亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        談小學(xué)數(shù)學(xué)分析和解決問(wèn)題的幾種方法

        2014-07-18 20:54:05陸月華
        關(guān)鍵詞:方磚路程示意圖

        陸月華

        解決問(wèn)題,關(guān)鍵就是要學(xué)會(huì)對(duì)該問(wèn)題進(jìn)行分析,理清已知與未知的關(guān)系,運(yùn)用已知條件來(lái)解決所求的問(wèn)題。不同的問(wèn)題有不同的分析方法,本文我將根據(jù)平時(shí)的教學(xué)實(shí)踐總結(jié)幾種常用的問(wèn)題分析方法。

        一、結(jié)合圖形,使抽象問(wèn)題直觀化

        在小學(xué)數(shù)學(xué)的學(xué)習(xí)中,作圖是一種幫助理解題意的有效方法。有些看似非常復(fù)雜抽象的題目,一個(gè)簡(jiǎn)單的示意圖就能讓題目意思清晰明了,問(wèn)題也就能迎刃而解。作圖是一種把抽象問(wèn)題直觀化的方式,特別是對(duì)于一些平面圖形和立體圖形類的題目,在沒(méi)有給出示意圖的情況下,會(huì)給學(xué)生的思考帶來(lái)一定的難度。繪制簡(jiǎn)單的示意圖,可以降低思考的難度,幫助解決問(wèn)題。

        例如,把一根長(zhǎng)4米的木材沿著橫截面截成兩段,表面積增加了20平方分米,這根木材原來(lái)的體積是多少?很多學(xué)生在面對(duì)這道題的時(shí)候毫無(wú)辦法,很難把增加的面積與體積聯(lián)系起來(lái),思維也就陷入了死胡同。然而,只要根據(jù)題意畫(huà)出一個(gè)示意圖,那么問(wèn)題就會(huì)變得非常簡(jiǎn)單。如下圖所示:

        從上圖中,我們可以很直觀地看到,因?yàn)槟静慕爻闪藘啥?,在斷面處產(chǎn)生了兩個(gè)橫截面,因此表面積增大了。也就是說(shuō),20平方分米正好就是2個(gè)橫截面的面積,根據(jù)這點(diǎn)可以求出一個(gè)橫截面的面積。而橫截面的面積等于底面的面積。該長(zhǎng)方體的體積可用底面積乘以高來(lái)求得。把這個(gè)圖畫(huà)出來(lái)之后,學(xué)生的思路頓時(shí)就清晰了,學(xué)生缺的就是這樣一個(gè)簡(jiǎn)單的示意圖。因此,在平時(shí)的教學(xué)中,教師要注重培養(yǎng)學(xué)生畫(huà)圖的習(xí)慣,特別是有關(guān)圖形的面積或體積的題目中,畫(huà)圖就是一個(gè)理清思維的過(guò)程,讓抽象的問(wèn)題更加直觀化,能有效地幫助解題。

        二、理清數(shù)量,使隱含問(wèn)題明顯化

        數(shù)和量是數(shù)學(xué)學(xué)習(xí)永恒的主題,在解決數(shù)學(xué)問(wèn)題的教學(xué)過(guò)程中,理清問(wèn)題中的數(shù)與量的關(guān)系,憑借數(shù)量關(guān)系來(lái)推理和解決問(wèn)題,是必須要掌握的一種方法,這也是數(shù)學(xué)發(fā)展的必然趨勢(shì)。那么,我們?cè)谛W(xué)數(shù)學(xué)的教學(xué)中,該如何提升學(xué)生分析題目,理清數(shù)量關(guān)系的能力呢?下面是我在教學(xué)中的一個(gè)實(shí)例。

        例:甲、乙兩車同時(shí)從兩地相對(duì)開(kāi)出,甲車的速度為a千米每小時(shí),乙車的速度為b千米每小時(shí),2小時(shí)后相遇,問(wèn)兩地之間的距離是多少千米?

