亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        鉍銻試金測定硫化銅鎳礦中釕銠鈀銥鉑

        2014-07-10 21:46:28李可及劉淑君邵坤??
        分析化學(xué) 2014年6期
        關(guān)鍵詞:硫化銅銅鎳貴金屬

        李可及 劉淑君++邵坤??

        摘 要 建立了用于預(yù)富集硫化銅鎳礦中釕銠鈀銥鉑5種鉑族元素的鉍銻試金方法。1 引 言

        鉑族元素作為我國短缺的戰(zhàn)略高技術(shù)礦產(chǎn)之一,廣泛應(yīng)用于汽車、珠寶、電子等領(lǐng)域,其95%以上的儲(chǔ)量分布于銅鎳型礦床中,多以銅鎳硫化物的伴生礦床形式產(chǎn)出[1],因此準(zhǔn)確測定硫化銅鎳礦中鉑族元素的含量對(duì)于評(píng)價(jià)礦石價(jià)值及綜合利用意義重大。目前,硫化銅鎳礦中鉑族元素分析的前處理方法多采用锍鎳試金

        2 實(shí)驗(yàn)部分

        2.1 儀器與試劑

        References

        1 Rao C R M, Reddi G S. Trends in analytical chemistry, 2000, 19(9): 565-586

        2 Barefoot R R, van Loon J C. Talanta, 1999, 49: 1-14

        3 ZHAO Zheng, QI Liang, HUANG ZhiLong, XU Cheng. Earth Science Frontiers, 2009, 16(1): 181-193

        趙 正, 漆 亮, 黃智龍, 許 成. 地學(xué)前緣, 2009, 16(1): 181-193

        4 ZHANG ShiLin, TU HuiMin. Journal of Geological Science Institute, Ministry of Metallurgical Industry, 1981, 2: 90-102

        張石林, 屠惠民. 冶金工業(yè)部地質(zhì)研究所所報(bào), 1981, 2: 90-102

        5 Kelly Z, Ojebuoboh F. JOM, 2002, 54(4): 42-45

        6 LIN YuNan, HU JinXing, SHEN ZhenXing. Chinese J. Anal. Chem., 1988, 16(1): 1-4

        林玉南, 胡金星, 沈振興. 分析化學(xué), 1988, 16(1): 1-4

        7 Precious Metal Analysis Unit of Institute of Multipurpose Utilization of Mineral Resources. Chinese J. Anal. Chem., 1974, 2(2): 31-37

        四川省地質(zhì)局礦產(chǎn)綜合利用研究所貴金屬分析組. 分析化學(xué), 1974, 2(2): 31-37

        8 LI KeJi, ZHAO ChaoHui, FAN JianXiong. Metallurgical Analysis, 2013, 33(8): 19-23

        李可及, 趙朝輝, 范建雄. 冶金分析, 2013, 33(8): 19-23

        9 YUAN ZhuoBin, LV YuanQi, ZHANG YuPing, YIN Ming. Metallurgical Analysis, 2003, 23(2): 24-30

        袁倬斌, 呂元琦, 張?jiān)F剑?尹 明. 冶金分析, 2003, 23(2): 24-30

        10 CAI ShuXing, HUANG Chao. Analysis of Precise Metals (1). Beijing: Melellurgical Industry Press. 1984: 86

        蔡樹型, 黃 超. 貴金屬分析(第一版), 北京: 冶金工業(yè)出版社, 1984: 86

        Determination of Ruthenium, Rhodium, Palladium, Iridium

        and Platinum in CopperNickel Sulfide Ores by

        BismuthAntimony Fire Assay

        LI KeJi*, LIU ShuJun, SHAO Kun

        (Institute of Multipurpose Utilization of Mineral Resources Chinese Academy of Geological Sciences, Chengdu 610041, China)

