楊建文等
摘 要 以賽庚啶為模板分子,甲基丙烯酸為功能單體,乙二醇二甲基丙烯酸酯為交聯(lián)劑,通過優(yōu)化致孔劑、單體及模板與單體摩爾比等因素,合成了對賽庚啶具有高選擇性的分子印跡聚合物,1 引 言
賽庚啶(Cyproheptadine, CYP, 圖1)原是一種H1受體拮抗劑,主要用于治療過敏性疾病,能在下丘腦食欲中樞拮抗5羥色胺受體,具有刺激食欲和嗜睡的作用[1]。近年來,不法分子利用賽庚啶能夠刺激食欲和引起嗜睡的功能,非法使用到生豬生產(chǎn)中。通過違規(guī)添加到生豬飲水和飼料中,促進(jìn)采食和增加睡眠,達(dá)到促生長的目的。食用含有賽庚啶殘留的動(dòng)物性食品,會(huì)危害人體健康[2]。歐盟指令2001/82中規(guī)定賽庚啶禁止作為獸藥在動(dòng)物中使用,我國也于2010年12月農(nóng)業(yè)部1519號(hào)公告中明確將其列入《禁止在飼料和動(dòng)物飲水中使用的物質(zhì)》清單[3,4]。目前,有關(guān)賽庚啶及其殘留分析測定的方法報(bào)道較少,主要基于采用常規(guī)的固相萃?。⊿PE)前處理技術(shù)對飼料、豬尿等基質(zhì)中賽庚啶的分離、凈化和富集,方法缺乏特異性和選擇性[5~8]。因此,建立高選擇性萃取、凈化和富集各種復(fù)雜基質(zhì)中賽庚啶的分析檢測方法具有重要意義。
基于現(xiàn)代分子印跡技術(shù)制備的分子印跡聚合物(MIP)對模板分子顯示高度的親和性,作為固相萃取吸附填料應(yīng)用于復(fù)雜基質(zhì)中目標(biāo)化合物的分離、凈化和富集較傳統(tǒng)的SPE具有更高選擇性和特異性、可多次反復(fù)使用等特點(diǎn)[9~12]。Feas等采用虛擬模板技術(shù)合成了對賽庚啶具有高選擇性的分子印跡聚合物,對其溶脹率、表面形貌和吸附容量等性能進(jìn)行了評價(jià),并建立了基于分子印跡固相萃?。∕ISPE)測定豬尿中賽庚啶殘留的液相色譜串聯(lián)質(zhì)譜方法[13,14]。本研究以賽庚啶為模板分子,系統(tǒng)探討了合成單體、致孔劑等因素對合成聚合物吸附性能的影響;在優(yōu)化固相萃取裝填量的基礎(chǔ)上,獲得了上樣、洗滌和洗脫賽庚啶的固相萃取條件、評價(jià)了小柱容量和交叉反應(yīng)試驗(yàn)結(jié)果,并成功用于畜禽飲水等水樣中賽庚啶的分析檢測,為從食品動(dòng)物生產(chǎn)源頭監(jiān)控賽庚啶的非法使用提供了依據(jù)。
4 結(jié) 論
采用分子印跡技術(shù),通過對致孔劑、功能單體種類及用量等的優(yōu)化,合成了對賽庚啶具有高選擇性的分子印跡聚合物。將其作為固相萃取吸附材料,成功用于畜禽飲水等實(shí)際水樣中賽庚啶的分析測定。
References
1 Yamamoto T, Niwa S, Iwayama S, Koganei H, Fujita S, Takeda T, Kito M, Ono Y, Saitou Y, Takahara A, Iwata S, Yamamoto H, Shoji M. Bioorg. Med. Chem., 2006, 14(15): 5333-5339
2 CAO Ying, JIANG Yin, ZHANG WenGang. China Feed, 2011, 2: 39-40
曹 瑩, 蔣 音, 張文剛. 中國飼料, 2011, 2: 39-40
3 EC Directive 82/2001, Off. J. Eur. Commun., 2001, L3314: 1-66
4 MOA, Bulletin15192010, Forbidding used substance in feed and drinking water of animal
禁止在飼料和動(dòng)物飲水中使用的物質(zhì). 農(nóng)業(yè)部1519號(hào)公告2010
5 Fente C A, Regal P, Vazquez B I, Feas X, Franco C M, Cepeda A. J. Agric. Food Chem., 2009, 57(6): 2595-2598
6 QU Bin, LU GuiPing, JIANG TianMei, GENG ShiWei, ZHU ZhiQian, WU Ling. Chinese J. Vet. Drug., 2013, 47(1): 28-31
曲 斌, 陸桂萍, 蔣天梅, 耿士偉, 朱志謙, 吳 玲. 中國獸藥雜志, 2013, 47(1): 28-31
7 LI DanNi, ZHANG WenGang, YAN Feng, GU Xin. Chinese J. Vet. Drug., 2011, 45(10): 20-24
李丹妮, 張文剛, 嚴(yán) 鳳, 顧 欣. 中國獸藥雜志, 2011, 45(10): 20-24
8 CHEN QiHuang. Fujian J. Agric.Sci., 2012, 27(6): 596-600
陳其煌. 福建農(nóng)業(yè)學(xué)報(bào), 2012, 27(6): 596-600
9 Regal P, D I AzBao M O N, Barreiro R I O, Cepeda A, Fente C. Cent. Eur. J. Chem., 2012, 10(3): 766-784
10 Caro E, Marc E R M, Borrull F, Cormack P, Sherrington D C. Trends in Anal. Chem., 2006, 25(2): 143-154
11 SHAO HaiYang, XU Gang, WU MingHong, TANG Liang, LIU Ning, QIU WenHui. Chinese J. Anal. Chem., 2013, 41(9): 1315-11321
邵海洋, 徐 剛, 吳明紅, 唐 亮, 劉 寧, 裘文慧. 分析化學(xué), 2013, 41(9): 1315-11321