        這道題目雖然不算復(fù)雜,但分析問(wèn)題的方法是一樣的。首先引導(dǎo)學(xué)生把題目涉及的相關(guān)量找出來(lái)。學(xué)生找出了甲的速度、乙的速度、相遇時(shí)間、總路程。再提問(wèn):這些量之間又有怎樣的關(guān)系呢?學(xué)生馬上能想到公式“速度×?xí)r間=路程”。那么所要求的總路程跟甲乙各自的速度又有什么關(guān)系呢?學(xué)生繼而發(fā)現(xiàn)總路程是由甲行的路程和乙行的路程組成的。但這兩段路程題目中并沒(méi)有直接給出,需要通過(guò)“速度×?xí)r間”計(jì)算得出。此時(shí),這道題的思路就非常清晰了。關(guān)鍵就是要理清已知量和所求未知量之間的關(guān)系,數(shù)量關(guān)系明確之后,只需要把數(shù)據(jù)代入進(jìn)行運(yùn)算就可以了。

        三、等價(jià)變換,使復(fù)雜問(wèn)題簡(jiǎn)單化

        等價(jià)變換可以使復(fù)雜的問(wèn)題變得更加簡(jiǎn)單,這種方法通常會(huì)有兩種形式:一種是把復(fù)雜的問(wèn)題拆分,拆解成幾個(gè)簡(jiǎn)單的小問(wèn)題;另一種情形就是把復(fù)雜、晦澀的表達(dá)轉(zhuǎn)換成簡(jiǎn)單、易理解的表達(dá)。

        先來(lái)談?wù)劦谝环N情形的用法。例如:一間房子要鋪地磚,邊長(zhǎng)為3分米的方磚剛好要96塊,如果換成邊長(zhǎng)為2分米的方磚,需要多少塊?這道題目看似很簡(jiǎn)單,實(shí)則對(duì)思維上的要求比較高,很多學(xué)生會(huì)出錯(cuò)。因?yàn)轭}目中給出的已知量是方磚的邊長(zhǎng)和塊數(shù),學(xué)生很難把問(wèn)題聯(lián)系到方磚的面積或者是房子的面積。而如果能把這個(gè)問(wèn)題拆分成兩個(gè)小問(wèn)題,找出中間的關(guān)鍵量,那么問(wèn)題就會(huì)變得非常簡(jiǎn)單了。如可以轉(zhuǎn)換分解成:用邊長(zhǎng)為3分米的方磚鋪地,需要96塊,那么房子的面積多大呢?如果改成2分米的方磚鋪地,需要多少塊呢?通過(guò)這樣的拆解轉(zhuǎn)換,學(xué)生很自然地先求出了房子面積這個(gè)不變量,再根據(jù)2分米方磚的面積求出所需方磚的塊數(shù)。因此,在教學(xué)中,教師要重視培養(yǎng)學(xué)生這種轉(zhuǎn)換的思維,正確的轉(zhuǎn)換往往可以把解題的關(guān)鍵找出來(lái)。

        另外一種情形,主要是通過(guò)等價(jià)變換對(duì)題目意思進(jìn)行重組,用一種更加易于理解的方式來(lái)理清題意。例如:一項(xiàng)工程,由甲、乙合作,12天完成。現(xiàn)在由甲、乙合作4天,余下的工作由甲獨(dú)做10天后,再由乙獨(dú)做5天,正好完成這項(xiàng)工程。求甲、乙獨(dú)做各需要多少時(shí)間?要求甲、乙的單獨(dú)完成時(shí)間,就需要知道他們的工作效率。題目中給出的已知條件看起來(lái)很晦澀,關(guān)系比較復(fù)雜,先合作,再由甲獨(dú)做,最后由乙獨(dú)做。如果可以把獨(dú)做轉(zhuǎn)化成合作,那整個(gè)關(guān)系就會(huì)清晰簡(jiǎn)單很多,“余下的工作由甲獨(dú)做10天后,再由乙獨(dú)做5天”其實(shí)就可以表達(dá)成“甲乙合作5天,再由甲獨(dú)做5天”,結(jié)合前面的合作4天,就變成了“甲乙合作9天,剩余的由甲獨(dú)做5天”。把題目的意思轉(zhuǎn)換成這樣之后,理解起來(lái)就容易了。像這樣的轉(zhuǎn)換方法,也是我們?cè)诮忸}中常用的一種方法。

