宋 娟周永勝楊偉紅
1)中國(guó)石油大學(xué)(華東),青島 266580
2)中國(guó)地震局地質(zhì)研究所,地震動(dòng)力學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100029
3)國(guó)土資源部中央地質(zhì)勘查基金管理中心,北京 100045
麗江MS7.0地震余震深度揭示出的中地殼脆塑性轉(zhuǎn)化特征
宋 娟1)周永勝2)*楊偉紅3)
1)中國(guó)石油大學(xué)(華東),青島 266580
2)中國(guó)地震局地質(zhì)研究所,地震動(dòng)力學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100029
3)國(guó)土資源部中央地質(zhì)勘查基金管理中心,北京 100045
1996年麗江MS7.0地震的余震深度分布明顯具有時(shí)間依賴性,主震發(fā)生后短時(shí)間內(nèi)余震震源深度較深,隨著時(shí)間的延續(xù),余震震源深度變得越來(lái)越淺。余震的這種深度分布受地殼脆塑性轉(zhuǎn)化帶深度控制,而脆塑性轉(zhuǎn)化帶的深度變化與地震前后斷層的應(yīng)變速率有關(guān)。由震后GPS地表變形數(shù)據(jù)得到的地表變形模型表明,震后地表變形主要來(lái)自地殼深部,震后滑動(dòng)與地殼深部彈性松弛有關(guān)。根據(jù)鮮水河斷層地表的滑動(dòng)數(shù)據(jù)和按Marone's(1991)給出的方程確定的震后滑動(dòng)模型,估計(jì)的應(yīng)變速率顯示,主震發(fā)生后應(yīng)變速率較高,隨時(shí)間延續(xù),應(yīng)變速率逐漸下降?;诘貧波速度結(jié)構(gòu)和利用熱流數(shù)據(jù)估計(jì)的麗江地區(qū)地殼溫度,采用含水石英的塑性流變參數(shù),估計(jì)了中地殼脆塑性轉(zhuǎn)化帶深度隨震后應(yīng)變速率的變化。結(jié)果表明,主震震源深度與余震深度分布下限與中地殼脆塑性轉(zhuǎn)化帶的深度隨時(shí)間變化趨勢(shì)一致。由于斷層的震后快速滑動(dòng)致使斷層帶深部具有很高的應(yīng)變速率,高應(yīng)變速率引起斷層脆塑性轉(zhuǎn)化帶深度下移,主震之后短時(shí)間內(nèi)發(fā)生了較深的余震;隨著震后時(shí)間的延續(xù),斷層逐漸進(jìn)入蠕變階段,斷層滑動(dòng)速率逐漸減小,地殼應(yīng)變速率逐漸降低,斷層脆塑性轉(zhuǎn)化帶也逐漸恢復(fù)到間震期的深度,相應(yīng)余震深度隨之變化。因此,余震分布的深度變化是中地殼流變結(jié)構(gòu)和脆塑性轉(zhuǎn)化帶深度變化的直接反映。
震源深度 余震 脆塑性轉(zhuǎn)化帶 流變 麗江MS7.0地震
野外、實(shí)驗(yàn)和地震數(shù)據(jù)表明:淺部地殼變形以脆性破裂為主,深部地殼變形以晶體塑性流變?yōu)橹?,即地殼脆性摩?塑性流變二元結(jié)構(gòu),其中,根據(jù)Byerlee(1978)摩擦定律限定了中上地殼的脆性變形強(qiáng)度,根據(jù)穩(wěn)態(tài)流變方程限定了下地殼塑性變形強(qiáng)度(Goetze et al.,1979;Brace et al.,1980;Sibson,1982;Kohlstedt et al.,1995;Bürgmann et al.,2008)。在脆性變形和晶體塑性流變之間存在脆塑性轉(zhuǎn)化帶,而且地殼脆塑性轉(zhuǎn)化的深度與地震深度分布具有很好的一致性(Sibson,1982;Chen et al.,1983;Scholz,1988),顯示地殼流變結(jié)構(gòu)和脆塑性轉(zhuǎn)化深度控制了地震的深度分布(Scholz,1988;Bokelmann et al.,2000;Schaff et al.,2002)。