12 Tamayo F G, Turiel E, Mart I NEsteban A. J. Chromatogr. A, 2007, 1152(1): 32-40
13 Feas X, Seijas J A, VazquezTato M P, Regal P, Cepeda A, Fente C A. Anal. Chim. Acta, 2009, 631: 237-244
14 Feas X, Ye L, Regal P, Fente C A, Hosseini S V, Cepeda A. J. Sep. Sci., 2009, 32(10): 1740-1747
15 Hennion M, Pichon V. Environ. Sci. Technol., 1994, 28(13): 576A-583A
16 YIN XueYan, XU Qian,WANG Min,WU ShuYan, GU ZhongZe. Chem. J. Chinese Universities, 2010, 31(4): 690-695
殷雪琰,許 茜,王 敏,吳淑艷,顧忠澤. 高等學(xué)校化學(xué)學(xué)報(bào), 2010, 31(4): 690-695
Preparation of Cyproheptadine Imprinted Polymers and
Its Application to Solid Phase Extraction
YANG JianWen, LIU YaHong, WANG ZongNan, BIAN Kui, SONG XuQin,
ZHOU Tong, ZHANG FangYu, HE LiMin*
(National Reference Laboratory of Veterinary Drug Residues (SCAU), College of Veterinary Medicine,
South China Agricultural University, Guangzhou 510642, China)
Abstract Using cyproheptadine (CYP) as template molecule, methacrylic acid (MAA) as monomer, ethylene glycol dimethacrylate (EGDMA) as crosslinker, molecularly imprinted polymers (MIP) with high selectivity to cyproheptadine (CYP) were prepared by the optimization of porogen, monomer, and the mole ratio of monomer to template. The specific surface area of the prepared polymers was 24.9 m2/g. The recovery of CYP was above 94.0% when the following procedure was applied to the cartridge of MIP as adsorptive material: conditioning with methanol and water, loading with water, washing with water and methanol, and eluting with methanolammonia (95∶5, V/V). As a control, the recovery of CYP on nonimprinted polymers cartridge (NISPE) was only 38.9%. The binding capacity of the molecularly imprinted solid phase extraction (MISPE) towards CYP found to be about 8.8 mg of CYP/g polymers and the imprinting factor (IF) was about 2.32. Under optimal conditions, a mixed standard solution of CYP, amitriptyline, sulfadiazine and trimethoprim (10 mg/L each) was uploaded on the MISPE and NISPE for selectivity experiment。The gradient elution was used by using 0.05% sodium pentanesulfonate solution (A)acetintrile (B) as a mobile phase. The recoveries on the MISPE for sulfadiazine and trimethoprim (different structure with CYP) were less than 10%, however, the recovery for the similar structural amitriptyline was more than 70%, and the recovery more than 90% for CYP. All the recoveries on the NISPE for four analytes were less than 30%. This new MISPE cartridge was applied to extract and enrich CYP in livestock drinking water sample, and the recoveries of CYP ranged from 80.5%-97.7%, and the limit of detection (LOD) was 0.01 mg/L.