        綜上所述,在數(shù)學(xué)的學(xué)習(xí)中,教師更需要傳授學(xué)生解題的思維和方法,讓學(xué)生明確遇到不同的問(wèn)題可以用不同的途徑。在平時(shí)的教學(xué)中,還需要多加練習(xí)和總結(jié),摸索出一套適合學(xué)生的分析問(wèn)題和解決問(wèn)題的方法,提升學(xué)生解決問(wèn)題的能力。

        (責(zé)編 羅 艷)endprint

        解決問(wèn)題,關(guān)鍵就是要學(xué)會(huì)對(duì)該問(wèn)題進(jìn)行分析,理清已知與未知的關(guān)系,運(yùn)用已知條件來(lái)解決所求的問(wèn)題。不同的問(wèn)題有不同的分析方法,本文我將根據(jù)平時(shí)的教學(xué)實(shí)踐總結(jié)幾種常用的問(wèn)題分析方法。

        一、結(jié)合圖形,使抽象問(wèn)題直觀化

        在小學(xué)數(shù)學(xué)的學(xué)習(xí)中,作圖是一種幫助理解題意的有效方法。有些看似非常復(fù)雜抽象的題目,一個(gè)簡(jiǎn)單的示意圖就能讓題目意思清晰明了,問(wèn)題也就能迎刃而解。作圖是一種把抽象問(wèn)題直觀化的方式,特別是對(duì)于一些平面圖形和立體圖形類的題目,在沒(méi)有給出示意圖的情況下,會(huì)給學(xué)生的思考帶來(lái)一定的難度。繪制簡(jiǎn)單的示意圖,可以降低思考的難度,幫助解決問(wèn)題。

        例如,把一根長(zhǎng)4米的木材沿著橫截面截成兩段,表面積增加了20平方分米,這根木材原來(lái)的體積是多少?很多學(xué)生在面對(duì)這道題的時(shí)候毫無(wú)辦法,很難把增加的面積與體積聯(lián)系起來(lái),思維也就陷入了死胡同。然而,只要根據(jù)題意畫(huà)出一個(gè)示意圖,那么問(wèn)題就會(huì)變得非常簡(jiǎn)單。如下圖所示:

        從上圖中,我們可以很直觀地看到,因?yàn)槟静慕爻闪藘啥?,在斷面處產(chǎn)生了兩個(gè)橫截面,因此表面積增大了。也就是說(shuō),20平方分米正好就是2個(gè)橫截面的面積,根據(jù)這點(diǎn)可以求出一個(gè)橫截面的面積。而橫截面的面積等于底面的面積。該長(zhǎng)方體的體積可用底面積乘以高來(lái)求得。把這個(gè)圖畫(huà)出來(lái)之后,學(xué)生的思路頓時(shí)就清晰了,學(xué)生缺的就是這樣一個(gè)簡(jiǎn)單的示意圖。因此,在平時(shí)的教學(xué)中,教師要注重培養(yǎng)學(xué)生畫(huà)圖的習(xí)慣,特別是有關(guān)圖形的面積或體積的題目中,畫(huà)圖就是一個(gè)理清思維的過(guò)程,讓抽象的問(wèn)題更加直觀化,能有效地幫助解題。

        二、理清數(shù)量,使隱含問(wèn)題明顯化

        數(shù)和量是數(shù)學(xué)學(xué)習(xí)永恒的主題,在解決數(shù)學(xué)問(wèn)題的教學(xué)過(guò)程中,理清問(wèn)題中的數(shù)與量的關(guān)系,憑借數(shù)量關(guān)系來(lái)推理和解決問(wèn)題,是必須要掌握的一種方法,這也是數(shù)學(xué)發(fā)展的必然趨勢(shì)。那么,我們?cè)谛W(xué)數(shù)學(xué)的教學(xué)中,該如何提升學(xué)生分析題目,理清數(shù)量關(guān)系的能力呢?下面是我在教學(xué)中的一個(gè)實(shí)例。

        例:甲、乙兩車同時(shí)從兩地相對(duì)開(kāi)出,甲車的速度為a千米每小時(shí),乙車的速度為b千米每小時(shí),2小時(shí)后相遇,問(wèn)兩地之間的距離是多少千米?

