亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        鉍銻試金測定硫化銅鎳礦中釕銠鈀銥鉑

        2014-07-10 21:46:28李可及劉淑君邵坤??
        分析化學(xué) 2014年6期
        關(guān)鍵詞:硫化銅銅鎳貴金屬

        李可及 劉淑君++邵坤??

        摘 要 建立了用于預(yù)富集硫化銅鎳礦中釕銠鈀銥鉑5種鉑族元素的鉍銻試金方法。1 引 言

        鉑族元素作為我國短缺的戰(zhàn)略高技術(shù)礦產(chǎn)之一,廣泛應(yīng)用于汽車、珠寶、電子等領(lǐng)域,其95%以上的儲(chǔ)量分布于銅鎳型礦床中,多以銅鎳硫化物的伴生礦床形式產(chǎn)出[1],因此準(zhǔn)確測定硫化銅鎳礦中鉑族元素的含量對(duì)于評(píng)價(jià)礦石價(jià)值及綜合利用意義重大。目前,硫化銅鎳礦中鉑族元素分析的前處理方法多采用锍鎳試金

        2 實(shí)驗(yàn)部分

        2.1 儀器與試劑

        References

        1 Rao C R M, Reddi G S. Trends in analytical chemistry, 2000, 19(9): 565-586

        2 Barefoot R R, van Loon J C. Talanta, 1999, 49: 1-14

        3 ZHAO Zheng, QI Liang, HUANG ZhiLong, XU Cheng. Earth Science Frontiers, 2009, 16(1): 181-193

        趙 正, 漆 亮, 黃智龍, 許 成. 地學(xué)前緣, 2009, 16(1): 181-193

        4 ZHANG ShiLin, TU HuiMin. Journal of Geological Science Institute, Ministry of Metallurgical Industry, 1981, 2: 90-102

        張石林, 屠惠民. 冶金工業(yè)部地質(zhì)研究所所報(bào), 1981, 2: 90-102

        5 Kelly Z, Ojebuoboh F. JOM, 2002, 54(4): 42-45

        6 LIN YuNan, HU JinXing, SHEN ZhenXing. Chinese J. Anal. Chem., 1988, 16(1): 1-4

        林玉南, 胡金星, 沈振興. 分析化學(xué), 1988, 16(1): 1-4

        7 Precious Metal Analysis Unit of Institute of Multipurpose Utilization of Mineral Resources. Chinese J. Anal. Chem., 1974, 2(2): 31-37

        四川省地質(zhì)局礦產(chǎn)綜合利用研究所貴金屬分析組. 分析化學(xué), 1974, 2(2): 31-37

        8 LI KeJi, ZHAO ChaoHui, FAN JianXiong. Metallurgical Analysis, 2013, 33(8): 19-23

        李可及, 趙朝輝, 范建雄. 冶金分析, 2013, 33(8): 19-23

        9 YUAN ZhuoBin, LV YuanQi, ZHANG YuPing, YIN Ming. Metallurgical Analysis, 2003, 23(2): 24-30

        袁倬斌, 呂元琦, 張?jiān)F剑?尹 明. 冶金分析, 2003, 23(2): 24-30

        10 CAI ShuXing, HUANG Chao. Analysis of Precise Metals (1). Beijing: Melellurgical Industry Press. 1984: 86

        蔡樹型, 黃 超. 貴金屬分析(第一版), 北京: 冶金工業(yè)出版社, 1984: 86

        Determination of Ruthenium, Rhodium, Palladium, Iridium

        and Platinum in CopperNickel Sulfide Ores by

        BismuthAntimony Fire Assay

        LI KeJi*, LIU ShuJun, SHAO Kun

        (Institute of Multipurpose Utilization of Mineral Resources Chinese Academy of Geological Sciences, Chengdu 610041, China)

        Abstract A bismuthantimony fire assay method for the preconcentration of ruthenium, rhodium, palladium, iridium and platinum in coppernickel sulfide ores was developed. 40.0 g bismuth trioxide, 25.0 g boric acid, 10.0 g sodium carbonate and 1.00 g starch were mixed with 10.0 g sample in a 120 mL porcelain bowl, which was put in a furnace at 850 ℃. After 20 min the temperature was raised to 1000 ℃ and held for another 40 min, and then the bowl was taken out, with the slag poured, which left the bismuth button to air cooling. A twostep cupellation procedure was developed. During the first step, the bismuth button was cupellated in a magnesia cupel until its diameter reached 5 mm or so, then it was transferred to a crucible cover containing 20 g melting antimony and kept cupellating, at last a bead with a diameter of 1 mm was obtained. The bead was microwavedigested, after cooling down to room temperature, the solvent of which was transferred to a volumetric flask and diluted to 10 ml with water. Pt and Pd were analyzed by inductively coupled plasmaatomic emission spectrometry (ICPAES), while 99Ru, 103Rh, 191Ir were analyzed by inductively coupled plasmamass spectrometry (ICPMS), with 115In, 185Re as internal standard. RSD (n=12) of the analysis results of five platinum group elements (PGEs) in standard reference material GBW07196 ranged from 7.04% to 9.48%. Under the condition of 10 g sample, the detection limits (ng/g) for PGEs are 0.027 for Ru, 0.016 for Rh, 0.11 for Pd, 0.10 for Ir and 0.11 for Pt. The method was applied to the determination of PGEs in GBW07194, GBW07195, GBW07196 with satisfactory results.

