亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        氨氮對魚類的危害

        2014-08-27 21:35:12高亞峰孫洪杰
        河北漁業(yè) 2014年8期
        關鍵詞:魚類毒性

        高亞峰+孫洪杰

        摘 要:氨氮是水產養(yǎng)殖中需要密切關注的水質指標。氨氮對魚類的毒害作用主要歸因于其所包含的非離子氨(NH3-N)的毒性。研究表明:NH3-N能夠影響魚類的生長、滲透壓的平衡、代謝活動等,并能對魚類造成一定的損傷。本文就NH3-N的毒性做了詳細闡述。

        關鍵詞:非離子氨;離子氨;魚類;毒性

        氨氮是水產養(yǎng)殖環(huán)境中的一個環(huán)境污染的指標。研究表明,高濃度氨氮能夠嚴重影響水生動物的正常生活。隨著水產養(yǎng)殖業(yè)集約化、規(guī)模化的迅速發(fā)展,使得水產養(yǎng)殖業(yè)中氨氮污染的問題變得日益嚴重。因為隨著養(yǎng)殖規(guī)模的擴大,大大降低了水體中水生生物的多樣性,減弱了池塘中的能量流動,導致投入的餌料、糞便及各種生物的尸體等含蛋白質的物質不能及時分解。當池塘中所含的氨氮總量多余消散量時,隨著時間的遷移,池塘中氨氮的含量逐漸累積,達到一定程度后,就會對水生生物產生毒害作用,造成較大的危害。

        1 氨氮的存在形式

        作為水生生物的“頭號隱形殺手”,氨氮主要以兩種形式存在于水體中:非離子氨(NH3-N)和離子氨(NH4+)。二者在水體中存在一定的平衡:NH4+OH-NH3·H2ONH3+H2O[1]。 NH3-N和NH4+的相對濃度與pH值和溫度有密切的關系。通過Emerson, Russo, Lund and Thurston [1]的實驗研究發(fā)現(xiàn):NH3=[NH3+NH4+]1+10(pKa-pH):pKa=0.090 18+2 729.92/T, (T in Kelvin=273+T℃),在pH值和溫度一定的情況下,二者能夠按照一定比例而共存。通過近年來對氨氮毒性的研究可知:氨氮對水生動物的毒性,主要是它所包含的NH3-N起作用。NH3-N是具有毒性的,然而NH4+對水生動物的毒性很小,甚至可以忽略不計[2]。但是研究表明,NH4+對亞硝化單胞菌(Nitrosomonas)和硝化細菌(Nitrobacter)有一定的毒性,能夠抑制硝化反應的進行,進而導致水體中NH3-N濃度的增加,增強了氨氮對水生動物的毒性[3]。