也有研究者認(rèn)為斷層從粘滑向穩(wěn)滑轉(zhuǎn)化控制著大震發(fā)生的深度(Tse et al.,1986;Li et al.,1987),只有余震發(fā)生的深度與脆塑性轉(zhuǎn)化深度有關(guān),余震分布下限發(fā)生在脆塑性轉(zhuǎn)化帶(Sibson,1982;Hobbs et al.,1986;Scholz,1988)。因此,余震深度的分布為我們提供了大量的地殼流變信息。另一方面,強(qiáng)震發(fā)生后,震后快速滑動(dòng)和震后蠕變也為研究深部地殼塑性變形提供了條件。主震后的地表變形包含了淺部地殼彈性松弛和斷層帶的震后滑動(dòng)(Shen et al.,1994;Savage et al.,1997;Bürgmann et al.,2002)兩部分,它們都是地殼深部變形過(guò)程的直接體現(xiàn)(Savage,1990)。因此,根據(jù)余震分布深度變化可以限定脆塑性轉(zhuǎn)化帶的深度(Iio et al.,2003),而利用流變實(shí)驗(yàn)數(shù)據(jù)和震后蠕變可以反演斷層帶流變特征(Montesi et al.,2003;Ma et al.,2004)。
本文通過(guò)1996年2月3日麗江地震及其余震的深度分布、地殼脆塑性轉(zhuǎn)化深度隨斷層滑動(dòng)速率變化,討論余震深度分布揭示出的地殼脆塑性轉(zhuǎn)化深度隨時(shí)間的變化特征。
麗江MS7.0地震發(fā)生在1996年2月3日,主震及震后滑動(dòng)階段的余震深度的分布為我們研究地殼流變提供了條件。
由中國(guó)地震臺(tái)網(wǎng)記錄的麗江MS7.0地震及其余震震中分布見(jiàn)圖1a,圖中震后滑動(dòng)階段的余震是指從1996年2月3日至2003年3月30日期間發(fā)生的地震。主震發(fā)生在經(jīng)度27.34°E,100.25°N,余震序列發(fā)生的位置在26.5°~27.7°E,100.0°~101.0°N,包括震級(jí)從MS2.0到MS6.0共182個(gè)余震(圖1a)。1996年麗江MS7.0地震及其余震和麗江地震之前的地震(震級(jí)從MS3.0~4.7)的深度分布見(jiàn)圖1b,震前的數(shù)據(jù)時(shí)間段從1990年初到主震發(fā)生前,所有地震的空間分布見(jiàn)圖1a。如圖1b所示,震源深度的分布具有明顯的時(shí)間依賴性。麗江地震之前的23個(gè)震級(jí)在MS3.0~4.7的地震多數(shù)震源深度<15km。極少數(shù)地震震源深度>15km,在主震之后的短時(shí)間內(nèi)發(fā)生了很多較深余震,震源深度達(dá)25~30km,震源深度遠(yuǎn)大于主震深度(10km),但隨著時(shí)間延續(xù),余震深度逐漸變淺。主震發(fā)生6a后(1996—2003年),余震深度接近主震的震源深度。
圖1 a 1996年麗江MS7.0地震及其余震(1996-02-03—2003-03-30)震中分布圖Fig.1 a The location of Lijiang MS7.0 earthquake and aftershock sequence from February 3,1996 to March 30,2003.
圖1 b 1996年麗江MS7.0地震及其余震和麗江地震之前的地震震源深度分布圖Fig.1 b Focal depth distribution of the main-shock and aftershocks of and the earthquakes before the 1996 Lijiang MS7.0 earthquake.
