周斌+胡秋芬+楊海英+楊新周+牛德云+沈廣劍+來天超+杜剛
摘要:為篩選羥基化多樣性的菌株,對總狀毛霉(Mucor racemosus)生物轉(zhuǎn)化孕酮進行研究。轉(zhuǎn)化產(chǎn)物經(jīng)HPLC分析,共分離到6個轉(zhuǎn)化產(chǎn)物,通過NMR、MS及FTIR等手段對孕酮轉(zhuǎn)化產(chǎn)物進行結(jié)構(gòu)鑒定。其結(jié)構(gòu)為11α-羥基孕酮(1);15α-羥基孕酮(2);11α, 15β-二羥基孕酮(3);6β, 11α-二羥基孕酮(4);7β,15β-二羥基孕酮(5);1-脫氫11α-羥基孕酮(6)。研究結(jié)果表明,總狀毛霉轉(zhuǎn)化孕酮的衍生物具有豐富的多樣性。
關(guān)鍵詞:生物轉(zhuǎn)化;總狀毛霉(Mucor racemosus);孕酮;結(jié)構(gòu)鑒定
中圖分類號:O621.3 文獻標(biāo)識碼:A 文章編號:0439-8114(2014)03-0666-03
1952年Murray等[1]利用黑根霉轉(zhuǎn)化孕酮得到11α-羥基孕酮, 并在甾體工業(yè)中大規(guī)模應(yīng)用,由此微生物轉(zhuǎn)化技術(shù)在甾體藥物生產(chǎn)中的重要性被廣泛認(rèn)識。而甾體化合物的羥基化是微生物轉(zhuǎn)化技術(shù)應(yīng)用的主要方面。羥基化反應(yīng)是甾體化合物生物轉(zhuǎn)化反應(yīng)中最重要的反應(yīng),由于甾體母核上4個環(huán)上有多個次甲基,用化學(xué)法進行羥基化很難區(qū)分,不能反應(yīng)的區(qū)域選擇性及對映體選擇性,微生物能夠?qū)R坏卦阽摅w母核或側(cè)鏈上引入一個或多個羥基,羥基化改變了甾體的極性,進而影響其毒性、細胞分泌及藥物分布,從而產(chǎn)生不同的藥效,并可應(yīng)用于甾體藥物工業(yè)生產(chǎn)[2]。甾體化合物的羥基化是微生物轉(zhuǎn)化技術(shù)應(yīng)用的主要內(nèi)容,已有較多的文獻報道[3-6]。
篩選優(yōu)良菌株、發(fā)掘新的生物催化劑是發(fā)展我國甾體工業(yè)的重要課題。而尋找羥基化多樣性豐富的菌株,可產(chǎn)生多種羥基化衍生物,在甾體藥物研發(fā)中會起到事半功倍的作用。已有總狀毛霉(Mucor racemosus)轉(zhuǎn)化甾體化合物的報道[7-11],但未見轉(zhuǎn)化孕酮的研究。本研究以實驗室保藏總狀毛霉菌株對孕酮進行了生物轉(zhuǎn)化研究,篩選轉(zhuǎn)化甾體化合物的催化系統(tǒng),將來可進一步用于轉(zhuǎn)化其它的甾體藥物及藥物中間體,為該菌株在開發(fā)甾體藥物中的應(yīng)用提供依據(jù)。
1 材料與方法
1.1 材料
孕酮購自江蘇省鹽城信誼醫(yī)藥化工有限公司,經(jīng)NMR及HPLC檢測純度超過98%。
1.2 微生物菌株
總狀毛霉為實驗室保藏菌株,分離自重樓根狀莖。
1.3 粗提物制備
轉(zhuǎn)化用發(fā)酵培養(yǎng)基含3 g/L NaNO3、1 g/L K2HPO4、0.5 g/L MgSO4·7H2O、0.5 g/L KCl、0.01 g/L FeSO4·7H2O、30 g/L蔗糖、孕酮1.0 g/L(pH 6.5),孕酮加少量乙酸乙酯溶解,再加4 g/L吐溫80混勻,加水形成乳濁液加入1 L培養(yǎng)基。250 mL 錐形瓶裝入100 mL發(fā)酵液,共發(fā)酵10 L。于28 ℃,220 r/min振蕩培養(yǎng)6 d。發(fā)酵液用乙酸乙酯萃取,菌絲體用甲醇浸泡超聲提取,真空濃縮合并得到粗提物。
1.4 HPLC分析