Keywords Molecularly imprinted polymers; Cyproheptadine; Solidphase extraction; Water
(Received 1 October 2013; accepted by 11 February 2014)
This work was supported by the National Natural Science Foundation of China (No. 31372476)
12 Tamayo F G, Turiel E, Mart I NEsteban A. J. Chromatogr. A, 2007, 1152(1): 32-40
13 Feas X, Seijas J A, VazquezTato M P, Regal P, Cepeda A, Fente C A. Anal. Chim. Acta, 2009, 631: 237-244
14 Feas X, Ye L, Regal P, Fente C A, Hosseini S V, Cepeda A. J. Sep. Sci., 2009, 32(10): 1740-1747
15 Hennion M, Pichon V. Environ. Sci. Technol., 1994, 28(13): 576A-583A
16 YIN XueYan, XU Qian,WANG Min,WU ShuYan, GU ZhongZe. Chem. J. Chinese Universities, 2010, 31(4): 690-695
殷雪琰,許 茜,王 敏,吳淑艷,顧忠澤. 高等學(xué)?;瘜W(xué)學(xué)報(bào), 2010, 31(4): 690-695
Preparation of Cyproheptadine Imprinted Polymers and
Its Application to Solid Phase Extraction
YANG JianWen, LIU YaHong, WANG ZongNan, BIAN Kui, SONG XuQin,
ZHOU Tong, ZHANG FangYu, HE LiMin*
(National Reference Laboratory of Veterinary Drug Residues (SCAU), College of Veterinary Medicine,
South China Agricultural University, Guangzhou 510642, China)
Abstract Using cyproheptadine (CYP) as template molecule, methacrylic acid (MAA) as monomer, ethylene glycol dimethacrylate (EGDMA) as crosslinker, molecularly imprinted polymers (MIP) with high selectivity to cyproheptadine (CYP) were prepared by the optimization of porogen, monomer, and the mole ratio of monomer to template. The specific surface area of the prepared polymers was 24.9 m2/g. The recovery of CYP was above 94.0% when the following procedure was applied to the cartridge of MIP as adsorptive material: conditioning with methanol and water, loading with water, washing with water and methanol, and eluting with methanolammonia (95∶5, V/V). As a control, the recovery of CYP on nonimprinted polymers cartridge (NISPE) was only 38.9%. The binding capacity of the molecularly imprinted solid phase extraction (MISPE) towards CYP found to be about 8.8 mg of CYP/g polymers and the imprinting factor (IF) was about 2.32. Under optimal conditions, a mixed standard solution of CYP, amitriptyline, sulfadiazine and trimethoprim (10 mg/L each) was uploaded on the MISPE and NISPE for selectivity experiment。The gradient elution was used by using 0.05% sodium pentanesulfonate solution (A)acetintrile (B) as a mobile phase. The recoveries on the MISPE for sulfadiazine and trimethoprim (different structure with CYP) were less than 10%, however, the recovery for the similar structural amitriptyline was more than 70%, and the recovery more than 90% for CYP. All the recoveries on the NISPE for four analytes were less than 30%. This new MISPE cartridge was applied to extract and enrich CYP in livestock drinking water sample, and the recoveries of CYP ranged from 80.5%-97.7%, and the limit of detection (LOD) was 0.01 mg/L.