        2 氨氮對魚類的影響

        由于氨氮是制約水產養(yǎng)殖業(yè)發(fā)展的重要因素,為了更好地了解氨氮的毒性,學者們對于NH3-N對魚的毒性進行了深入的研究。大量的研究表明:NH3-N能夠影響魚類正常的生長。其中一些學者認為,NH3-N能夠對魚類的正常生活形成脅迫作用,將會抑制它們的生長[4-5]。Foss, et al.[6]也證實了高濃度的NH3-N能夠抑制比目魚(Scophthalmus maximus)的生長,高濃度的NH3-N對魚有脅迫作用,抑制了魚的攝食,因此生長受到限制。然而也有一些學者認為NH3-N能夠促進魚的生長[7-8],Sun, et al.[9]通過實驗也證實了低濃度的NH3-N促進鳙魚(Hypophthalmythys nobilis)仔魚的生長。并推測這可能是因為仔魚機體能夠充分利用外界中NH3-N提供的氮源,考慮到NH3-N對魚體重影響的結論不一致,可能是因為NH3-N對不同種類、不同時期的魚類的影響不同。此外,NH3-N還會對魚類產生其他影響。抗氧化系統(tǒng),是魚體抵御環(huán)境脅迫的第一道屏障,能夠及時準確地反映出機體受到的損害[10]。抗氧化酶類的存在對魚類適應外界環(huán)境起到重要作用,研究表明:胚胎及孵化初期的仔魚就已經形成了抗氧化系統(tǒng),具備了清除體內氧化自由基和過氧化物的能力[10-11]??寡趸?,作為抗氧化系統(tǒng)的重要組成部分,對機體抵御環(huán)境脅迫有很重要的作用。Yang, et al. [12]研究指出:長期暴露在NH3-N(安全濃度)環(huán)境下,能夠影響鯽魚(Carassius carassius)的抗氧化酶類(CAT和SOD)的活性和抗氧化物質(GSH)的含量。Hegazi, et al.[13]也通過實驗發(fā)現(xiàn):長期暴露NH3-N能夠影響羅非魚(Oreochromis niloticus)的抗氧化酶類。在NH3-N影響魚體的抗氧化系統(tǒng)的同時,降低了機體的免疫力,進而導致機體更易感染一些細菌性或寄生性疾病。這是因為NH3-N能夠對機體造成氧化應激,破壞機體的抗氧化系統(tǒng),進而降低機體的免疫能力[12,14]。除此之外,NH3-N還會對魚類的ATP產生影響。有研究指出:NH3-N能夠抑制ATP的產生,并能耗盡腦部的ATP。因為氨氮能夠通過激活NMDA 受體,進而減少了對Na+、K+磷?;^程中起主要作用的蛋白激酶C[15-17]。另外,也有研究證實了,NH3-N能夠影響機體的滲透壓平衡,進而對其肝臟和腎臟造成紊亂[18]。并可以影響魚體內的糖酵解,抑制克氏循環(huán)并減弱了血液的攜氧能力。隨著NH3-N進入到魚體內,組織中氨濃度的提高抑制了機體的蛋白質分解和氨基酸的水解來降低體內氨的含量。與此同時磷酸果糖激酶被激活,進而影響糖酵解過程。NH3-N對糖酵解過程的影響而導致敗血癥的產生,進而對血液的攜氧能力產生影響[19-20]。NH3-N除了影響魚類體內的正常代謝、生化反應等,還對其生理造成損傷。NH3-N可以誘導魚類的許多組織發(fā)生病變[21-22]。Benli, et al.[23]通過慢性(6周)暴露實驗發(fā)現(xiàn),NH3-N能夠誘導羅非魚(Oreochromis niloticus L.)的鰓組織充血、肝組織腫脹、誘變腎炎等病變。Spencer, et al.[24]通過亞急性實驗也證實了,21天的NH3-N暴露能夠導致杜父魚(Cottus cognatus)的鰓組織發(fā)生病變。Miron, et al.[25]通過急性試驗表明:短時間(96 h)的NH3-N暴露能夠促使鯰魚(Rhamdia quelen)的鰓組織發(fā)生病變。這表明NH3-N對魚類的危害性很大,能夠影響機體內的抗氧化系統(tǒng)的平衡,并在短時間內能夠誘導機體發(fā)生病變。

        除此之外,研究還發(fā)現(xiàn):NH3-N還具有神經毒性[26-27]。NH3-N進入血液中轉換成離子氨,NH4+能夠通過替代K+激活NMDA谷氨酸受體,進而導致過多的Ca2+流失,最終導致神經細胞死亡[27]。

        綜上所述,NH3-N能夠對魚類造成多種危害,究其原因可能是:NH3-N能夠像O2、CO2一樣通過魚鰓的上皮細胞內的水蛋白通道進入到魚體內,在血液中NH3-N被轉化成離子氨,帶電荷的NH4+影響了機體的滲透壓平衡,又因為其所帶的電荷影響機體內正常的生化反應,進而可以對機體造成生理上的影響。

        參考文獻:

        [1] Emerson, K.; Russo, R. C.; Lund, R. E.; Thurston, R. V., Aqueous ammonia equilibrium calculations: effect of pH and temperature. J. Fish. Board Can. 1975, 32, (12), 2379-2383

        [2] Constable, M.; Charlton, M.; Jensen, F.; McDonald, K.; Craig, G.; Taylor, K. W., An ecological risk assessment of ammonia in the aquatic environment. Hum. Ecol. Risk Assess. 2003, 9, (2), 527-548

        [3] Anthonisen, A.; Loehr, R.; Prakasam, T.; Srinath, E., Inhibition of nitrification by ammonia and nitrous acid. J. Water Pollut. Control Fed. 1976, 48, (5), 835-852