2.1 根據(jù)地表熱流計(jì)算的麗江地區(qū)地殼溫度剖面
根據(jù)在鉆井內(nèi)測(cè)得的麗江地區(qū)熱流數(shù)據(jù),利用熱傳導(dǎo)方程估計(jì)地殼溫度。鉆井的位置和地?zé)釁?shù)見(jiàn)表1。麗江鉆井的深度是350m,但溫度測(cè)量是在30~150m距離內(nèi)進(jìn)行的,這個(gè)范圍內(nèi)主要巖石是二疊紀(jì)—三疊紀(jì)火山沉積巖,根據(jù)熱流和溫度剖面計(jì)算的此深度范圍內(nèi)地溫梯度是19.8℃/km。從4個(gè)鉆孔測(cè)得的熱導(dǎo)率和熱流值的平均值分別是(2.79±0.10)W/mk和(55.3±4.1)mW/m2,從11個(gè)巖心樣品測(cè)得的產(chǎn)熱量是1.05W/m3(汪輯安等,1990)。
表1 麗江地區(qū)地表熱流數(shù)據(jù)Table 1 The heat flow data of Lijiang area
圖2 麗江地區(qū)地殼溫度剖面圖Fig.2 The crustal temperature profile of Lijiang area.
熊紹柏等(1986)研究認(rèn)為麗江地殼分為3層,深度為19km和37.5km的界面分別將地殼分為上地殼、中地殼和下地殼。上地殼的熱導(dǎo)率和生熱率使用的是汪集旸等(1990)所給研究數(shù)據(jù),中地殼和下地殼的熱導(dǎo)率和生熱率來(lái)自汪洋(1999)和Hu(2000)的研究結(jié)果。我們利用Chapman(1986)的方法估計(jì)了地殼溫度,其溫度曲線如圖2所示。
2.2 斷層帶震后形變的應(yīng)變速率估計(jì)
主震后的地表變形包含了淺部地殼彈性松弛和斷層帶的震后滑動(dòng)(Shen et al.,1994;Savage et al.,1997;Bürgmann et al.,2002)兩部分,它們都是地殼深部變形過(guò)程的直接體現(xiàn)(Savage,1990)。多數(shù)震后地表變形是地殼彈性松弛。因此,可以根據(jù)主震后地表的變形數(shù)據(jù)估計(jì)地殼深部的應(yīng)變速率。震后變形可以按Marone等(1991)給出的方程確定:
式(1)中:L是總變形量,t是大震發(fā)生后的時(shí)間,a,b,q是系數(shù)。
我們沒(méi)有1996年MS7.0麗江地震的地表變形的數(shù)據(jù),但可以根據(jù)1973年?duì)t霍地震在1976—1990年觀測(cè)得到的地表面變形數(shù)據(jù)(Bilham,1992)估計(jì)川滇地區(qū)地殼深部的應(yīng)變速率。鮮水河斷裂強(qiáng)震震后的地表總變形量隨時(shí)間的變化如圖3(實(shí)圓圈)所示,這些數(shù)據(jù)由方程(1)擬合得到的曲線見(jiàn)圖3(實(shí)線)。與加利福尼亞1966年P(guān)arkfield地震和1992年Landers地震(Savage,1990)相比,發(fā)現(xiàn)鮮水河斷層震后地表變形模型與Park field地震的震后地表變形(圖3虛線)相似,但不同于1992年Landers地震的震后地表變形(圖3點(diǎn)線),其中,主震發(fā)生后比較短的時(shí)間內(nèi),曲線比較陡,表明地表形變比較顯著,隨著時(shí)間延長(zhǎng),曲線逐漸變緩,顯示地表形變減弱。Parkfeild地震震后地表變形和鮮水河斷層的這種震后地表變形是由于地殼蠕變引起的。