        Abstract A bismuthantimony fire assay method for the preconcentration of ruthenium, rhodium, palladium, iridium and platinum in coppernickel sulfide ores was developed. 40.0 g bismuth trioxide, 25.0 g boric acid, 10.0 g sodium carbonate and 1.00 g starch were mixed with 10.0 g sample in a 120 mL porcelain bowl, which was put in a furnace at 850 ℃. After 20 min the temperature was raised to 1000 ℃ and held for another 40 min, and then the bowl was taken out, with the slag poured, which left the bismuth button to air cooling. A twostep cupellation procedure was developed. During the first step, the bismuth button was cupellated in a magnesia cupel until its diameter reached 5 mm or so, then it was transferred to a crucible cover containing 20 g melting antimony and kept cupellating, at last a bead with a diameter of 1 mm was obtained. The bead was microwavedigested, after cooling down to room temperature, the solvent of which was transferred to a volumetric flask and diluted to 10 ml with water. Pt and Pd were analyzed by inductively coupled plasmaatomic emission spectrometry (ICPAES), while 99Ru, 103Rh, 191Ir were analyzed by inductively coupled plasmamass spectrometry (ICPMS), with 115In, 185Re as internal standard. RSD (n=12) of the analysis results of five platinum group elements (PGEs) in standard reference material GBW07196 ranged from 7.04% to 9.48%. Under the condition of 10 g sample, the detection limits (ng/g) for PGEs are 0.027 for Ru, 0.016 for Rh, 0.11 for Pd, 0.10 for Ir and 0.11 for Pt. The method was applied to the determination of PGEs in GBW07194, GBW07195, GBW07196 with satisfactory results.

        Keywords Bismuthantimony fire assay; Coppernickel sulfide ore; Platinum group elements; Inductively coupled plasmaatomic emission spectrometry; Inductively coupled plasmamass spectrometry

        (Received 25 December 2013; accepted 17 February 2014)

        摘 要 建立了用于預(yù)富集硫化銅鎳礦中釕銠鈀銥鉑5種鉑族元素的鉍銻試金方法。1 引 言

        鉑族元素作為我國短缺的戰(zhàn)略高技術(shù)礦產(chǎn)之一,廣泛應(yīng)用于汽車、珠寶、電子等領(lǐng)域,其95%以上的儲(chǔ)量分布于銅鎳型礦床中,多以銅鎳硫化物的伴生礦床形式產(chǎn)出[1],因此準(zhǔn)確測定硫化銅鎳礦中鉑族元素的含量對(duì)于評(píng)價(jià)礦石價(jià)值及綜合利用意義重大。目前,硫化銅鎳礦中鉑族元素分析的前處理方法多采用锍鎳試金

        2 實(shí)驗(yàn)部分

        2.1 儀器與試劑

        References

        1 Rao C R M, Reddi G S. Trends in analytical chemistry, 2000, 19(9): 565-586

        2 Barefoot R R, van Loon J C. Talanta, 1999, 49: 1-14

        3 ZHAO Zheng, QI Liang, HUANG ZhiLong, XU Cheng. Earth Science Frontiers, 2009, 16(1): 181-193

        趙 正, 漆 亮, 黃智龍, 許 成. 地學(xué)前緣, 2009, 16(1): 181-193

        4 ZHANG ShiLin, TU HuiMin. Journal of Geological Science Institute, Ministry of Metallurgical Industry, 1981, 2: 90-102

        張石林, 屠惠民. 冶金工業(yè)部地質(zhì)研究所所報(bào), 1981, 2: 90-102

        5 Kelly Z, Ojebuoboh F. JOM, 2002, 54(4): 42-45

        6 LIN YuNan, HU JinXing, SHEN ZhenXing. Chinese J. Anal. Chem., 1988, 16(1): 1-4

        林玉南, 胡金星, 沈振興. 分析化學(xué), 1988, 16(1): 1-4

        7 Precious Metal Analysis Unit of Institute of Multipurpose Utilization of Mineral Resources. Chinese J. Anal. Chem., 1974, 2(2): 31-37