        [4] Person-Le Ruyet, J.; Mahe, K.; Le Bayon, N.; Le Delliou, H., Effects of temperature on growth and metabolism in a Mediterranean population of European sea bass, Dicentrarchus labrax. Aquaculture 2004, 237, (1), 269-280

        [5] Foss, A.; Evensen, T. H.; Vollen, T.; ?iestad, V., Effects of chronic ammonia exposure on growth and food conversion efficiency in juvenile spotted wolffish. Aquaculture 2003, 228, (1), 215-224

        [6] Foss, A.; Imsland, A. K.; Roth, B.; Schram, E.; Stefansson, S. O., Interactive effects of oxygen saturation and ammonia on growth and blood physiology in juvenile turbot. Aquaculture 2007, 271, (1), 244-251

        [7] Wood, C. M., Dogmas and controversies in the handling of nitrogenous wastes: Is exogenous ammonia a growth stimulant in fish J. Exp. Biol. 2004, 207, (12), 2043-2054.

        [8] Foss, A.; Siikavuopio, S. I.; S?ther, B.-S.; Evensen, T. H., Effect of chronic ammonia exposure on growth in juvenile Atlantic cod. Aquaculture 2004, 237, (1), 179-189

        [9] Sun, H.; Lü, K.; Minter, E. J.; Chen, Y.; Yang, Z.; Montagnes, D. J., Combined effects of ammonia and microcystin on survival, growth, antioxidant responses, and lipid peroxidation of bighead carp Hypophthalmythys nobilis larvae. J. Hazard. Mater. 2012, 221, 213-219

        [10] Sun, H.; Yang, W.; Chen, Y.; Yang, Z., Effect of purified microcystin on oxidative stress of silver carp Hypophthalmichthys molitrix larvae under different ammonia concentrations. Biochem. Syst. Ecol. 2011, 39, (4), 536-543

        [11] Chen, Y.; Sun, H.; Yang, W.; Yang, Z., Incubation and oxidative stress of grass carp (Ctenopharyngodon idella) embryos exposed to different un-ionized ammonia levels. J. Freshwater Ecol. 2012, 27, (1), 143-150

        [12] Yang, W.; Sun, H.; Xiang, F.; Yang, Z.; Chen, Y., Response of juvenile crucian carp (Carassius auratus) to long-term ammonia exposure: feeding, growth, and antioxidant defenses. J. Freshwater Ecol. 2011, 26, (4), 563-570

        [13] Hegazi, M. M.; Attia, Z. I.; Ashour, O. A., Oxidative stress and antioxidant enzymes in liver and white muscle of Nile tilapia juveniles in chronic ammonia exposure. Aquat. Toxicol. 2010, 99, (2), 118-125

        [14] Yang, W.; Xiang, F.; Sun, H.; Chen, Y.; Minter, E.; Yang, Z., Changes in the selected hematological parameters and gill Na+/K+ ATPase activity of juvenile crucian carp Carassius auratus during elevated ammonia exposure and the post-exposure recovery. Biochem. Syst. Ecol. 2010, 38, (4), 557-562

        [15] Kosenko, E.; Kaminsky, Y.; Grau, E.; Mi?ana, M. D.; Marcaida, G.; Grisolía, S.; Felipo, V., Brain ATP depletion induced by acute ammonia intoxication in rats is mediated by activation of the NMDA receptor and Na+, K+‐ATPase. J. Neurochem. 1994, 63, (6), 2172-2178.

        [16] Kosenko, E.; Kaminsky, M.; Kaminsky, A.; Valencia, M.; Lee, L.; Hermenegildo, C.; Felipo, V., Superoxide production and antioxidant enzymes in ammonia intoxication in rats. Free Radical Res. 1997, 27, (6), 637-644

        [17] Hurvitz, A.; Bercovier, H.; Van run, J., Effect of ammonia on the survival and the immune response of rainbow trout (Oncorhynchus mykiss, Walbaum) vaccinated against Streptococcus iniae Fish Shellfish Immunol. 1997, 7, (1), 45-53

        [18] Eddy, F., Ammonia in estuaries and effects on fish. J. Fish Biol. 2005, 67, (6), 1495-1513

        [19] Sousa, R. J.; Meade, T. L., The influence of ammonia on the oxygen delivery system of coho salmon hemoglobin. Comp. Biochem. Phys. A 1977, 58, (1), 23-28.