        Keywords Bismuthantimony fire assay; Coppernickel sulfide ore; Platinum group elements; Inductively coupled plasmaatomic emission spectrometry; Inductively coupled plasmamass spectrometry

        (Received 25 December 2013; accepted 17 February 2014)

        摘 要 建立了用于預(yù)富集硫化銅鎳礦中釕銠鈀銥鉑5種鉑族元素的鉍銻試金方法。1 引 言

        鉑族元素作為我國短缺的戰(zhàn)略高技術(shù)礦產(chǎn)之一,廣泛應(yīng)用于汽車、珠寶、電子等領(lǐng)域,其95%以上的儲(chǔ)量分布于銅鎳型礦床中,多以銅鎳硫化物的伴生礦床形式產(chǎn)出[1],因此準(zhǔn)確測定硫化銅鎳礦中鉑族元素的含量對(duì)于評(píng)價(jià)礦石價(jià)值及綜合利用意義重大。目前,硫化銅鎳礦中鉑族元素分析的前處理方法多采用锍鎳試金

        2 實(shí)驗(yàn)部分

        2.1 儀器與試劑

        References

        1 Rao C R M, Reddi G S. Trends in analytical chemistry, 2000, 19(9): 565-586

        2 Barefoot R R, van Loon J C. Talanta, 1999, 49: 1-14

        3 ZHAO Zheng, QI Liang, HUANG ZhiLong, XU Cheng. Earth Science Frontiers, 2009, 16(1): 181-193

        趙 正, 漆 亮, 黃智龍, 許 成. 地學(xué)前緣, 2009, 16(1): 181-193

        4 ZHANG ShiLin, TU HuiMin. Journal of Geological Science Institute, Ministry of Metallurgical Industry, 1981, 2: 90-102

        張石林, 屠惠民. 冶金工業(yè)部地質(zhì)研究所所報(bào), 1981, 2: 90-102

        5 Kelly Z, Ojebuoboh F. JOM, 2002, 54(4): 42-45

        6 LIN YuNan, HU JinXing, SHEN ZhenXing. Chinese J. Anal. Chem., 1988, 16(1): 1-4

        林玉南, 胡金星, 沈振興. 分析化學(xué), 1988, 16(1): 1-4

        7 Precious Metal Analysis Unit of Institute of Multipurpose Utilization of Mineral Resources. Chinese J. Anal. Chem., 1974, 2(2): 31-37

        四川省地質(zhì)局礦產(chǎn)綜合利用研究所貴金屬分析組. 分析化學(xué), 1974, 2(2): 31-37

        8 LI KeJi, ZHAO ChaoHui, FAN JianXiong. Metallurgical Analysis, 2013, 33(8): 19-23

        李可及, 趙朝輝, 范建雄. 冶金分析, 2013, 33(8): 19-23

        9 YUAN ZhuoBin, LV YuanQi, ZHANG YuPing, YIN Ming. Metallurgical Analysis, 2003, 23(2): 24-30

        袁倬斌, 呂元琦, 張?jiān)F剑?尹 明. 冶金分析, 2003, 23(2): 24-30

        10 CAI ShuXing, HUANG Chao. Analysis of Precise Metals (1). Beijing: Melellurgical Industry Press. 1984: 86

        蔡樹型, 黃 超. 貴金屬分析(第一版), 北京: 冶金工業(yè)出版社, 1984: 86

        Determination of Ruthenium, Rhodium, Palladium, Iridium

        and Platinum in CopperNickel Sulfide Ores by

        BismuthAntimony Fire Assay

        LI KeJi*, LIU ShuJun, SHAO Kun

        (Institute of Multipurpose Utilization of Mineral Resources Chinese Academy of Geological Sciences, Chengdu 610041, China)