如果麗江地震的震后地表變形模型與鮮水河斷層震后滑動(dòng)類似,也是由地殼蠕變引起的,則蠕變模型與鮮水河的蠕變相似。因此,可以利用鮮水河斷層的地震得到的地表變形的數(shù)據(jù)估計(jì)麗江地震震后地表形變數(shù)據(jù)(圖3實(shí)線),盡管它們不是同一個(gè)地震。
圖3 根據(jù)鮮水河斷層震后滑動(dòng)估計(jì)的麗江地震震后地表變形Fig.3 The post-seismic deformation of the 1996 Lijiang MS7.0 earthquake.實(shí)圓圈:鮮水河斷裂震后地表總變形量隨時(shí)間的變化;實(shí)線:按方程(1)計(jì)算得到的麗江地震震后地表變量隨時(shí)間的變化;虛線:Parkfeild地震震后地表變形量隨時(shí)間的變化;點(diǎn)線:Landers地震震后地表變形量隨時(shí)間的變化
圖4 麗江地震震后應(yīng)變速率隨時(shí)間的變化趨勢(shì)Fig.4 The post-seism ic strain rate change with time.a給出應(yīng)變速率的上限;b給出應(yīng)變速率的下限
假定斷層變形帶主要分布在100m和1 000m的寬度,根據(jù)震后地表形變數(shù)據(jù)(圖3),可以換算出斷層帶內(nèi)的應(yīng)變,以及應(yīng)變隨時(shí)間的變化率,即應(yīng)變速率。圖4給出了根據(jù)Parkfeild地震與鮮水河斷層震后地表形變,估算的麗江地震震后應(yīng)變速率隨時(shí)間的變化趨勢(shì),其中圖4a給出應(yīng)變速率的上限,圖4b給出應(yīng)變速率的下限。這一結(jié)果顯示,主震發(fā)生后,斷層帶深部的應(yīng)變速率很高,達(dá)到3~5×10-11~12s-1,隨著時(shí)間延長(zhǎng),應(yīng)變速率逐漸降低到2× 10-12~13s-1。
2.3 中地殼的脆塑性轉(zhuǎn)化深度隨時(shí)間的變化規(guī)律
中地殼長(zhǎng)英質(zhì)巖石的塑性流變強(qiáng)度與石英的流變強(qiáng)度相同(周永勝等,2003)。因此,可以根據(jù)石英的流變參數(shù)(Gleason et al.,1995)、溫度隨深度分布曲線(圖2)、應(yīng)變速率隨震后時(shí)間的變化曲線(圖4),估計(jì)地殼脆塑性轉(zhuǎn)化深度隨時(shí)間的變化規(guī)律。
根據(jù)圖4中的應(yīng)變速率隨時(shí)間變化規(guī)律,選取不同的應(yīng)變速率上限和下限,計(jì)算脆塑性轉(zhuǎn)化深度上限和下限。例如,在主震后短期內(nèi)的應(yīng)變速率為5×10-11~12s-1時(shí),得到的脆塑性轉(zhuǎn)化深度為23.8~31.3km(圖5a);隨著時(shí)間延長(zhǎng),應(yīng)變速率逐漸降低到2× 10-11~12s-1時(shí),脆塑性轉(zhuǎn)化深度為16.5~19km(圖5b);當(dāng)應(yīng)變速率降低到2×10-12~13s-1時(shí),脆塑性轉(zhuǎn)化深度為14.5~16.5km(圖5c)。因此,隨著震后地表形變減弱,應(yīng)變速率降低,地殼脆塑性轉(zhuǎn)化深度由深變淺。
圖5 麗江地區(qū)地殼脆塑性轉(zhuǎn)化深度隨時(shí)間的變化趨勢(shì)Fig.5 The depth change of brittle-plastic transition due to the decreasing of post-seismic strain rate.