        [20] Ip, Y.; Chew, S.; Randall, D., Ammonia toxicity, tolerance, and excretion. Fish Physiol. 2001, 20, 109-148

        [21] Schuwerack, P.-M.; Lewis, J.; Hoole, D.; Morley, N., Ammonia-induced cellular and immunological changes in juvenile Cyprinus carpio infected with the blood fluke Sanguinicola inermis. Parasitology 2001, 122, (03), 339-345

        [22] Vogelbein, W.; Shields, J.; Haas, L.; Reece, K.; Zwerner, D., Skin ulcers in estuarine fishes: a comparative pathological evaluation of wild and laboratory-exposed fish. Environ. health Persp. 2001, 109, (Suppl 5), 687

        [23] Benli, A. . K.; Kksal, G.; ?zkul, A., Sublethal ammonia exposure of Nile tilapia (Oreochromis niloticus L.): Effects on gill, liver and kidney histology. Chemosphere 2008, 72, (9), 1355-1358

        [24] Spencer, P.; Pollock, R.; Dubé, M., Effects of un-ionized ammonia on histological, endocrine, and whole organism endpoints in slimy sculpin (Cottus cognatus). Aquat. Toxicol. 2008, 90, (4), 300-309

        [25] Miron, D. d. S.; Moraes, B.; Becker, A. G.; Crestani, M.; Spanevello, R.; Loro, V. L.; Baldisserotto, B., Ammonia and pH effects on some metabolic parameters and gill histology of silver catfish, Rhamdia quelen (Heptapteridae). Aquaculture 2008, 277, (3), 192-196

        [26] Felipo, V.; Kosenko, E.; Mi?ana, M.-D.; Marcaida, G.; Grisolia, S., Molecular mechanism of acute ammonia toxicity and of its prevention by L-carnitine. In Hepatic Encephalopathy, Hyperammonemia, and Ammonia Toxicity, Springer: 1994; pp 65-77

        [27] Randall, D.; Tsui, T., Ammonia toxicity in fish. Mar. Pollut. Bull. 2002, 45, (1), 17-23

        [13] Hegazi, M. M.; Attia, Z. I.; Ashour, O. A., Oxidative stress and antioxidant enzymes in liver and white muscle of Nile tilapia juveniles in chronic ammonia exposure. Aquat. Toxicol. 2010, 99, (2), 118-125

        [14] Yang, W.; Xiang, F.; Sun, H.; Chen, Y.; Minter, E.; Yang, Z., Changes in the selected hematological parameters and gill Na+/K+ ATPase activity of juvenile crucian carp Carassius auratus during elevated ammonia exposure and the post-exposure recovery. Biochem. Syst. Ecol. 2010, 38, (4), 557-562

        [15] Kosenko, E.; Kaminsky, Y.; Grau, E.; Mi?ana, M. D.; Marcaida, G.; Grisolía, S.; Felipo, V., Brain ATP depletion induced by acute ammonia intoxication in rats is mediated by activation of the NMDA receptor and Na+, K+‐ATPase. J. Neurochem. 1994, 63, (6), 2172-2178.

        [16] Kosenko, E.; Kaminsky, M.; Kaminsky, A.; Valencia, M.; Lee, L.; Hermenegildo, C.; Felipo, V., Superoxide production and antioxidant enzymes in ammonia intoxication in rats. Free Radical Res. 1997, 27, (6), 637-644

        [17] Hurvitz, A.; Bercovier, H.; Van run, J., Effect of ammonia on the survival and the immune response of rainbow trout (Oncorhynchus mykiss, Walbaum) vaccinated against Streptococcus iniae Fish Shellfish Immunol. 1997, 7, (1), 45-53

        [18] Eddy, F., Ammonia in estuaries and effects on fish. J. Fish Biol. 2005, 67, (6), 1495-1513

        [19] Sousa, R. J.; Meade, T. L., The influence of ammonia on the oxygen delivery system of coho salmon hemoglobin. Comp. Biochem. Phys. A 1977, 58, (1), 23-28.