取0.1 g粗提物,加入1 mL甲醇溶解,用0.25 μm濾膜過濾。色譜柱,Agilent ZORAX SB-C18柱(4.6 cm×150 mm,5 μm);檢測器,二級管陣列檢測器;流動相,甲醇-水(60/40,V/V);流速,1.0 mL/min;檢測波長,244 nm;柱溫,40 ℃;進樣量,5 μL。通過峰面積積分對各轉(zhuǎn)化產(chǎn)物產(chǎn)率進行計算。
1.5 孕酮轉(zhuǎn)化產(chǎn)物的分離純化
正相硅膠(200-300目)∶樣品=8∶1(V/V)裝柱上樣,以石油醚-乙酸乙酯體積比為9∶1-1∶9逐級梯度洗脫,含轉(zhuǎn)化產(chǎn)物組分用半制備型高效液相色譜制備,色譜條件,甲醇∶水=50∶50(V/V),流速為3 mL/min,檢測波長為244 nm,柱溫為40 ℃。
2 結(jié)果與分析
2.1 轉(zhuǎn)化結(jié)果HPLC分析
由圖1可看出,孕酮基本被轉(zhuǎn)化,轉(zhuǎn)化產(chǎn)物極性較大,且種類很豐富。
2.2 孕酮轉(zhuǎn)化產(chǎn)物分離及結(jié)構(gòu)鑒定
經(jīng)半制備分別得到6個組分:S1、S2、S3、S4、S5、S6。經(jīng)核磁共振、紫外、旋光、熔點檢測,結(jié)構(gòu)鑒定分別為:11α-羥基孕酮(1); 15α-羥基孕酮(2);11α,15β-二羥基孕酮(3);6β,11α-二羥基孕酮(4);7β,15β-二羥基孕酮(5);1-脫氫11α-羥基孕酮(6)。
化合物的理化鑒定結(jié)果如下:
(1) 11α-羥基-4-孕甾烯-3, 20-二酮 收率為7.2%;熔點: 165~169 ℃; 1H NMR δ: 5.73 (s, 1H, H-4), 4.03 (td, 1H, H-11), 2.55 (m, 1H, H-17), 0.69 (s, 3H, H-18), 1.31 (s, 3H, H-19), 2.13 (s, 3H, H-21); 13C NMR δ: 37.65 (C-1), 34.30 (C-2), 200.31 (C-3), 124.72 (C-4), 170.95 (C-5), 33.70 (C-6), 31.64 (C-7), 35.07 (C-8), 55.47 (C-9), 40.05 (C-10), 69.02 (C-11), 50.58 (C-12), 44.26 (C-13), 55.47 (C-14), 24.36 (C-15), 23.07 (C-16), 63.24(C-17),14.62 (C-18), 18.42 (C-19), 208.93 (C-20),31.49 (C-21); MS m/z:353[M+ Na]+。與文獻[12]對照一致。
(2)15α-羥基-4-孕甾烯-3, 20-二酮 收率為9.8%;熔點: 229~233 ℃; 1H NMR δ: 5.74 (s, 1H, H-4), 4.10 (td, 1H, H-15), 2.81 (s, 1H, H-17), 0.69 (s, 3H, H-18), 1.20 (s, 3H, H-19), 2.13 ( s, 3H, H-21); 13C NMR δ: 35.86 (C-1), 34.07 (C-2), 199.57 (C-3), 124.01 (C-4), 170.81 (C-5), 32.84 (C-6), 31.10 (C-7), 35.32 (C-8), 53.82 (C-9), 38.71 (C-10), 21.00 (C-11), 38.99 (C-12), 44.68 (C-13), 61.00 (C-14), 73.50 (C-15), 35.44(C-16), 62.92 (C-17), 14.76 (C-18), 17.60 (C-19), 208.45 (C-20),31.71(C-21); MS m/z: 353 [M+Na]+。與文獻[13]對照一致。