        Abstract A bismuthantimony fire assay method for the preconcentration of ruthenium, rhodium, palladium, iridium and platinum in coppernickel sulfide ores was developed. 40.0 g bismuth trioxide, 25.0 g boric acid, 10.0 g sodium carbonate and 1.00 g starch were mixed with 10.0 g sample in a 120 mL porcelain bowl, which was put in a furnace at 850 ℃. After 20 min the temperature was raised to 1000 ℃ and held for another 40 min, and then the bowl was taken out, with the slag poured, which left the bismuth button to air cooling. A twostep cupellation procedure was developed. During the first step, the bismuth button was cupellated in a magnesia cupel until its diameter reached 5 mm or so, then it was transferred to a crucible cover containing 20 g melting antimony and kept cupellating, at last a bead with a diameter of 1 mm was obtained. The bead was microwavedigested, after cooling down to room temperature, the solvent of which was transferred to a volumetric flask and diluted to 10 ml with water. Pt and Pd were analyzed by inductively coupled plasmaatomic emission spectrometry (ICPAES), while 99Ru, 103Rh, 191Ir were analyzed by inductively coupled plasmamass spectrometry (ICPMS), with 115In, 185Re as internal standard. RSD (n=12) of the analysis results of five platinum group elements (PGEs) in standard reference material GBW07196 ranged from 7.04% to 9.48%. Under the condition of 10 g sample, the detection limits (ng/g) for PGEs are 0.027 for Ru, 0.016 for Rh, 0.11 for Pd, 0.10 for Ir and 0.11 for Pt. The method was applied to the determination of PGEs in GBW07194, GBW07195, GBW07196 with satisfactory results.

        Keywords Bismuthantimony fire assay; Coppernickel sulfide ore; Platinum group elements; Inductively coupled plasmaatomic emission spectrometry; Inductively coupled plasmamass spectrometry

        (Received 25 December 2013; accepted 17 February 2014)

        摘 要 建立了用于預(yù)富集硫化銅鎳礦中釕銠鈀銥鉑5種鉑族元素的鉍銻試金方法。1 引 言

        鉑族元素作為我國短缺的戰(zhàn)略高技術(shù)礦產(chǎn)之一,廣泛應(yīng)用于汽車、珠寶、電子等領(lǐng)域,其95%以上的儲(chǔ)量分布于銅鎳型礦床中,多以銅鎳硫化物的伴生礦床形式產(chǎn)出[1],因此準(zhǔn)確測定硫化銅鎳礦中鉑族元素的含量對(duì)于評(píng)價(jià)礦石價(jià)值及綜合利用意義重大。目前,硫化銅鎳礦中鉑族元素分析的前處理方法多采用锍鎳試金

        2 實(shí)驗(yàn)部分

        2.1 儀器與試劑

        References

        1 Rao C R M, Reddi G S. Trends in analytical chemistry, 2000, 19(9): 565-586

        2 Barefoot R R, van Loon J C. Talanta, 1999, 49: 1-14

        3 ZHAO Zheng, QI Liang, HUANG ZhiLong, XU Cheng. Earth Science Frontiers, 2009, 16(1): 181-193

        趙 正, 漆 亮, 黃智龍, 許 成. 地學(xué)前緣, 2009, 16(1): 181-193

        4 ZHANG ShiLin, TU HuiMin. Journal of Geological Science Institute, Ministry of Metallurgical Industry, 1981, 2: 90-102

        張石林, 屠惠民. 冶金工業(yè)部地質(zhì)研究所所報(bào), 1981, 2: 90-102

        5 Kelly Z, Ojebuoboh F. JOM, 2002, 54(4): 42-45

        6 LIN YuNan, HU JinXing, SHEN ZhenXing. Chinese J. Anal. Chem., 1988, 16(1): 1-4

        林玉南, 胡金星, 沈振興. 分析化學(xué), 1988, 16(1): 1-4

        7 Precious Metal Analysis Unit of Institute of Multipurpose Utilization of Mineral Resources. Chinese J. Anal. Chem., 1974, 2(2): 31-37

        四川省地質(zhì)局礦產(chǎn)綜合利用研究所貴金屬分析組. 分析化學(xué), 1974, 2(2): 31-37

        8 LI KeJi, ZHAO ChaoHui, FAN JianXiong. Metallurgical Analysis, 2013, 33(8): 19-23

        李可及, 趙朝輝, 范建雄. 冶金分析, 2013, 33(8): 19-23

        9 YUAN ZhuoBin, LV YuanQi, ZHANG YuPing, YIN Ming. Metallurgical Analysis, 2003, 23(2): 24-30

        袁倬斌, 呂元琦, 張?jiān)F剑?尹 明. 冶金分析, 2003, 23(2): 24-30

        10 CAI ShuXing, HUANG Chao. Analysis of Precise Metals (1). Beijing: Melellurgical Industry Press. 1984: 86

        蔡樹型, 黃 超. 貴金屬分析(第一版), 北京: 冶金工業(yè)出版社, 1984: 86

        Determination of Ruthenium, Rhodium, Palladium, Iridium

        and Platinum in CopperNickel Sulfide Ores by

        BismuthAntimony Fire Assay

        LI KeJi*, LIU ShuJun, SHAO Kun

        (Institute of Multipurpose Utilization of Mineral Resources Chinese Academy of Geological Sciences, Chengdu 610041, China)