        這道題目雖然不算復(fù)雜,但分析問(wèn)題的方法是一樣的。首先引導(dǎo)學(xué)生把題目涉及的相關(guān)量找出來(lái)。學(xué)生找出了甲的速度、乙的速度、相遇時(shí)間、總路程。再提問(wèn):這些量之間又有怎樣的關(guān)系呢?學(xué)生馬上能想到公式“速度×?xí)r間=路程”。那么所要求的總路程跟甲乙各自的速度又有什么關(guān)系呢?學(xué)生繼而發(fā)現(xiàn)總路程是由甲行的路程和乙行的路程組成的。但這兩段路程題目中并沒(méi)有直接給出,需要通過(guò)“速度×?xí)r間”計(jì)算得出。此時(shí),這道題的思路就非常清晰了。關(guān)鍵就是要理清已知量和所求未知量之間的關(guān)系,數(shù)量關(guān)系明確之后,只需要把數(shù)據(jù)代入進(jìn)行運(yùn)算就可以了。

        三、等價(jià)變換,使復(fù)雜問(wèn)題簡(jiǎn)單化

        等價(jià)變換可以使復(fù)雜的問(wèn)題變得更加簡(jiǎn)單,這種方法通常會(huì)有兩種形式:一種是把復(fù)雜的問(wèn)題拆分,拆解成幾個(gè)簡(jiǎn)單的小問(wèn)題;另一種情形就是把復(fù)雜、晦澀的表達(dá)轉(zhuǎn)換成簡(jiǎn)單、易理解的表達(dá)。

        先來(lái)談?wù)劦谝环N情形的用法。例如:一間房子要鋪地磚,邊長(zhǎng)為3分米的方磚剛好要96塊,如果換成邊長(zhǎng)為2分米的方磚,需要多少塊?這道題目看似很簡(jiǎn)單,實(shí)則對(duì)思維上的要求比較高,很多學(xué)生會(huì)出錯(cuò)。因?yàn)轭}目中給出的已知量是方磚的邊長(zhǎng)和塊數(shù),學(xué)生很難把問(wèn)題聯(lián)系到方磚的面積或者是房子的面積。而如果能把這個(gè)問(wèn)題拆分成兩個(gè)小問(wèn)題,找出中間的關(guān)鍵量,那么問(wèn)題就會(huì)變得非常簡(jiǎn)單了。如可以轉(zhuǎn)換分解成:用邊長(zhǎng)為3分米的方磚鋪地,需要96塊,那么房子的面積多大呢?如果改成2分米的方磚鋪地,需要多少塊呢?通過(guò)這樣的拆解轉(zhuǎn)換,學(xué)生很自然地先求出了房子面積這個(gè)不變量,再根據(jù)2分米方磚的面積求出所需方磚的塊數(shù)。因此,在教學(xué)中,教師要重視培養(yǎng)學(xué)生這種轉(zhuǎn)換的思維,正確的轉(zhuǎn)換往往可以把解題的關(guān)鍵找出來(lái)。