        [20] Ip, Y.; Chew, S.; Randall, D., Ammonia toxicity, tolerance, and excretion. Fish Physiol. 2001, 20, 109-148

        [21] Schuwerack, P.-M.; Lewis, J.; Hoole, D.; Morley, N., Ammonia-induced cellular and immunological changes in juvenile Cyprinus carpio infected with the blood fluke Sanguinicola inermis. Parasitology 2001, 122, (03), 339-345

        [22] Vogelbein, W.; Shields, J.; Haas, L.; Reece, K.; Zwerner, D., Skin ulcers in estuarine fishes: a comparative pathological evaluation of wild and laboratory-exposed fish. Environ. health Persp. 2001, 109, (Suppl 5), 687

        [23] Benli, A. . K.; Kksal, G.; ?zkul, A., Sublethal ammonia exposure of Nile tilapia (Oreochromis niloticus L.): Effects on gill, liver and kidney histology. Chemosphere 2008, 72, (9), 1355-1358

        [24] Spencer, P.; Pollock, R.; Dubé, M., Effects of un-ionized ammonia on histological, endocrine, and whole organism endpoints in slimy sculpin (Cottus cognatus). Aquat. Toxicol. 2008, 90, (4), 300-309

        [25] Miron, D. d. S.; Moraes, B.; Becker, A. G.; Crestani, M.; Spanevello, R.; Loro, V. L.; Baldisserotto, B., Ammonia and pH effects on some metabolic parameters and gill histology of silver catfish, Rhamdia quelen (Heptapteridae). Aquaculture 2008, 277, (3), 192-196

        [26] Felipo, V.; Kosenko, E.; Mi?ana, M.-D.; Marcaida, G.; Grisolia, S., Molecular mechanism of acute ammonia toxicity and of its prevention by L-carnitine. In Hepatic Encephalopathy, Hyperammonemia, and Ammonia Toxicity, Springer: 1994; pp 65-77

        [27] Randall, D.; Tsui, T., Ammonia toxicity in fish. Mar. Pollut. Bull. 2002, 45, (1), 17-23

        [13] Hegazi, M. M.; Attia, Z. I.; Ashour, O. A., Oxidative stress and antioxidant enzymes in liver and white muscle of Nile tilapia juveniles in chronic ammonia exposure. Aquat. Toxicol. 2010, 99, (2), 118-125

        [14] Yang, W.; Xiang, F.; Sun, H.; Chen, Y.; Minter, E.; Yang, Z., Changes in the selected hematological parameters and gill Na+/K+ ATPase activity of juvenile crucian carp Carassius auratus during elevated ammonia exposure and the post-exposure recovery. Biochem. Syst. Ecol. 2010, 38, (4), 557-562

        [15] Kosenko, E.; Kaminsky, Y.; Grau, E.; Mi?ana, M. D.; Marcaida, G.; Grisolía, S.; Felipo, V., Brain ATP depletion induced by acute ammonia intoxication in rats is mediated by activation of the NMDA receptor and Na+, K+‐ATPase. J. Neurochem. 1994, 63, (6), 2172-2178.

        [16] Kosenko, E.; Kaminsky, M.; Kaminsky, A.; Valencia, M.; Lee, L.; Hermenegildo, C.; Felipo, V., Superoxide production and antioxidant enzymes in ammonia intoxication in rats. Free Radical Res. 1997, 27, (6), 637-644

        [17] Hurvitz, A.; Bercovier, H.; Van run, J., Effect of ammonia on the survival and the immune response of rainbow trout (Oncorhynchus mykiss, Walbaum) vaccinated against Streptococcus iniae Fish Shellfish Immunol. 1997, 7, (1), 45-53

        [18] Eddy, F., Ammonia in estuaries and effects on fish. J. Fish Biol. 2005, 67, (6), 1495-1513

        [19] Sousa, R. J.; Meade, T. L., The influence of ammonia on the oxygen delivery system of coho salmon hemoglobin. Comp. Biochem. Phys. A 1977, 58, (1), 23-28.