圖5顯示,脆塑性轉(zhuǎn)化深度隨時(shí)間逐漸變淺,從震后的23.8~31.3km至14.5~16.5km。圖6給出脆塑性轉(zhuǎn)化深度隨時(shí)間變化的趨勢(shì),其中紅色和藍(lán)色點(diǎn)是根據(jù)圖4應(yīng)變速率隨時(shí)間變化規(guī)律的上限與下限,分別計(jì)算得到的脆塑性轉(zhuǎn)化深度上限與下限,紅線和藍(lán)線是基于這些變化點(diǎn)擬合的脆塑性轉(zhuǎn)化深度隨時(shí)間變化的曲線。曲線顯示在主震發(fā)生后短時(shí)間內(nèi),脆塑性轉(zhuǎn)化深度很深,但迅速變淺,然后隨著時(shí)間繼續(xù)緩慢變淺。顯示主震和震后快速滑動(dòng)階段,中地殼原來(lái)發(fā)生塑性變形的區(qū)域,在短期內(nèi)轉(zhuǎn)化為脆性變形,即地震破裂向斷層深部延伸。隨著震后地表變形減弱,脆塑性轉(zhuǎn)化趨于正常水平。
脆塑性轉(zhuǎn)化深度的這種變化,與麗江MS7.0地震主震和余震深度分布規(guī)律非常相似,顯示出二者之間的必然聯(lián)系。但是部分余震仍處于圖6給出的脆塑性轉(zhuǎn)化點(diǎn)下面,而且同樣有隨著時(shí)間變淺的趨勢(shì)。根據(jù)川滇地區(qū)地殼速度結(jié)構(gòu)剖面和流變實(shí)驗(yàn),給出的地殼流變結(jié)構(gòu)剖面(周永勝等,2009)顯示(圖7),14~19km深度為酸性巖流變,與圖6中給出的脆塑性轉(zhuǎn)化對(duì)應(yīng)。19~38km為中性巖脆塑性轉(zhuǎn)化與塑性流變層。由此推測(cè),這些在20km以下的余震,可能發(fā)生在中性巖中,而且余震深度隨時(shí)間變化的趨勢(shì),應(yīng)該受中性巖脆塑性轉(zhuǎn)化深度隨時(shí)間變化控制。
圖6 主震和余震深度分布及震后脆塑性轉(zhuǎn)化深度隨時(shí)間的變化趨勢(shì)Fig.6 Comparison of the focal depth distribution of main-shock and aftershocks with the depth change of brittle-plastic transition in the postseismic period.紅線:脆塑性轉(zhuǎn)化的上限,藍(lán)線:脆塑性轉(zhuǎn)化的下限
圖7 川滇地區(qū)地殼流變結(jié)構(gòu)剖面圖(周永勝等,2009)Fig.7 The rheological structure of crust in Sichuan-Yunnan region(after ZHOU Yong-sheng et al.,2009).
顯然,余震深度分布變化是中地殼流變結(jié)構(gòu)和脆塑性轉(zhuǎn)化帶深度變化的直接反映,而脆塑性轉(zhuǎn)化是余震深度變化的原因。地震斷層在強(qiáng)震孕育不同階段,其應(yīng)變速率都會(huì)發(fā)生變化,從而引起脆塑性轉(zhuǎn)化深度的變化。在間震期,應(yīng)變速率比較低,脆塑性轉(zhuǎn)化深度比較淺,在同震加載和震后快速滑動(dòng)階段,應(yīng)變速率比較高,脆塑性轉(zhuǎn)化深度增加。由應(yīng)變速率的這種變化引起的脆塑性轉(zhuǎn)化得到地質(zhì)證據(jù)和實(shí)驗(yàn)證據(jù)支持(Trepmann et al.,2001,2002,2003,2007;張媛媛等,2012;韓亮等,2013)。
1996年麗江MS7.0地震的余震深度分布表明,主震發(fā)生后短時(shí)間內(nèi)余震震源深度較深,隨著時(shí)間的延續(xù),余震震源深度變得越來(lái)越淺。根據(jù)震后滑動(dòng)模型和斷層地表的滑動(dòng)數(shù)據(jù),估計(jì)的應(yīng)變速率顯示,主震發(fā)生后應(yīng)變速率較高,隨時(shí)間延續(xù),應(yīng)變速率逐漸下降。基于應(yīng)變速率隨時(shí)間的變化特征,估計(jì)的中地殼脆塑性轉(zhuǎn)化帶深度隨地震后應(yīng)變速率的變化表明,主震震源深度與余震深度分布下限與中地殼脆塑性轉(zhuǎn)化帶的深度隨時(shí)間變化趨勢(shì)一致。主震發(fā)生后,斷層的震后快速滑動(dòng)致使斷層帶深部具有很高的應(yīng)變速率,引起斷層脆塑性轉(zhuǎn)化帶深度下移;隨著震后時(shí)間的延續(xù),斷層逐漸進(jìn)入蠕變階段,斷層滑動(dòng)速率逐漸減小,地殼應(yīng)變速率逐漸降低,斷層脆塑性轉(zhuǎn)化帶也逐漸恢復(fù)到間震期的深度。因此,余震分布的深度變化是中地殼流變結(jié)構(gòu)和脆塑性轉(zhuǎn)化帶深度變化的直接反映。
致謝 感謝審稿專家對(duì)本文提出的有益修改建議。
韓亮,周永勝,姚文明.2013.中地殼斷層帶內(nèi)微裂隙愈合與高壓流體形成條件的模擬實(shí)驗(yàn)研究[J].地球物理學(xué)報(bào),56(1):91—105.doi:10.6038/cjg2013110.