(3)11α,15β-二羥基-4-孕甾烯-3, 20-二酮 收率為5.7%;熔點: 230~240 ℃; 1H NMR δ: 5.75 (s, 1H, H-4), 4.05 (m, 1H, H-11), 4.32 (m, 1H, H-15), 2.51 (t, 1H, H-17), 0.97 (s, 3H, H-18), 1.35(s, 3H, H-19), 2.15 (s, 3H, H-21); 13C NMR δ: 35.92 (C-1), 34.04 (C-2), 201.64 (C-3), 124.15 (C-4), 173.01 (C-5), 33.64 (C-6), 30.62 (C-7), 31.24 (C-8), 58.82 (C-9), 40.20 (C-10), 68.04 (C-11), 51.25 (C-12), 43.82 (C-13), 59.37 (C-14), 69.39 (C-15), 37.25 (C-16), 63.40 (C-17), 16.90 (C-18), 18.08 (C-19), 209.45 (C-20), 31.28 (C-21); MS m/z: 369 [M+Na]+。與文獻[13]對照一致。
(4) 6β,11α-二羥基-4 -孕甾烯-3, 20-二酮 收率為32.8%;熔點: 245~248 ℃; 1H NMR δ: 5.78 (s, 1H, H-4 ), 2.68 (t, 1H, H-17), 0.73 (s, 3H, H-18), 1.49 (s, 3H, H-19), 2.14 (s, 3H, H-21), 4.34 (m, 1H, H-6), 4.09 (m, 1H, H-11); 13C NMR δ: 37.46 (C-1), 34.12(C-2), 202.76 (C-3), 126.00 (C-4), 170.55 (C-5), 72.08 (C-6), 38.61 (C-7), 28.22 (C-8), 58.36 (C-9), 39.15(C-10), 68.03 (C-11), 49.43 (C-12), 44.12 (C-13), 55.11 (C-14), 23.98 (C-15), 22.73(C-16), 63.07 (C-17), 14.06 (C-18), 19.51 (C-19), 210.63 (C-20), 30.97 (C-21); MS m/z: 369 [M+ Na]+。與文獻[14]對照一致。
(5)7β,15β-二羥基-4-孕甾烯-3, 20-二酮 收率為43.4%;熔點: 243~250 ℃; 1H NMR δ: 0.96 (s, 3H, H-18), 1.24 (s, 3H, H-19), 2.15 (s, 3H, H-21), 3.63 (m, 1H, H-7), 4.46 (m, 1H, H-15), 5.76 (s, 1H, H-4); 13C NMR δ: 35.56 (C-1), 33.81 (C-2), 200.42 (C-3), 124.48 (C-4), 168.63 (C-5), 42.32 (C-6), 71.12 (C-7), 38.68 (C-8), 50.90 (C-9), 38.06 (C-10), 20.93 (C-11),39.51 (C-12), 43.90 (C-13), 60.24 (C-14),73.34 (C-15), 33.48 (C-16), 63.39 (C-17),15.41 (C-18), 17.24 (C-19), 209.52 (C-20),31.41 (C-21); MS m/z: 369 [M+ Na]+。與文獻[15]對照一致。