        另外一種情形,主要是通過(guò)等價(jià)變換對(duì)題目意思進(jìn)行重組,用一種更加易于理解的方式來(lái)理清題意。例如:一項(xiàng)工程,由甲、乙合作,12天完成?,F(xiàn)在由甲、乙合作4天,余下的工作由甲獨(dú)做10天后,再由乙獨(dú)做5天,正好完成這項(xiàng)工程。求甲、乙獨(dú)做各需要多少時(shí)間?要求甲、乙的單獨(dú)完成時(shí)間,就需要知道他們的工作效率。題目中給出的已知條件看起來(lái)很晦澀,關(guān)系比較復(fù)雜,先合作,再由甲獨(dú)做,最后由乙獨(dú)做。如果可以把獨(dú)做轉(zhuǎn)化成合作,那整個(gè)關(guān)系就會(huì)清晰簡(jiǎn)單很多,“余下的工作由甲獨(dú)做10天后,再由乙獨(dú)做5天”其實(shí)就可以表達(dá)成“甲乙合作5天,再由甲獨(dú)做5天”,結(jié)合前面的合作4天,就變成了“甲乙合作9天,剩余的由甲獨(dú)做5天”。把題目的意思轉(zhuǎn)換成這樣之后,理解起來(lái)就容易了。像這樣的轉(zhuǎn)換方法,也是我們?cè)诮忸}中常用的一種方法。

        綜上所述,在數(shù)學(xué)的學(xué)習(xí)中,教師更需要傳授學(xué)生解題的思維和方法,讓學(xué)生明確遇到不同的問(wèn)題可以用不同的途徑。在平時(shí)的教學(xué)中,還需要多加練習(xí)和總結(jié),摸索出一套適合學(xué)生的分析問(wèn)題和解決問(wèn)題的方法,提升學(xué)生解決問(wèn)題的能力。

        (責(zé)編 羅 艷)endprint

        解決問(wèn)題,關(guān)鍵就是要學(xué)會(huì)對(duì)該問(wèn)題進(jìn)行分析,理清已知與未知的關(guān)系,運(yùn)用已知條件來(lái)解決所求的問(wèn)題。不同的問(wèn)題有不同的分析方法,本文我將根據(jù)平時(shí)的教學(xué)實(shí)踐總結(jié)幾種常用的問(wèn)題分析方法。

        一、結(jié)合圖形,使抽象問(wèn)題直觀化

        在小學(xué)數(shù)學(xué)的學(xué)習(xí)中,作圖是一種幫助理解題意的有效方法。有些看似非常復(fù)雜抽象的題目,一個(gè)簡(jiǎn)單的示意圖就能讓題目意思清晰明了,問(wèn)題也就能迎刃而解。作圖是一種把抽象問(wèn)題直觀化的方式,特別是對(duì)于一些平面圖形和立體圖形類的題目,在沒(méi)有給出示意圖的情況下,會(huì)給學(xué)生的思考帶來(lái)一定的難度。繪制簡(jiǎn)單的示意圖,可以降低思考的難度,幫助解決問(wèn)題。

        例如,把一根長(zhǎng)4米的木材沿著橫截面截成兩段,表面積增加了20平方分米,這根木材原來(lái)的體積是多少?很多學(xué)生在面對(duì)這道題的時(shí)候毫無(wú)辦法,很難把增加的面積與體積聯(lián)系起來(lái),思維也就陷入了死胡同。然而,只要根據(jù)題意畫(huà)出一個(gè)示意圖,那么問(wèn)題就會(huì)變得非常簡(jiǎn)單。如下圖所示:

        從上圖中,我們可以很直觀地看到,因?yàn)槟静慕爻闪藘啥?,在斷面處產(chǎn)生了兩個(gè)橫截面,因此表面積增大了。也就是說(shuō),20平方分米正好就是2個(gè)橫截面的面積,根據(jù)這點(diǎn)可以求出一個(gè)橫截面的面積。而橫截面的面積等于底面的面積。該長(zhǎng)方體的體積可用底面積乘以高來(lái)求得。把這個(gè)圖畫(huà)出來(lái)之后,學(xué)生的思路頓時(shí)就清晰了,學(xué)生缺的就是這樣一個(gè)簡(jiǎn)單的示意圖。因此,在平時(shí)的教學(xué)中,教師要注重培養(yǎng)學(xué)生畫(huà)圖的習(xí)慣,特別是有關(guān)圖形的面積或體積的題目中,畫(huà)圖就是一個(gè)理清思維的過(guò)程,讓抽象的問(wèn)題更加直觀化,能有效地幫助解題。