HAN Liang,ZHOU Yong-sheng,YAO Wen-ming.2013.A simulating experimental study on crack healing and the formation of high pore fluid pressure in faults of middle crust[J].Chinese JGeophysics,56(1):91—105(in Chinese).
汪緝安,徐青,張文仁.1990.云南省熱流數(shù)據(jù)和一些地?zé)釂?wèn)題[J].地震地質(zhì),12(4):367—377.
WANG Ji-an,XU Qing,ZHANG Wen-ren.1990.Heat flow data and some geologic geothermal problems in Yunnan Province[J].Seismology and Geology,12(4):367—377(in Chinese).
汪集旸,黃少鵬.1990.中國(guó)大陸地區(qū)大地?zé)崃鲾?shù)據(jù)匯編(第二版)[J].地震地質(zhì),12(4):351—366.
WANG Ji-yang,HUANG Shao-peng.1990.Collection of heat flow data in China continental region(Second edition)[J].Seismology and Geology,12(4):351—366(in Chinese).
汪洋.1999.中國(guó)大陸大地?zé)崃鞣治觯跠].[學(xué)位論文].北京:中國(guó)科學(xué)院地質(zhì)研究所.
WANG Yang.1999.An analysis for the continental heat flow in China[D].Ph D Thesis.Institute of Geology,Chinese Academy of Sciences,Beijing(in Chinese).
熊紹柏,滕吉文,尹周勛,等.1986.攀西構(gòu)造帶南部地殼與上地幔結(jié)構(gòu)的爆炸地震研究[J].地球物理學(xué)報(bào),29(3):235—244.
XIONG Shao-bai,TENG Ji-wen,YIN Zhou-xun,et al.1986.Explosion seismological study of the structure of the crust and uppermantle at southern part of the Panxi tectonic belt[J].Chinese JGeophysics,29(3):235—244(in Chinese).
張媛媛,周永勝.2012.斷層脆塑性轉(zhuǎn)化帶的強(qiáng)度與變形機(jī)制及其流體和應(yīng)變速率的影響[J].地震地質(zhì),34(1):172—194.doi:10.3669/j.issn.0253-4967.2012.01.016.
ZHANG Yuan-yuan,ZHOU Yong-sheng.2012.The strength and deformation mechanisms of brittle-plastic transition zone,and effects of strain rate and fluid[J].Seismology and Geology,34(1):172—194(in Chinese).
周永勝,何昌榮.2003.地殼主要巖石流變參數(shù)及華北地殼流變性質(zhì)研究[J].地震地質(zhì),25(1):109—122.
ZHOU Yong-sheng,HE Chang-rong.2003.Rheological parameter of crustal rocks and crustal rheology of North China[J].Seismology and Geology,25(1):109—122(in Chinese).
周永勝,何昌榮.2009.汶川地震區(qū)的流變結(jié)構(gòu)與發(fā)震高角度逆斷層滑動(dòng)的力學(xué)條件[J].地球物理學(xué)報(bào),52(2):474—484.
ZHOU Yong-sheng,HE Chang-rong.2009.The rheological structures of crust and mechanics of high-angle reverse faultslip for Wenchuan MS8.0 earthquake[J].Chinese JGeophysics,52(2):474—484(in Chinese).