(6)11α-羥基-1, 4-孕甾二烯-3, 20-二酮 收率為1.2%;熔點: 225~230 ℃; 1H NMR δ: 6.09 (s, 1H, H-4), 7.77 (d, 1H, H-1), 6.16 (dd, 1H, H-2), 2.52 (m, 1H, H-17), 0.70 (s , 3H, H-18), 1.30 (s, 3H, H-19), 2.12 (s, 3H, H-21), 4.04 (m, 1H, H-11); 13C NMR δ: 158.89 (C-1), 125.31 (C-2),186.95 (C-3), 124.74 (C-4), 168.05 (C-5),33.16 (C-6), 33.50 (C-7), 34.40 (C-8),60.43 (C-9), 44.06 (C-10), 68.06 (C-11),49.93 (C-12), 44.09 (C-13), 54.96 (C-14),23.15 (C-15), 24.48 (C-16), 62.92 (C-17),14.51 (C-18), 18.74 (C-19), 208.86 (C-20),31.47 (C-21);MS m/z: 351[M+Na]+。與文獻[16]對照一致。
2.3 轉(zhuǎn)化途徑推測
根據(jù)化合物出現(xiàn)順序及結(jié)構(gòu)特點,對其結(jié)構(gòu)推測如圖2。首先,孕酮C-11、C-15羥基化分別轉(zhuǎn)化成11α-羥基孕酮、15α-羥基孕酮,然后11α-羥基孕酮又同時進行兩個方向轉(zhuǎn)化:一個方向是轉(zhuǎn)化成11α,15β-二羥基孕酮和6β,11α-二羥基孕酮;另一個方向是通過C-1、C-2脫氫酶的作用轉(zhuǎn)化成1-脫氫11α-羥基孕酮。此外,7β,15β-二羥基孕酮轉(zhuǎn)化率相對較高,而且轉(zhuǎn)化產(chǎn)物中沒發(fā)現(xiàn)7β-羥基孕酮和15β-羥基孕酮的衍生物,因此可以推測孕酮是直接轉(zhuǎn)化成7β,15β-二羥基孕酮。
3 小結(jié)與討論
總狀毛霉轉(zhuǎn)化孕酮得到6個轉(zhuǎn)化產(chǎn)物,分別在C-6、C-7、C-11、C-15實現(xiàn)羥基化,表明孕酮具有多個位點可以通過生物修飾。通過本研究轉(zhuǎn)化產(chǎn)物7β,15β-二羥基孕酮、15α-羥基孕酮與7α,15β-二羥基孕酮、15β-羥基孕酮相比較,可以說明同一底物在不同微生物的轉(zhuǎn)化條件下,能在同一位點進行對映體選擇,產(chǎn)生不同構(gòu)效的化合物,由于化合物的構(gòu)效不同,其對機體可能會產(chǎn)生不同的藥物特性[17],這需要人們更多的發(fā)現(xiàn)。孕酮具有多個可以生物修飾位點,而且同一位點能進行對映體選擇,由此孕酮可以轉(zhuǎn)化成多樣性豐富的衍生物。
轉(zhuǎn)化產(chǎn)物6還發(fā)生了1位的脫氫,表現(xiàn)出菌株轉(zhuǎn)化多樣性。說明總狀毛霉不但有羥化酶存在,而且還有脫氫酶的存在,羥基化酶和脫氫酶屬于細胞色素P450酶系[18],這也說明細胞色素P450酶系的多樣性,為其在其他甾體藥物及藥物中間體轉(zhuǎn)化中的應(yīng)用提供了依據(jù)。
參考文獻:
[1] MURRAY H C, PETERSON D H. Oxygenation of steroids by mucorales fungi [P]. U. S.: Patant 2602769,1952.1952-07-08.
[2] 張麗清.微生物轉(zhuǎn)化在甾體藥物合成中的應(yīng)用[J].醫(yī)藥工業(yè),1985,16(1):37-41.
[3] MAHATO S B, GARAI S. Advances in Microbial Steroid Biotransformation[J]. Steroids, 1997,62(4):332-345.
[4] KIRK D N, TOMS H C, DOUGLAS C, et al. A survey of the high-field 1H-NMR spectra of the steroid hormones, their hydroxylated derivatives, and related compounds[J]. Journal of the Chemical Society-Perkin Transactions, 1990(9):1567-1594.
