140.
[7] Mayr JA,Zimmermann FA,F(xiàn)auth C,et al.Lipoic acid synthetase deficiency causes neonatal-onset epilepsy,defective mitochondrial energy metabolism,and glycine elevation[J].Am J Hum Genet,2011,89(6):792-797.
[8] Radwan NM,El Hay Ahmed NA,Ibrahim KM,et al.Effect of infrared laser irradiation on amino acid neurotransmitters in an epileptic animal model induced by pilocarpine[J].Photomed Laser Surg,2009,27(3):401-409.
[9] Smolders I,Bortolotto ZA,Clarke VR,et al.Antagonists of GLU(K5)-containing kainate receptors prevent pilocarpine-induced limbic seizures[J].Nat Neurosci,2002,5(8):796-804.
[10] López-Meraz ML,Rocha LL,Miquel M,et al.Amino acid tissue levels and GABAA receptor binding in the developing rat cerebellum following status epilepticus[J].Brain Res,2012,1439:82-87.
[11] Szyndler J,Piechal A,Blecharz-Klin K,et al.Effect of kindled seizures on rat behavior in water Morris maze test and amino acid concentrations in brain structures[J].Pharmacol Rep,2006,58(1):75-82.
[12] Shiota A,Hiramatsu M,Mori A.Amino acid neurotransmitters in iron-induced epileptic foci of rats[J].Res Commun Chem Pathol Pharmacol,1989,66(1):123-133.
[13] Snigdha S,Smith ED,Prieto GA,et al.Caspase-3activation as a bifurcation point between plasticity and cell death[J].Neurosci Bull,2012,28(1):14-24.
[14] D'Amelio M,Cavallucci V,Cecconi F.Neuronal caspase-3signaling:not only cell death[J].Cell Death Differ,2010,17(7):1104-1114.
[15] Chen X,Bao G,Hua Y,et al.The effects of topiramate on caspase-3expression in hippocampus of basolateral amygdala (BLA)electrical kindled epilepsy rat[J].J Mol Neurosci,2009,38(2):201-206.
[16] Henshall DC,Clark RS,Adelson PD,et al.Alterations in bcl-2and caspase gene family protein expression in human temporal lobe epilepsy[J].Neurology,2000,55(2):250-257.
(本文編輯:李珊珊)
ExperimentalstudyofHuanglianJiedudecoctioncombinedwithDingxianPillonYangxianEpilepticRats
LIXingjian,WUZhibing,YUZhengmiao,etal.
DepartmentofNeurology,FirstAffiliatedHospitalofGuangzhouUniversityofChineseMedicine,Guangdong,Guangzhou510405
ObjectiveTo explore anti-epileptic effects of Huanglian Jiedu decoction combined with Dingxian Pill on pilocarpine-yangxian epileptic rats.MethodsThe yangxian epileptic rat models were established by intraperitoneal injection of pilocarpine after being pretreated with high fat diet and Radix Aconiti Lateralis Preparata decoction. Then, they were treated with Huanglian Jiedu decoction and Dingxian Pill, which were referred as the yangxian Chinese medicine (CM) group. At the same time, the normal group, the yangxian group, and the yangxian CM converse therapy group were established to serve as controls. Symptomatological indexes like time spots of seizure latency period and status epilepticus (SE) were recorded; concentrations of five amino acid neurotransmitters in the brains including glutamic acid (Glu), aspartic acid (Asp), gamma-aminobutyric acid(GABA), glycine (Gly), and alanine (Ala) were detected by high-performance liquid chromatography; pathological changes including the lung, the kidney, the liver, the hippocampus and the cortex were observed by HE staining; the expression of caspase-3in brains were examined by immunohistochemisty.ResultsClass 4-5seizures were observed in all the rats in the yangxian group, the yangxian CM converse therapy group, and the yangxian CM group. The seizure latency period of the yangxian group was the longest, followed by the yangxian CM group, and the yangxian CM converse therapy group was the shortest. The latency time of SE of the yangxian CM group was the longest, and the yangxian group was the shortest, whereas the yangxian CM converse therapy group was in the midst. All the concentrations of the five amino acids in brains of epileptic rats decreased when compared with the normal group. Compared with the normal group, there were significant decrease in the concentrations of Glu and Asp of the yangxian group, all the amino acids of the yangxian CM converse therapy group, and Glu, Asp, GABA and Gly of the yangxian CM group (P<0.05,P<0.01). However, GABA, Gly and Ala of the yangxian group, and Ala of the yangxian CM group were no statistically significant decline (P>0.05). HE stain indicated severe damage in the lung, the kidney, the liver, the hippocampus and the cortex of all the epileptic rats, while all the tissues mentioned above of the normal group were normal. The expression of caspase-3of the yangxian group and the yangxian CM converse therapy group, which had more obvious elevation, ascended, while the yangxian CM group mildly descended as compared with the normal group, but there was no statistical difference among all the groups.ConclusionHuanglian Jiedu decoction combined with Dingxian Pill would delay the occurrence of SE of the yangxian epileptic rats, regulate part of the concentrations of the amino acid neurotransmitters in brains, and prohibit apoptosis of neurons.
Epilepsy; Huanglian Jiedu decoction; Dingxian Pill; Animal experiment
黎興鍵(1985—),男,碩士。研究方向:中西醫(yī)結合神經(jīng)病學。
R742.1
A
1002-2619(2014)09-1388-04
2013-09-17)
△ 通訊作者:廣州中醫(yī)藥大學第一附屬醫(yī)院腦病科,廣東 廣州 510405