Bilham R.1992.Sinestral creep on the Xianshuihe Fault at Xialatuo in the 17 years following the 1973 Luhuo earthquake[A].In:Proc PRC-USBilateral Symposium on the Xianshuihe Fault Zone,October 1990,Chengdu,China.Seismological Press,Beijing.226—231.
Bokelmann G H R,Beroza G C.2000.Depth-dependent earthquake focalmechanism orientation:Evidence for a weak zone in the lower crust[J].JGeophy Res,105(B9):21683—21695.
Bürgmann R,Ergintav S,Segall P,et al.2002.Time-dependent distributed afterslip on and deep below the Izm it earthquake rupture[J].Bulletin of the Seismological Society of America,92(1):126—137.
Bürgmann R,Dresen G,2008.Rheology of the lower crust and uppermantle:Evidence from rock mechanics,geodesy and field observations[J].Annu Rev Earth Planet Sci,36:531—561.
Brace W T,Kohlstedt D L.1980.Limits on lithospheric stress imposed by laboratory experiments[J].JGeophy Res,85:6248—6252.
Byerlee JD.1978.Friction of rocks[J].Pure Appl Geophys,116:615—626.
Chen W P,Molnar P.1983.Focal depths of intracontinental and intraplate earthquake and their relation for thermal and mechanical properties of the lithosphere[J].JGeophy Res,88:4183—4214.
Chapman D S.1986.Thermal gradients in the continental crust[A].In:Dawson J B ed.The Nature of the Lower Continental Crust.Geological Society Special Publication,24:63—70.
Gleason G C,Tullis J.1995.A flow law for dislocation creep of quartz aggregates determined with the molten salt cell[J].Tectonophysics,247:1—23.
Goetze C,Evans B.1979.Stress and temperature in the bending lithosphere as constrained by experimental rock mechanics[J].Geophys JR Astr Soc,59:463—478.
Hobbs B E,Ord A,Teyssier C.1986.Earthquakes in the ductile regime?[J].Pure Appl Geophys,124:309—336. Hu S,He L,Wang J.2000.Heat flow in the continental area of China:A new data set[J].Earth and Planetary Science Letters,179:407—419.
Iio Y,Kobayashi Y.2003.Is the plastic flow uniform ly distributed below the seismogenic region?[J]Tectonophysics,364:43—53.
Kohlstedt D L,Evans B,Mackwell S J,et al.1995.Strength of the lithosphere:Constraints imposed by laboratory experiments[J].JGeophys Res,100:17587—17602.
Li K K,Rice JR.1987.Crustal deformation in great California earthquake cycles[J].JGeophy Res,92:11533—11551.
Ma K F,Song T R A.2004.Thermo-mechanical structure beneath the young orogenic belt of Taiwan[J]. Tectonophysics,388:21—31.
Marone C J,Scholz C H,Bilham R.1991.On the mechanics of earthquake afterslip[J].JGeophys Res,96:8441—8452.
Montesi L G J,Hirth G.2003.Grain size evolution and the rheology of ductile shear zones:From laboratory experiments to postseism ic creep[J].Earth and Planetary Science Letters,211(1-2):97—110.
Savage JC.1990.Equivalent strike-slip earthquake cycles in half-space and lithosphere-asthenosphere earth models[J].JGeophys Res,95:4873—4879.
Savage JC,Svarc JL.1997.Postseismic deformation associated with the 1992 MW7.3 Landers earthquake,southern California[J].JGeophys Res,102:7565—7577.
Schaff D P,Bokelmann G H R,Beroza G C,et al.2002.High-resolution image of Calaveras Fault seismicity[J].J Geophys Res,107(B9):2186.
Scholz C H.1988.The brittle-plastic transition and depth of seism ic faulting[J].Geol Rund,77:319—328.
Shen Z K,Jackson D D,F(xiàn)eng Y,et al.1994.Postseismic deformation following the Landers earthquake,California,28 June 1992[J].Bull Seism Soc Am,84:780—791.
Sibson R H.1982.Fault zone models,heat flow,and the depth distribution of earthquakes in the continental crust of the United States[J].Bull Seismol Soc Am,72:151—163.