[5] FERNANDES P, CRUZ A, ANGELOVA B, et al. Microbial conversion of steroid compounds: recent developments [J]. Enzyme and Microbial Technology,2003,32(6):688-705.
[6] TONG W Y, DONG X. Microbial biotransformation: Recent developments on steroid drugs[J]. Recent patents on biotechnology,2009,3(2):141-153.
[7] TORSHABI M, BADIEE M, FARAMARZI M A, et al. Biotransformation of methyltestosterone by the filamentous fungus mucor racemosus[J]. Chemistry of Natural Compounds,2011, 47(1):59-63.
[8] FARAMARZI M A, ZOLFAGHARY N, YAZDI M T, et al. Microbial conversion of androst-1,4-dien-3,17-dione by mucor racemosus to hydroxysteroid-1,4-dien-3-one derivatives[J]. Journal of Chemical Technology and Biotechnology,2009,84(7):1021-1025.
[9] GE W, WANG S, SHAN L, et al. Transformation of 3 beta-hydroxy-5-en-steroids by mucor racemosus[J]. Journal of Molecular Catalysis B-Enzymatic,2008,55(1-2):37-42.
[10] GE W Z, LI N, SHAN L H, et al. Microbial transformation of 4-ene-3-one steroids by mucor racemosus [J]. Acta Microbiologica Sinica,2007,47(3):540-543.
[11] FARAMARZI M A, BADIEE M, YAZDI M T, et al. Formation of hydroxysteroid derivatives from androst-4-en-3,17-dione by the filamentous fungus mucor racemosus[J]. Journal of Molecular Catalysis B-Enzymatic, 2008, 50(1):7-12.
[12] BLUNT J W, STOTHERS J B. C-13 NMR-studies .69. C-13 NMR-spectra of steroids-survey and commentary [J]. Organic Magnetic Resonance, 1977, 9(8):439-464.
[13] BRYAN M B, SCOTT A P, CERNY I, et al. 15 alpha-hydroxyprogesterone in male sea lampreys,petromyzon marinus L[J]. Steroids,2004,69(7):473-481.
[14] CHOUDHARY M I, BATOOL I, SHAH S A, et al. Microbial hydroxylation of pregnenolone derivatives[J]. Chem Pharm Bull(Tokyo),2005,53(11):1455-1459.
[15] FARAMARZI M A, TABATBAEI Y M, AMINI M, et al. Microbial hydroxylation of progesterone with acremonium strictum[J]. FEMS Microbiol Lett,2003,222(2):183-186.
[16] CHOUDHARY M I, MUHAMMAD N, SHAMSUN N K, et al. Microbial hydroxylation of hydroxyprogesterones and α-glucosidase inhibition activity of their metabolites[J]. Z. Naturforsch,2007(62b):593-599.
[17] 王明媚.手性藥物的制備方法[J]. 醫(yī)藥導(dǎo)報,2006,25(4):325-327.
[18] 杜娟娟,陳紅莉,李援朝. 甾體類細胞色素 P450 17α酶抑制劑的研究進展[J]. 藥學(xué)學(xué)報,2013,48(1):25-31.
轉(zhuǎn)化產(chǎn)物6還發(fā)生了1位的脫氫,表現(xiàn)出菌株轉(zhuǎn)化多樣性。說明總狀毛霉不但有羥化酶存在,而且還有脫氫酶的存在,羥基化酶和脫氫酶屬于細胞色素P450酶系[18],這也說明細胞色素P450酶系的多樣性,為其在其他甾體藥物及藥物中間體轉(zhuǎn)化中的應(yīng)用提供了依據(jù)。
參考文獻:
[1] MURRAY H C, PETERSON D H. Oxygenation of steroids by mucorales fungi [P]. U. S.: Patant 2602769,1952.1952-07-08.
[2] 張麗清.微生物轉(zhuǎn)化在甾體藥物合成中的應(yīng)用[J].醫(yī)藥工業(yè),1985,16(1):37-41.