        四川省地質(zhì)局礦產(chǎn)綜合利用研究所貴金屬分析組. 分析化學(xué), 1974, 2(2): 31-37

        8 LI KeJi, ZHAO ChaoHui, FAN JianXiong. Metallurgical Analysis, 2013, 33(8): 19-23

        李可及, 趙朝輝, 范建雄. 冶金分析, 2013, 33(8): 19-23

        9 YUAN ZhuoBin, LV YuanQi, ZHANG YuPing, YIN Ming. Metallurgical Analysis, 2003, 23(2): 24-30

        袁倬斌, 呂元琦, 張?jiān)F剑?尹 明. 冶金分析, 2003, 23(2): 24-30

        10 CAI ShuXing, HUANG Chao. Analysis of Precise Metals (1). Beijing: Melellurgical Industry Press. 1984: 86

        蔡樹型, 黃 超. 貴金屬分析(第一版), 北京: 冶金工業(yè)出版社, 1984: 86

        Determination of Ruthenium, Rhodium, Palladium, Iridium

        and Platinum in CopperNickel Sulfide Ores by

        BismuthAntimony Fire Assay

        LI KeJi*, LIU ShuJun, SHAO Kun

        (Institute of Multipurpose Utilization of Mineral Resources Chinese Academy of Geological Sciences, Chengdu 610041, China)

        Abstract A bismuthantimony fire assay method for the preconcentration of ruthenium, rhodium, palladium, iridium and platinum in coppernickel sulfide ores was developed. 40.0 g bismuth trioxide, 25.0 g boric acid, 10.0 g sodium carbonate and 1.00 g starch were mixed with 10.0 g sample in a 120 mL porcelain bowl, which was put in a furnace at 850 ℃. After 20 min the temperature was raised to 1000 ℃ and held for another 40 min, and then the bowl was taken out, with the slag poured, which left the bismuth button to air cooling. A twostep cupellation procedure was developed. During the first step, the bismuth button was cupellated in a magnesia cupel until its diameter reached 5 mm or so, then it was transferred to a crucible cover containing 20 g melting antimony and kept cupellating, at last a bead with a diameter of 1 mm was obtained. The bead was microwavedigested, after cooling down to room temperature, the solvent of which was transferred to a volumetric flask and diluted to 10 ml with water. Pt and Pd were analyzed by inductively coupled plasmaatomic emission spectrometry (ICPAES), while 99Ru, 103Rh, 191Ir were analyzed by inductively coupled plasmamass spectrometry (ICPMS), with 115In, 185Re as internal standard. RSD (n=12) of the analysis results of five platinum group elements (PGEs) in standard reference material GBW07196 ranged from 7.04% to 9.48%. Under the condition of 10 g sample, the detection limits (ng/g) for PGEs are 0.027 for Ru, 0.016 for Rh, 0.11 for Pd, 0.10 for Ir and 0.11 for Pt. The method was applied to the determination of PGEs in GBW07194, GBW07195, GBW07196 with satisfactory results.

        Keywords Bismuthantimony fire assay; Coppernickel sulfide ore; Platinum group elements; Inductively coupled plasmaatomic emission spectrometry; Inductively coupled plasmamass spectrometry

        (Received 25 December 2013; accepted 17 February 2014)

        摘 要 建立了用于預(yù)富集硫化銅鎳礦中釕銠鈀銥鉑5種鉑族元素的鉍銻試金方法。1 引 言

        鉑族元素作為我國短缺的戰(zhàn)略高技術(shù)礦產(chǎn)之一,廣泛應(yīng)用于汽車、珠寶、電子等領(lǐng)域,其95%以上的儲(chǔ)量分布于銅鎳型礦床中,多以銅鎳硫化物的伴生礦床形式產(chǎn)出[1],因此準(zhǔn)確測定硫化銅鎳礦中鉑族元素的含量對(duì)于評(píng)價(jià)礦石價(jià)值及綜合利用意義重大。目前,硫化銅鎳礦中鉑族元素分析的前處理方法多采用锍鎳試金