        Abstract A bismuthantimony fire assay method for the preconcentration of ruthenium, rhodium, palladium, iridium and platinum in coppernickel sulfide ores was developed. 40.0 g bismuth trioxide, 25.0 g boric acid, 10.0 g sodium carbonate and 1.00 g starch were mixed with 10.0 g sample in a 120 mL porcelain bowl, which was put in a furnace at 850 ℃. After 20 min the temperature was raised to 1000 ℃ and held for another 40 min, and then the bowl was taken out, with the slag poured, which left the bismuth button to air cooling. A twostep cupellation procedure was developed. During the first step, the bismuth button was cupellated in a magnesia cupel until its diameter reached 5 mm or so, then it was transferred to a crucible cover containing 20 g melting antimony and kept cupellating, at last a bead with a diameter of 1 mm was obtained. The bead was microwavedigested, after cooling down to room temperature, the solvent of which was transferred to a volumetric flask and diluted to 10 ml with water. Pt and Pd were analyzed by inductively coupled plasmaatomic emission spectrometry (ICPAES), while 99Ru, 103Rh, 191Ir were analyzed by inductively coupled plasmamass spectrometry (ICPMS), with 115In, 185Re as internal standard. RSD (n=12) of the analysis results of five platinum group elements (PGEs) in standard reference material GBW07196 ranged from 7.04% to 9.48%. Under the condition of 10 g sample, the detection limits (ng/g) for PGEs are 0.027 for Ru, 0.016 for Rh, 0.11 for Pd, 0.10 for Ir and 0.11 for Pt. The method was applied to the determination of PGEs in GBW07194, GBW07195, GBW07196 with satisfactory results.

        Keywords Bismuthantimony fire assay; Coppernickel sulfide ore; Platinum group elements; Inductively coupled plasmaatomic emission spectrometry; Inductively coupled plasmamass spectrometry

        (Received 25 December 2013; accepted 17 February 2014)

        猜你喜歡
        硫化銅銅鎳貴金屬
        節(jié)前做多情緒不濃 貴金屬一枝獨(dú)秀
        某銅礦山硫化銅浮選段技改工業(yè)化應(yīng)用
        “2020年中國貴金屬論壇”順利舉辦
        貴金屬(2021年1期)2021-07-26 00:39:20
        《貴金屬》征稿啟事
        貴金屬(2021年1期)2021-07-26 00:39:20
        硫化銅/石墨烯的制備及光催化性能研究
        艱辛與輝煌
        ——慶祝中國共產(chǎn)黨成立一百周年貴金屬紀(jì)念幣展
        中國錢幣(2021年4期)2021-02-26 00:58:18
        聚苯胺/硫化銅復(fù)合材料的制備及其近紅外吸收性能
        用于高性能硫化鎘敏化太陽能電池對(duì)電極的硫化銅/還原氧化石墨烯納米復(fù)合材料的合成
        新型炭材料(2018年1期)2018-03-15 10:49:23
        GPS-RTK在夏日哈木銅鎳礦區(qū)勘探線測量中的應(yīng)用
        電子測試(2017年12期)2017-12-18 06:36:11
        美國北梅特銅鎳鉑礦床開發(fā)環(huán)評(píng)工作及啟示
        一本色道久久亚洲精品| 国产午夜亚洲精品理论片不卡| 久久99久久99精品免观看不卡| 久久久精品人妻一区二区三区免费| 又黄又刺激的网站久久| 久久无码专区国产精品s| 国产一区a| 五月停停开心中文字幕 | 99久久99久久精品国产片 | 乌克兰少妇xxxx做受6| 美女裸体无遮挡黄污网站| 亚洲人成精品久久熟女| 亚洲av日韩av女同同性| 少妇寂寞难耐被黑人中出| 99综合精品久久| 人妻人妇av一区二区三区四区| 亚洲夜夜性无码| 处破痛哭a√18成年片免费| 欧美日韩亚洲国产无线码| 国产亚洲av综合人人澡精品| 国产黄大片在线观看| 熟妇人妻中文字幕无码老熟妇| 久久精品视频中文字幕无码| 女同三级伦理在线观看| 国产精品激情| 国产精品乱一区二区三区| 狠狠久久av一区二区三区| 永久免费在线观看蜜桃视频 | 亚洲综合成人婷婷五月网址| 少妇厨房愉情理伦片免费| 人片在线观看无码| 亚洲第一区二区精品三区在线| 少妇激情一区二区三区视频| 女同亚洲女同精品| 最近中文字幕一区二区三区| 日本添下边视频全过程| 亚洲人成无码www久久久| 人片在线观看无码| 青草久久婷婷亚洲精品| 国产精品熟女视频一区二区| 青青国产成人久久91|