[3] MAHATO S B, GARAI S. Advances in Microbial Steroid Biotransformation[J]. Steroids, 1997,62(4):332-345.
[4] KIRK D N, TOMS H C, DOUGLAS C, et al. A survey of the high-field 1H-NMR spectra of the steroid hormones, their hydroxylated derivatives, and related compounds[J]. Journal of the Chemical Society-Perkin Transactions, 1990(9):1567-1594.
[5] FERNANDES P, CRUZ A, ANGELOVA B, et al. Microbial conversion of steroid compounds: recent developments [J]. Enzyme and Microbial Technology,2003,32(6):688-705.
[6] TONG W Y, DONG X. Microbial biotransformation: Recent developments on steroid drugs[J]. Recent patents on biotechnology,2009,3(2):141-153.
[7] TORSHABI M, BADIEE M, FARAMARZI M A, et al. Biotransformation of methyltestosterone by the filamentous fungus mucor racemosus[J]. Chemistry of Natural Compounds,2011, 47(1):59-63.
[8] FARAMARZI M A, ZOLFAGHARY N, YAZDI M T, et al. Microbial conversion of androst-1,4-dien-3,17-dione by mucor racemosus to hydroxysteroid-1,4-dien-3-one derivatives[J]. Journal of Chemical Technology and Biotechnology,2009,84(7):1021-1025.
[9] GE W, WANG S, SHAN L, et al. Transformation of 3 beta-hydroxy-5-en-steroids by mucor racemosus[J]. Journal of Molecular Catalysis B-Enzymatic,2008,55(1-2):37-42.
[10] GE W Z, LI N, SHAN L H, et al. Microbial transformation of 4-ene-3-one steroids by mucor racemosus [J]. Acta Microbiologica Sinica,2007,47(3):540-543.
[11] FARAMARZI M A, BADIEE M, YAZDI M T, et al. Formation of hydroxysteroid derivatives from androst-4-en-3,17-dione by the filamentous fungus mucor racemosus[J]. Journal of Molecular Catalysis B-Enzymatic, 2008, 50(1):7-12.
[12] BLUNT J W, STOTHERS J B. C-13 NMR-studies .69. C-13 NMR-spectra of steroids-survey and commentary [J]. Organic Magnetic Resonance, 1977, 9(8):439-464.
[13] BRYAN M B, SCOTT A P, CERNY I, et al. 15 alpha-hydroxyprogesterone in male sea lampreys,petromyzon marinus L[J]. Steroids,2004,69(7):473-481.
[14] CHOUDHARY M I, BATOOL I, SHAH S A, et al. Microbial hydroxylation of pregnenolone derivatives[J]. Chem Pharm Bull(Tokyo),2005,53(11):1455-1459.
[15] FARAMARZI M A, TABATBAEI Y M, AMINI M, et al. Microbial hydroxylation of progesterone with acremonium strictum[J]. FEMS Microbiol Lett,2003,222(2):183-186.
[16] CHOUDHARY M I, MUHAMMAD N, SHAMSUN N K, et al. Microbial hydroxylation of hydroxyprogesterones and α-glucosidase inhibition activity of their metabolites[J]. Z. Naturforsch,2007(62b):593-599.
[17] 王明媚.手性藥物的制備方法[J]. 醫(yī)藥導(dǎo)報,2006,25(4):325-327.
[18] 杜娟娟,陳紅莉,李援朝. 甾體類細胞色素 P450 17α酶抑制劑的研究進展[J]. 藥學(xué)學(xué)報,2013,48(1):25-31.
轉(zhuǎn)化產(chǎn)物6還發(fā)生了1位的脫氫,表現(xiàn)出菌株轉(zhuǎn)化多樣性。說明總狀毛霉不但有羥化酶存在,而且還有脫氫酶的存在,羥基化酶和脫氫酶屬于細胞色素P450酶系[18],這也說明細胞色素P450酶系的多樣性,為其在其他甾體藥物及藥物中間體轉(zhuǎn)化中的應(yīng)用提供了依據(jù)。
參考文獻:
[1] MURRAY H C, PETERSON D H. Oxygenation of steroids by mucorales fungi [P]. U. S.: Patant 2602769,1952.1952-07-08.