        2 實(shí)驗(yàn)部分

        2.1 儀器與試劑

        References

        1 Rao C R M, Reddi G S. Trends in analytical chemistry, 2000, 19(9): 565-586

        2 Barefoot R R, van Loon J C. Talanta, 1999, 49: 1-14

        3 ZHAO Zheng, QI Liang, HUANG ZhiLong, XU Cheng. Earth Science Frontiers, 2009, 16(1): 181-193

        趙 正, 漆 亮, 黃智龍, 許 成. 地學(xué)前緣, 2009, 16(1): 181-193

        4 ZHANG ShiLin, TU HuiMin. Journal of Geological Science Institute, Ministry of Metallurgical Industry, 1981, 2: 90-102

        張石林, 屠惠民. 冶金工業(yè)部地質(zhì)研究所所報(bào), 1981, 2: 90-102

        5 Kelly Z, Ojebuoboh F. JOM, 2002, 54(4): 42-45

        6 LIN YuNan, HU JinXing, SHEN ZhenXing. Chinese J. Anal. Chem., 1988, 16(1): 1-4

        林玉南, 胡金星, 沈振興. 分析化學(xué), 1988, 16(1): 1-4

        7 Precious Metal Analysis Unit of Institute of Multipurpose Utilization of Mineral Resources. Chinese J. Anal. Chem., 1974, 2(2): 31-37

        四川省地質(zhì)局礦產(chǎn)綜合利用研究所貴金屬分析組. 分析化學(xué), 1974, 2(2): 31-37

        8 LI KeJi, ZHAO ChaoHui, FAN JianXiong. Metallurgical Analysis, 2013, 33(8): 19-23

        李可及, 趙朝輝, 范建雄. 冶金分析, 2013, 33(8): 19-23

        9 YUAN ZhuoBin, LV YuanQi, ZHANG YuPing, YIN Ming. Metallurgical Analysis, 2003, 23(2): 24-30

        袁倬斌, 呂元琦, 張?jiān)F剑?尹 明. 冶金分析, 2003, 23(2): 24-30

        10 CAI ShuXing, HUANG Chao. Analysis of Precise Metals (1). Beijing: Melellurgical Industry Press. 1984: 86

        蔡樹型, 黃 超. 貴金屬分析(第一版), 北京: 冶金工業(yè)出版社, 1984: 86

        Determination of Ruthenium, Rhodium, Palladium, Iridium

        and Platinum in CopperNickel Sulfide Ores by

        BismuthAntimony Fire Assay

        LI KeJi*, LIU ShuJun, SHAO Kun

        (Institute of Multipurpose Utilization of Mineral Resources Chinese Academy of Geological Sciences, Chengdu 610041, China)

        Abstract A bismuthantimony fire assay method for the preconcentration of ruthenium, rhodium, palladium, iridium and platinum in coppernickel sulfide ores was developed. 40.0 g bismuth trioxide, 25.0 g boric acid, 10.0 g sodium carbonate and 1.00 g starch were mixed with 10.0 g sample in a 120 mL porcelain bowl, which was put in a furnace at 850 ℃. After 20 min the temperature was raised to 1000 ℃ and held for another 40 min, and then the bowl was taken out, with the slag poured, which left the bismuth button to air cooling. A twostep cupellation procedure was developed. During the first step, the bismuth button was cupellated in a magnesia cupel until its diameter reached 5 mm or so, then it was transferred to a crucible cover containing 20 g melting antimony and kept cupellating, at last a bead with a diameter of 1 mm was obtained. The bead was microwavedigested, after cooling down to room temperature, the solvent of which was transferred to a volumetric flask and diluted to 10 ml with water. Pt and Pd were analyzed by inductively coupled plasmaatomic emission spectrometry (ICPAES), while 99Ru, 103Rh, 191Ir were analyzed by inductively coupled plasmamass spectrometry (ICPMS), with 115In, 185Re as internal standard. RSD (n=12) of the analysis results of five platinum group elements (PGEs) in standard reference material GBW07196 ranged from 7.04% to 9.48%. Under the condition of 10 g sample, the detection limits (ng/g) for PGEs are 0.027 for Ru, 0.016 for Rh, 0.11 for Pd, 0.10 for Ir and 0.11 for Pt. The method was applied to the determination of PGEs in GBW07194, GBW07195, GBW07196 with satisfactory results.