Trepmann C A,St?ckhert B.2001.Mechanical twinning of jadeite-An indication of synseismic loading beneath the brittle-plastic transition[J].Int JEarth Sciences(Geol Rundsch),90:4—13.
Trepmann C A,St?ckhert B.2002.Cataclastic deformation of garnet:A record of synseismic loading and postseismic creep[J].JStuct Geol,24:1845—1856.
Trepmann C A,St?ckhert B.2003.Quartz m icrostructures developed during non-steady state plastic flow at rapidly decaying stress and strain rate[J].JStuct Geol,25(12):2035—2051.
Trepmann C A,St?ckhert B,Dorner D,et al.2007.Simulating coseismic deformation of quartz in themiddle crust and fabric evolution during postseismic stress relaxation-An experimental study[J].Tectonophysics,442:83—104. Tse S T,Rice J R.1986.Crustal earthquake instability in relation to the depth variation of frictional slip properties[J].JGeophys Res,91:9452—9472.
Wang Y,Wang J,Xiong L.2000.Heat flow pattern in the mainland of China and its geodynamic significance[J]. Acta Geologica Sinica,74(2):375—380.
TEM PORAL EVOLUTION OF FOCAL DEPTHS OF AFTERSHOCK SEQUENCE FOLLOW ING LIJIANG MS7.0 EARTHQUAKE AND THE IM PLICATION FOR RHEOLOGICAL PROPERTY OF THE M IDDLE CRUST
SONG Juan1)ZHOU Yong-sheng2)YANG Wei-hong3)
1)China University of Petroleum,Qingdao 266580,China
2)State key Laboratory of Earthquake Dynamics,Institute of Geology,China Earthquake Adm inistration,Beijing 100029,China
3)Central Geological Exploration Fund,M inistry of Land and Resources,Beijing 100045,China
The depth distribution of aftershocks of the 1996 Lijiang MS7.0 earthquake is strongly timedependent.Events occurring shortly after the main shock had deeper focal depths,and as the time going on,the focal depth of the aftershocks became shallower and shallower,i.e.the cutoff depth of seism icity became shallower and shallower with time.As we know,the lowermost events occur around the depth of brittle-plastic transition,and this depth depends on strain rate.The postseismic deformation model inferred from GPS data show that the major contribution of postseism ic strain release comes from the lower layer of the crust.These results suggest that significant afterslip is related to viscous relaxation of lower layer.
We estimated the lower bound of the strain rate according to Marone′s et al.(1991)afterslip model and the slip data observed at the surface of Xianshuihe Fault.The results show that the strain rate is high after the main shock,and decreases gradually with time.We calculated the strength profile of m iddle crust based on flow law of wet quartz,estimated strain rate,temperature profile determined using the heat flow data at Lijiang,as well as crustal structure based on P wave velocity. By comparing the cutoff depth of seism icity and the brittle-plastic transition depth of them idd le crust,we found the two depths are consistent to each other.We suggest the temporary existence of deeper small events after main shock and the depth distribution of aftershock is due to the changing brittleplastic transition of the middle crust corresponding to strain rate variation from high to lower values after the main shock,and this kind of change is the manifestation of rheology of the m iddle crust.
focal depth,aftershock,brittle-plastic transition,rheology,Lijiang MS7.0 earthquake
315.2
A
0253-4967(2014)01-0186-10
宋娟,女,1975年生,2004年畢業(yè)于中國(guó)地震局地質(zhì)研究所固體地球物理專業(yè),獲碩士學(xué)位,講師,主要從事高溫高壓巖石力學(xué)與流變學(xué)及與地震學(xué)相關(guān)的教學(xué)和研究工作,電話:18669880408,E-mail:songjuan95@126.com。
10.3969/j.issn.0253-4967.2014.01.015
2013-04-08收稿,2013-11-04改回。
地震動(dòng)力學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室自主課題(LED2010B03,LED2013A05)資助。*通訊作者:周永勝,男,研究員,E-mail:zhouysh@ies.ac.cn。