亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        玉米新品種新單38株型性狀研究

        2014-07-18 17:07:57馬毅魏鋒衛(wèi)曉軼洪德峰馬俊峰張學舜
        山東農(nóng)業(yè)科學 2014年5期
        關(guān)鍵詞:產(chǎn)量

        馬毅 魏鋒 衛(wèi)曉軼 洪德峰 馬俊峰 張學舜

        摘要:對新單38株型相關(guān)性狀進行了調(diào)查研究。結(jié)果表明:新單38的株高、穗位高和雄穗長度均高于對照鄭單958,且差異達顯著或極顯著水平;葉向值極顯著大于鄭單958,其株型更緊湊。親本之間相比,新4白改(新單38母本)的葉夾角顯著小于鄭58(鄭單958母本),說明其株型相對緊湊;新6/敦系3(新單38父本)的雄穗分枝數(shù)顯著多于昌7-2(鄭單958父本),說明其雄穗更發(fā)達,更有利于制種。測產(chǎn)結(jié)果顯示,新單38單產(chǎn)比對照鄭單958高8.4%,達極顯著水平。

        關(guān)鍵詞:玉米;新單38;株型;產(chǎn)量

        中圖分類號:S513.01文獻標識號:A文章編號:1001-4942(2014)05-0029-02

        通過選擇理想株型品種來提高玉米單產(chǎn)是育種者選育新品種的常用方法[1]。玉米株型育種包含了玉米生理生態(tài)育種的各個方面,株型性狀的相互影響,最終決定了產(chǎn)量的獲得[2]。玉米株型育種研究一直是育種者工作的熱點。新單38是2013年河南省審定的玉米新品種,對其株型各相關(guān)性狀進行研究可為該品種的推廣提供技術(shù)依據(jù)。

        1材料與方法

        1.1材料

        新單38(新4白改×新6/敦系3)由新鄉(xiāng)市農(nóng)業(yè)科學院選育而成。以鄭單958(鄭58×昌7-2)為對照。

        1.2方法

        試驗于2013年在本院試驗田進行。隨機區(qū)組設計,重復3次。每個材料種植4行,行長4 m,行距60 cm,株距25 cm。管理同常規(guī)大田。

        選代表性植株5株,于授粉后10天,測定株高、穗位高、第三節(jié)間莖粗、雄穗長度、雄穗分枝數(shù)、葉向值、葉夾角、葉面積共8個株型相關(guān)性狀[3]。分別記載棒三葉的葉夾角(leaf angle,LA)、高點長(葉基至最高點距離,LF)、葉長(leaf length,LL)、葉寬(leaf width,LW)。葉向值(leaf orientation value,LOV)=ε(90-θ)×(LF/LL)/n,其中n表示測定葉片數(shù),θ代表葉夾角的度數(shù)。以棒三葉平均葉夾角、葉向值、葉長、葉寬代表全株葉夾角、葉向值、葉長和葉寬[4]。

        葉面積計算參照胡小平等的方法[5]。成熟后,收獲小區(qū)中間兩行進行測產(chǎn)。

        1.3數(shù)據(jù)分析

        用SPSS 17.0軟件進行數(shù)據(jù)處理及分析。

        2結(jié)果與分析

        對新單38及其親本8個株型相關(guān)性狀和產(chǎn)量進行方差分析,結(jié)果(表1)表明。新單38的株高、雄穗長度、葉向值和產(chǎn)量均極顯著高于對照鄭單958,分別高11.6%、13.3%、13.9%和8.4%;穗位高顯著高于對照(3.1%);新單38的第三節(jié)間莖粗、雄穗分枝數(shù)、葉夾角和葉面積4個性狀,與對照鄭單958相比,無顯著差異。

        親本自交系間相比,除第三節(jié)間莖粗和葉面積外,自交系間的其余株型性狀均存在顯著或極顯著差異。其中,新單38雙親的株高和穗位高均低于昌7-2,高于鄭58,且差異均達極顯著水平;新單38母本新4白改的雄穗長度極顯著低于其余自交系;新單38父本新6/敦系3的雄穗分枝數(shù)顯著多于昌7-2;與鄭單958母本鄭58相比,新單38母本新4白改的葉夾角顯著小于對照(23.7%)。

        3結(jié)論與討論

        葉向值是表示葉片與莖稈夾角大小及葉片在空間下垂程度的綜合指標,其值越大,表明葉片上沖性越強,株型緊湊;值越小,則表示葉片下垂程度越大,株型越平展[6]。新單38的葉向值極顯著大于對照鄭單958,說明新單38株型更緊湊。

        對新單38及其親本8個株型相關(guān)性狀的分析結(jié)果表明,新單38的株高、雄穗長度極顯著高于鄭單958,穗位高顯著高于鄭單958。從親本來看,新單38母本新4白改的葉夾角顯著小于鄭58,說明其母本的株型相對緊湊。新單38父本新6/敦系3的雄穗分枝數(shù)顯著多于昌7-2,說明其父本的雄穗更發(fā)達,更有利于制種。

        參考文獻:

        [1]王元東,段民孝,邢錦豐,等.玉米理想株型育種的研究進展與展望[J].玉米科學,2008,16(3):47-50.