Keywords Molecularly imprinted polymers; Cyproheptadine; Solidphase extraction; Water
(Received 1 October 2013; accepted by 11 February 2014)
This work was supported by the National Natural Science Foundation of China (No. 31372476)
12 Tamayo F G, Turiel E, Mart I NEsteban A. J. Chromatogr. A, 2007, 1152(1): 32-40
13 Feas X, Seijas J A, VazquezTato M P, Regal P, Cepeda A, Fente C A. Anal. Chim. Acta, 2009, 631: 237-244
14 Feas X, Ye L, Regal P, Fente C A, Hosseini S V, Cepeda A. J. Sep. Sci., 2009, 32(10): 1740-1747
15 Hennion M, Pichon V. Environ. Sci. Technol., 1994, 28(13): 576A-583A
16 YIN XueYan, XU Qian,WANG Min,WU ShuYan, GU ZhongZe. Chem. J. Chinese Universities, 2010, 31(4): 690-695
殷雪琰,許 茜,王 敏,吳淑艷,顧忠澤. 高等學(xué)校化學(xué)學(xué)報(bào), 2010, 31(4): 690-695
Preparation of Cyproheptadine Imprinted Polymers and
Its Application to Solid Phase Extraction
YANG JianWen, LIU YaHong, WANG ZongNan, BIAN Kui, SONG XuQin,
ZHOU Tong, ZHANG FangYu, HE LiMin*
(National Reference Laboratory of Veterinary Drug Residues (SCAU), College of Veterinary Medicine,
South China Agricultural University, Guangzhou 510642, China)
Abstract Using cyproheptadine (CYP) as template molecule, methacrylic acid (MAA) as monomer, ethylene glycol dimethacrylate (EGDMA) as crosslinker, molecularly imprinted polymers (MIP) with high selectivity to cyproheptadine (CYP) were prepared by the optimization of porogen, monomer, and the mole ratio of monomer to template. The specific surface area of the prepared polymers was 24.9 m2/g. The recovery of CYP was above 94.0% when the following procedure was applied to the cartridge of MIP as adsorptive material: conditioning with methanol and water, loading with water, washing with water and methanol, and eluting with methanolammonia (95∶5, V/V). As a control, the recovery of CYP on nonimprinted polymers cartridge (NISPE) was only 38.9%. The binding capacity of the molecularly imprinted solid phase extraction (MISPE) towards CYP found to be about 8.8 mg of CYP/g polymers and the imprinting factor (IF) was about 2.32. Under optimal conditions, a mixed standard solution of CYP, amitriptyline, sulfadiazine and trimethoprim (10 mg/L each) was uploaded on the MISPE and NISPE for selectivity experiment。The gradient elution was used by using 0.05% sodium pentanesulfonate solution (A)acetintrile (B) as a mobile phase. The recoveries on the MISPE for sulfadiazine and trimethoprim (different structure with CYP) were less than 10%, however, the recovery for the similar structural amitriptyline was more than 70%, and the recovery more than 90% for CYP. All the recoveries on the NISPE for four analytes were less than 30%. This new MISPE cartridge was applied to extract and enrich CYP in livestock drinking water sample, and the recoveries of CYP ranged from 80.5%-97.7%, and the limit of detection (LOD) was 0.01 mg/L.
Keywords Molecularly imprinted polymers; Cyproheptadine; Solidphase extraction; Water
(Received 1 October 2013; accepted by 11 February 2014)
This work was supported by the National Natural Science Foundation of China (No. 31372476)