[2] 張麗清.微生物轉(zhuǎn)化在甾體藥物合成中的應(yīng)用[J].醫(yī)藥工業(yè),1985,16(1):37-41.
[3] MAHATO S B, GARAI S. Advances in Microbial Steroid Biotransformation[J]. Steroids, 1997,62(4):332-345.
[4] KIRK D N, TOMS H C, DOUGLAS C, et al. A survey of the high-field 1H-NMR spectra of the steroid hormones, their hydroxylated derivatives, and related compounds[J]. Journal of the Chemical Society-Perkin Transactions, 1990(9):1567-1594.
[5] FERNANDES P, CRUZ A, ANGELOVA B, et al. Microbial conversion of steroid compounds: recent developments [J]. Enzyme and Microbial Technology,2003,32(6):688-705.
[6] TONG W Y, DONG X. Microbial biotransformation: Recent developments on steroid drugs[J]. Recent patents on biotechnology,2009,3(2):141-153.
[7] TORSHABI M, BADIEE M, FARAMARZI M A, et al. Biotransformation of methyltestosterone by the filamentous fungus mucor racemosus[J]. Chemistry of Natural Compounds,2011, 47(1):59-63.
[8] FARAMARZI M A, ZOLFAGHARY N, YAZDI M T, et al. Microbial conversion of androst-1,4-dien-3,17-dione by mucor racemosus to hydroxysteroid-1,4-dien-3-one derivatives[J]. Journal of Chemical Technology and Biotechnology,2009,84(7):1021-1025.
[9] GE W, WANG S, SHAN L, et al. Transformation of 3 beta-hydroxy-5-en-steroids by mucor racemosus[J]. Journal of Molecular Catalysis B-Enzymatic,2008,55(1-2):37-42.
[10] GE W Z, LI N, SHAN L H, et al. Microbial transformation of 4-ene-3-one steroids by mucor racemosus [J]. Acta Microbiologica Sinica,2007,47(3):540-543.
[11] FARAMARZI M A, BADIEE M, YAZDI M T, et al. Formation of hydroxysteroid derivatives from androst-4-en-3,17-dione by the filamentous fungus mucor racemosus[J]. Journal of Molecular Catalysis B-Enzymatic, 2008, 50(1):7-12.
[12] BLUNT J W, STOTHERS J B. C-13 NMR-studies .69. C-13 NMR-spectra of steroids-survey and commentary [J]. Organic Magnetic Resonance, 1977, 9(8):439-464.
[13] BRYAN M B, SCOTT A P, CERNY I, et al. 15 alpha-hydroxyprogesterone in male sea lampreys,petromyzon marinus L[J]. Steroids,2004,69(7):473-481.
[14] CHOUDHARY M I, BATOOL I, SHAH S A, et al. Microbial hydroxylation of pregnenolone derivatives[J]. Chem Pharm Bull(Tokyo),2005,53(11):1455-1459.
[15] FARAMARZI M A, TABATBAEI Y M, AMINI M, et al. Microbial hydroxylation of progesterone with acremonium strictum[J]. FEMS Microbiol Lett,2003,222(2):183-186.
[16] CHOUDHARY M I, MUHAMMAD N, SHAMSUN N K, et al. Microbial hydroxylation of hydroxyprogesterones and α-glucosidase inhibition activity of their metabolites[J]. Z. Naturforsch,2007(62b):593-599.
[17] 王明媚.手性藥物的制備方法[J]. 醫(yī)藥導(dǎo)報,2006,25(4):325-327.
[18] 杜娟娟,陳紅莉,李援朝. 甾體類細胞色素 P450 17α酶抑制劑的研究進展[J]. 藥學(xué)學(xué)報,2013,48(1):25-31.