        [2]張旭,王占森,謝虹,等.玉米株型育種研究進展[J].種子,2010,29(2):52-55.

        [3]黃磊玉,吳廣霞,王玉梅,等.黃早四及衍生自交系株型性狀研究[J].玉米科學,2011,19(1):27-30.

        [4]趙文明.玉米株型相關(guān)性狀QTL定位與分析[D].鄭州:河南農(nóng)業(yè)大學,2008.

        [5]胡小平,薛永祥.玉米單株葉面積的快速測定[J].玉米科學,1993,1(3):77-78.

        [6]Pepper G E,Pearce R B,Mock J J.Leaf orientation and yield of maize[J].Crop Science,1977,17:883-886.(上接第11頁)

        [19]Welsch R, Beyer P, Hugueney P, et al. Regulation and activation of phytoenesynthase, a key enzyme in carotenoid biosynthesis, during photomorphogenesis[J]. Planta, 2000, 211(6):846-854.

        [20]Bramley P M. Regulation of carotenoid formation during tomato fruit ripening and development[J]. Exp. Bot., 2002, 53:2107-2113.

        [21]Rodríguez-Villalón A, Gas E, Rodríguez-Concepción M. Phytoene synthase activity controls the biosynthesis of carotenoids and the supply of their metabolic precursors in dark-grown Arabidopsis seedlings[J]. Plant J., 2009, 60(3):424-435.

        [22]Wydrzynski T, Satoh K. Photosystem Ⅱ: the light-driven water: plastoquinone oxidoreductase [J]. Photosynthesis Research,2006,87(3):331-335.

        [23]Demmig-Adams B, Adams W W. Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation[J]. New Phytol., 2006, 172:11-21.

        [24]Dall′Osto L, Cazzaniga S, Havaux M. Enhanced photoprotection by protein-bound vs free xanthophyll pools: a comparative analysis of hlorophyll b and xanthophyll biosynthesis mutants[J]. Mol. Plant, 2010, 3(3):576-593.

        [25]Cazzonelli C I , Pogson B J. Source to sink: regulation of carotenoid biosynthesis in plants[J]. Trends in Plant Science, 2010, 15(5):266-274.

        [26]Welsch R, Wüst F, Br C, et al. A third phytoene synthase is devoted to abiotic stress-induced abscisic acid formation in rice and defines functional diversification of phytoene synthase genes[J]. Plant Physiol., 2008, 147(1):367-380.

        [27]Chaudhary N, Nijhawan A, Khurana J P, et al. Carotenoid biosynthesis genes in rice: structural analysis, genome-wide expression profiling and phylogenetic analysis[J]. Mol. Genet. Genomics, 2010, 283(1):13-33.

        [28]Howitt C A, Cavanagh C R, Bowerman A F, et al. Alternative splicing, activation of cryptic exons and amino acid substitutions in carotenoid biosynthetic genes are associated with lutein accumulation in wheat endosperm[J]. Funct. Integr. Genomics, 2009,9(3):363-376.

        [29]Li F, Vallabhaneni R, Wurtzel E T. PSY3, a new member of the phytoene synthase gene family conserved in the Poaceae and regulator of abiotic stress induced root carotenogenesis[J]. Plant Physiol., 2008, 146:1333-1345.

        [22]Wydrzynski T, Satoh K. Photosystem Ⅱ: the light-driven water: plastoquinone oxidoreductase [J]. Photosynthesis Research,2006,87(3):331-335.

        [23]Demmig-Adams B, Adams W W. Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation[J]. New Phytol., 2006, 172:11-21.

        [24]Dall′Osto L, Cazzaniga S, Havaux M. Enhanced photoprotection by protein-bound vs free xanthophyll pools: a comparative analysis of hlorophyll b and xanthophyll biosynthesis mutants[J]. Mol. Plant, 2010, 3(3):576-593.

        [25]Cazzonelli C I , Pogson B J. Source to sink: regulation of carotenoid biosynthesis in plants[J]. Trends in Plant Science, 2010, 15(5):266-274.

        [26]Welsch R, Wüst F, Br C, et al. A third phytoene synthase is devoted to abiotic stress-induced abscisic acid formation in rice and defines functional diversification of phytoene synthase genes[J]. Plant Physiol., 2008, 147(1):367-380.

        [27]Chaudhary N, Nijhawan A, Khurana J P, et al. Carotenoid biosynthesis genes in rice: structural analysis, genome-wide expression profiling and phylogenetic analysis[J]. Mol. Genet. Genomics, 2010, 283(1):13-33.