        [20] Ip, Y.; Chew, S.; Randall, D., Ammonia toxicity, tolerance, and excretion. Fish Physiol. 2001, 20, 109-148

        [21] Schuwerack, P.-M.; Lewis, J.; Hoole, D.; Morley, N., Ammonia-induced cellular and immunological changes in juvenile Cyprinus carpio infected with the blood fluke Sanguinicola inermis. Parasitology 2001, 122, (03), 339-345

        [22] Vogelbein, W.; Shields, J.; Haas, L.; Reece, K.; Zwerner, D., Skin ulcers in estuarine fishes: a comparative pathological evaluation of wild and laboratory-exposed fish. Environ. health Persp. 2001, 109, (Suppl 5), 687

        [23] Benli, A. . K.; Kksal, G.; ?zkul, A., Sublethal ammonia exposure of Nile tilapia (Oreochromis niloticus L.): Effects on gill, liver and kidney histology. Chemosphere 2008, 72, (9), 1355-1358

        [24] Spencer, P.; Pollock, R.; Dubé, M., Effects of un-ionized ammonia on histological, endocrine, and whole organism endpoints in slimy sculpin (Cottus cognatus). Aquat. Toxicol. 2008, 90, (4), 300-309

        [25] Miron, D. d. S.; Moraes, B.; Becker, A. G.; Crestani, M.; Spanevello, R.; Loro, V. L.; Baldisserotto, B., Ammonia and pH effects on some metabolic parameters and gill histology of silver catfish, Rhamdia quelen (Heptapteridae). Aquaculture 2008, 277, (3), 192-196

        [26] Felipo, V.; Kosenko, E.; Mi?ana, M.-D.; Marcaida, G.; Grisolia, S., Molecular mechanism of acute ammonia toxicity and of its prevention by L-carnitine. In Hepatic Encephalopathy, Hyperammonemia, and Ammonia Toxicity, Springer: 1994; pp 65-77

        [27] Randall, D.; Tsui, T., Ammonia toxicity in fish. Mar. Pollut. Bull. 2002, 45, (1), 17-23

        猜你喜歡
        魚類毒性
        基于MFCC和ResNet的魚類行為識別
        魚類運動會
        動物之最——毒性誰最強
        苦豆子總堿對PC12細胞的毒性
        中成藥(2018年11期)2018-11-24 02:57:24
        2050年大海里的塑料將多過魚類
        奇妙的古代動物 泥盆紀的魚類
        探索科學(2017年5期)2017-06-21 21:16:16
        魚類是怎樣保護自己的
        RGD肽段連接的近紅外量子點對小鼠的毒性作用
        PM2.5中煤煙聚集物最具毒性
        魚類怎樣呼吸
        亚洲毛片αv无线播放一区| 日本一区二区不卡二区| 情爱偷拍视频一区二区| 免费人成网ww555kkk在线| 亚洲 欧美 综合 另类 中字| 在线你懂| 玖玖资源站亚洲最大的网站| av无码国产在线看免费网站| 少妇精品久久久一区二区三区| 午夜国产精品久久久久| 国产在线一区二区三区香蕉| 在厨房被c到高潮a毛片奶水| 妓院一钑片免看黄大片| 国产大片中文字幕| 国产诱惑人的视频在线观看| 人人做人人爽人人爱| 天堂а√在线最新版中文| 美女精品国产一区二区三区| 五月激情在线视频观看| 国产无吗一区二区三区在线欢| 日韩毛片在线看| 国产成人亚洲合色婷婷| 亚洲乱码av中文一区二区| 一区二区三区在线 | 欧| 欧美综合区| 中文字幕人妻互换激情| 大ji巴好深好爽又大又粗视频| 初尝黑人嗷嗷叫中文字幕| 国产美女av一区二区三区| 人妻少妇久久中中文字幕| 精品乱码久久久久久久| 国产精品高清视亚洲乱码有限公司| 中文字幕丰满人妻被公强| 国产爆乳美女娇喘呻吟| 国产剧情av麻豆香蕉精品| 国产在线观看网址不卡一区| 电驱蚊液可以插一晚上吗| 国产sm调教视频在线观看| 999久久66久6只有精品| 国产熟女白浆精品视频二| 亚洲成av人片在www|