        二、理清數(shù)量,使隱含問(wèn)題明顯化

        數(shù)和量是數(shù)學(xué)學(xué)習(xí)永恒的主題,在解決數(shù)學(xué)問(wèn)題的教學(xué)過(guò)程中,理清問(wèn)題中的數(shù)與量的關(guān)系,憑借數(shù)量關(guān)系來(lái)推理和解決問(wèn)題,是必須要掌握的一種方法,這也是數(shù)學(xué)發(fā)展的必然趨勢(shì)。那么,我們?cè)谛W(xué)數(shù)學(xué)的教學(xué)中,該如何提升學(xué)生分析題目,理清數(shù)量關(guān)系的能力呢?下面是我在教學(xué)中的一個(gè)實(shí)例。

        例:甲、乙兩車同時(shí)從兩地相對(duì)開(kāi)出,甲車的速度為a千米每小時(shí),乙車的速度為b千米每小時(shí),2小時(shí)后相遇,問(wèn)兩地之間的距離是多少千米?

        這道題目雖然不算復(fù)雜,但分析問(wèn)題的方法是一樣的。首先引導(dǎo)學(xué)生把題目涉及的相關(guān)量找出來(lái)。學(xué)生找出了甲的速度、乙的速度、相遇時(shí)間、總路程。再提問(wèn):這些量之間又有怎樣的關(guān)系呢?學(xué)生馬上能想到公式“速度×?xí)r間=路程”。那么所要求的總路程跟甲乙各自的速度又有什么關(guān)系呢?學(xué)生繼而發(fā)現(xiàn)總路程是由甲行的路程和乙行的路程組成的。但這兩段路程題目中并沒(méi)有直接給出,需要通過(guò)“速度×?xí)r間”計(jì)算得出。此時(shí),這道題的思路就非常清晰了。關(guān)鍵就是要理清已知量和所求未知量之間的關(guān)系,數(shù)量關(guān)系明確之后,只需要把數(shù)據(jù)代入進(jìn)行運(yùn)算就可以了。

        三、等價(jià)變換,使復(fù)雜問(wèn)題簡(jiǎn)單化

        等價(jià)變換可以使復(fù)雜的問(wèn)題變得更加簡(jiǎn)單,這種方法通常會(huì)有兩種形式:一種是把復(fù)雜的問(wèn)題拆分,拆解成幾個(gè)簡(jiǎn)單的小問(wèn)題;另一種情形就是把復(fù)雜、晦澀的表達(dá)轉(zhuǎn)換成簡(jiǎn)單、易理解的表達(dá)。

        先來(lái)談?wù)劦谝环N情形的用法。例如:一間房子要鋪地磚,邊長(zhǎng)為3分米的方磚剛好要96塊,如果換成邊長(zhǎng)為2分米的方磚,需要多少塊?這道題目看似很簡(jiǎn)單,實(shí)則對(duì)思維上的要求比較高,很多學(xué)生會(huì)出錯(cuò)。因?yàn)轭}目中給出的已知量是方磚的邊長(zhǎng)和塊數(shù),學(xué)生很難把問(wèn)題聯(lián)系到方磚的面積或者是房子的面積。而如果能把這個(gè)問(wèn)題拆分成兩個(gè)小問(wèn)題,找出中間的關(guān)鍵量,那么問(wèn)題就會(huì)變得非常簡(jiǎn)單了。如可以轉(zhuǎn)換分解成:用邊長(zhǎng)為3分米的方磚鋪地,需要96塊,那么房子的面積多大呢?如果改成2分米的方磚鋪地,需要多少塊呢?通過(guò)這樣的拆解轉(zhuǎn)換,學(xué)生很自然地先求出了房子面積這個(gè)不變量,再根據(jù)2分米方磚的面積求出所需方磚的塊數(shù)。因此,在教學(xué)中,教師要重視培養(yǎng)學(xué)生這種轉(zhuǎn)換的思維,正確的轉(zhuǎn)換往往可以把解題的關(guān)鍵找出來(lái)。