        Keywords Bismuthantimony fire assay; Coppernickel sulfide ore; Platinum group elements; Inductively coupled plasmaatomic emission spectrometry; Inductively coupled plasmamass spectrometry

        (Received 25 December 2013; accepted 17 February 2014)

        猜你喜歡
        硫化銅銅鎳貴金屬
        節(jié)前做多情緒不濃 貴金屬一枝獨(dú)秀
        某銅礦山硫化銅浮選段技改工業(yè)化應(yīng)用
        “2020年中國貴金屬論壇”順利舉辦
        貴金屬(2021年1期)2021-07-26 00:39:20
        《貴金屬》征稿啟事
        貴金屬(2021年1期)2021-07-26 00:39:20
        硫化銅/石墨烯的制備及光催化性能研究
        艱辛與輝煌
        ——慶祝中國共產(chǎn)黨成立一百周年貴金屬紀(jì)念幣展
        中國錢幣(2021年4期)2021-02-26 00:58:18
        聚苯胺/硫化銅復(fù)合材料的制備及其近紅外吸收性能
        用于高性能硫化鎘敏化太陽能電池對(duì)電極的硫化銅/還原氧化石墨烯納米復(fù)合材料的合成
        新型炭材料(2018年1期)2018-03-15 10:49:23
        GPS-RTK在夏日哈木銅鎳礦區(qū)勘探線測量中的應(yīng)用
        電子測試(2017年12期)2017-12-18 06:36:11
        美國北梅特銅鎳鉑礦床開發(fā)環(huán)評(píng)工作及啟示
        男女边吃奶边做边爱视频| 99人中文字幕亚洲区三| 人妻少妇久久久久久97人妻| 久久人人爽天天玩人人妻精品| 一本大道久久东京热无码av| 少妇又紧又色又爽又刺| 91超精品碰国产在线观看| 日本在线看片免费人成视频1000| 国产三级精品三级国产| 亚洲中国美女精品久久久| 免费亚洲一区二区三区av| 久久久久久国产精品免费免费男同| 国产一级片毛片| 亚洲一区二区一区二区免费视频| 情爱偷拍视频一区二区| 人妻丝袜无码国产一区| 日韩在线视精品在亚洲| 亚洲国产av高清一区二区三区| 国产日韩欧美一区二区东京热| 色噜噜狠狠色综合成人网| 最新手机国产在线小视频| 久久国产精品美女厕所尿尿av| 美女高潮黄又色高清视频免费 | 毛片免费在线观看网址| 亚洲av网站首页在线观看| 91超精品碰国产在线观看| 国产伦精品一区二区三区| 精品国偷自产在线不卡短视频| av国产自拍在线观看| 中文字幕乱码高清完整版| 国产思思99re99在线观看| 视频精品亚洲一区二区| 色视频网站一区二区三区| 亚洲国产精品成人无码区| 日韩亚洲欧美精品| 亚洲av成人一区二区| 亚洲啪av永久无码精品放毛片| 无码日韩人妻AV一区免费| 永久免费看黄网站性色| 又粗又大又硬毛片免费看| 久热这里只有精品99国产|