        [28]Howitt C A, Cavanagh C R, Bowerman A F, et al. Alternative splicing, activation of cryptic exons and amino acid substitutions in carotenoid biosynthetic genes are associated with lutein accumulation in wheat endosperm[J]. Funct. Integr. Genomics, 2009,9(3):363-376.

        [29]Li F, Vallabhaneni R, Wurtzel E T. PSY3, a new member of the phytoene synthase gene family conserved in the Poaceae and regulator of abiotic stress induced root carotenogenesis[J]. Plant Physiol., 2008, 146:1333-1345.

        [22]Wydrzynski T, Satoh K. Photosystem Ⅱ: the light-driven water: plastoquinone oxidoreductase [J]. Photosynthesis Research,2006,87(3):331-335.

        [23]Demmig-Adams B, Adams W W. Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation[J]. New Phytol., 2006, 172:11-21.

        [24]Dall′Osto L, Cazzaniga S, Havaux M. Enhanced photoprotection by protein-bound vs free xanthophyll pools: a comparative analysis of hlorophyll b and xanthophyll biosynthesis mutants[J]. Mol. Plant, 2010, 3(3):576-593.

        [25]Cazzonelli C I , Pogson B J. Source to sink: regulation of carotenoid biosynthesis in plants[J]. Trends in Plant Science, 2010, 15(5):266-274.

        [26]Welsch R, Wüst F, Br C, et al. A third phytoene synthase is devoted to abiotic stress-induced abscisic acid formation in rice and defines functional diversification of phytoene synthase genes[J]. Plant Physiol., 2008, 147(1):367-380.

        [27]Chaudhary N, Nijhawan A, Khurana J P, et al. Carotenoid biosynthesis genes in rice: structural analysis, genome-wide expression profiling and phylogenetic analysis[J]. Mol. Genet. Genomics, 2010, 283(1):13-33.

        [28]Howitt C A, Cavanagh C R, Bowerman A F, et al. Alternative splicing, activation of cryptic exons and amino acid substitutions in carotenoid biosynthetic genes are associated with lutein accumulation in wheat endosperm[J]. Funct. Integr. Genomics, 2009,9(3):363-376.

        [29]Li F, Vallabhaneni R, Wurtzel E T. PSY3, a new member of the phytoene synthase gene family conserved in the Poaceae and regulator of abiotic stress induced root carotenogenesis[J]. Plant Physiol., 2008, 146:1333-1345.

        猜你喜歡
        產(chǎn)量
        2022年11月份我國鋅產(chǎn)量同比增長2.9% 鉛產(chǎn)量同比增長5.6%
        今年前7個月北海道魚糜產(chǎn)量同比減少37%
        提高玉米產(chǎn)量 膜下滴灌有效
        夏糧再獲豐收 產(chǎn)量再創(chuàng)新高
        世界致密油產(chǎn)量發(fā)展趨勢
        海水稻產(chǎn)量測評平均產(chǎn)量逐年遞增
        2018年我國主要水果產(chǎn)量按省(區(qū)、市)分布
        2018年11月肥料產(chǎn)量統(tǒng)計
        2018年10月肥料產(chǎn)量統(tǒng)計
        2018年12月肥料產(chǎn)量統(tǒng)計
        久久综合亚洲色hezyo国产| 极品粉嫩嫩模大尺度无码| 99国产精品丝袜久久久久| 99熟妇人妻精品一区五一看片| 国产一区二区三区成人| 精品国内日本一区二区| 最新日本一道免费一区二区| 97免费人妻在线视频 | 国产在视频线精品视频| 熟妇人妻中文av无码| 国产三级精品美女三级| 中文字幕人妻一区二区二区| 99riav国产精品视频| 免费无码毛片一区二区三区a片| 99久久精品无码专区无| 亚洲一区二区三区在线高清中文| 日韩人妻熟女中文字幕a美景之屋| 狠狠色噜噜狠狠狠狠色综合久| 亚洲黄色在线看| 国产免费人成视频在线观看播放播 | 久久综合激激的五月天| 亚洲国产综合久久天堂| 国产乱码一二三区精品| 亚州无线国产2021| 中文字幕视频一区懂色| 国产99视频精品免视看7| 久久精品黄aa片一区二区三区| 欧美在线不卡视频| av天堂在线免费播放| 国产成人精品日本亚洲i8| 中文字幕无码毛片免费看| 人妻少妇精品视中文字幕国语| 国产精品不卡无码AV在线播放| 国产黑丝美女办公室激情啪啪| 少妇厨房愉情理伦bd在线观看| 国产精品精品| 青青草视频网站免费看| 秋霞在线视频| 少妇高潮惨叫喷水在线观看| 视频一区二区三区中文字幕狠狠| 白白色最新福利视频二|