        另外一種情形,主要是通過(guò)等價(jià)變換對(duì)題目意思進(jìn)行重組,用一種更加易于理解的方式來(lái)理清題意。例如:一項(xiàng)工程,由甲、乙合作,12天完成?,F(xiàn)在由甲、乙合作4天,余下的工作由甲獨(dú)做10天后,再由乙獨(dú)做5天,正好完成這項(xiàng)工程。求甲、乙獨(dú)做各需要多少時(shí)間?要求甲、乙的單獨(dú)完成時(shí)間,就需要知道他們的工作效率。題目中給出的已知條件看起來(lái)很晦澀,關(guān)系比較復(fù)雜,先合作,再由甲獨(dú)做,最后由乙獨(dú)做。如果可以把獨(dú)做轉(zhuǎn)化成合作,那整個(gè)關(guān)系就會(huì)清晰簡(jiǎn)單很多,“余下的工作由甲獨(dú)做10天后,再由乙獨(dú)做5天”其實(shí)就可以表達(dá)成“甲乙合作5天,再由甲獨(dú)做5天”,結(jié)合前面的合作4天,就變成了“甲乙合作9天,剩余的由甲獨(dú)做5天”。把題目的意思轉(zhuǎn)換成這樣之后,理解起來(lái)就容易了。像這樣的轉(zhuǎn)換方法,也是我們?cè)诮忸}中常用的一種方法。

        綜上所述,在數(shù)學(xué)的學(xué)習(xí)中,教師更需要傳授學(xué)生解題的思維和方法,讓學(xué)生明確遇到不同的問(wèn)題可以用不同的途徑。在平時(shí)的教學(xué)中,還需要多加練習(xí)和總結(jié),摸索出一套適合學(xué)生的分析問(wèn)題和解決問(wèn)題的方法,提升學(xué)生解決問(wèn)題的能力。

        (責(zé)編 羅 艷)endprint

        猜你喜歡
        方磚路程示意圖
        求最短路程勿忘勾股定理
        先畫(huà)示意圖再解答問(wèn)題
        多走的路程
        黔西南州旅游示意圖
        思路不同 方法不同
        關(guān)于一次事故
        比院子的大小
        多種方法求路程
        走的路程短
        可惡的方磚
        成人影片麻豆国产影片免费观看 | 中文字幕亚洲日本va| 九一成人AV无码一区二区三区| 精品黄色一区二区三区| 国产中文色婷婷久久久精品| 青青草免费在线爽视频| 好男人社区影院www| 白嫩少妇激情无码| 一本久久精品久久综合桃色| 99久久国产精品免费热| 国产免费艾彩sm调教视频| 亚洲av无码成人精品区天堂| 亚洲AV专区一专区二专区三| 一本色道久久亚洲精品| 精品无码国产自产拍在线观看| 久久久久久av无码免费看大片| 一区二区无码精油按摩| 人妻一区二区三区在线看| 国产精品女人呻吟在线观看| 色拍拍在线精品视频| 久久国产av在线观看| 中文字幕亚洲综合久久综合| 天堂√在线中文官网在线| 午夜一级在线| 在线观看女同一区二区| 国产精品久久久久久久久电影网| 午夜三级a三级三点| 人妻精品一区二区三区视频| 亚洲成人激情在线影院| 日韩精品在线视频一二三| 伊人久久大香线蕉综合网站| av色综合网站| 日本在线免费不卡一区二区三区| 日本久久久久亚洲中字幕| a在线观看免费网站大全| 久久成人黄色免费网站| 丝袜美腿亚洲第一免费| 亚洲综合精品伊人久久| 亚洲精品成人网线在线播放va| 国产成人亚洲精品91专区高清| 色狠狠色噜噜av天堂一区|