徐楠楠 葛玉榮 王佳奕
摘 要: 利用NSCT變換具有多尺度和平移不變性,能夠稀疏地表示紋理圖像的特點(diǎn),將具有豐富紋理信息的人體腦部核磁共振(MR)圖像,從空間域變換到頻率域表示。提取變換后表征圖像特性的低頻子帶均值、方差及高頻16個(gè)方向子帶能量作為特征向量,輸入SVM分類器進(jìn)行分類識(shí)別。實(shí)驗(yàn)結(jié)果表明該方法對(duì)非病變腦部MR圖像識(shí)別準(zhǔn)確率達(dá)到100%,病變腦部MR圖像的識(shí)別率達(dá)到90.90%,綜合識(shí)別率達(dá)到95.45%。且該方法提取的特征維數(shù)少,識(shí)別速度快,識(shí)別率高,能夠快速區(qū)分病變與非病變腦部MR圖像。
關(guān)鍵詞: NSCT; 腦部MR圖像; 紋理特征; 支持向量機(jī)
中圖分類號(hào): TN919?34; TP391.41 文獻(xiàn)標(biāo)識(shí)碼: A 文章編號(hào): 1004?373X(2014)12?0063?04
Abstract: Using the characteristics of multi?scale selection and shift invariance of nonsubsampled contourlet transform (NSCT), the features of texture images can be depicted sparsely, and the magnetic resonance (MR) brain images with plenty of texture information can be converted from spatial domain to frequency domain. The mean value and variance of low?frequency subband, and energy of high frequency sixteen direction subbands that can feature the image characters are extracted as feature vectors, and sent into the classifier of support vector machine for classification and identification. The experimental results show that the method's recognition accuracy rate of normal and abnormal brain MR images is 100% and 90.90% respectively, and the mean recognition rate is up to 95.45%. This method can distinguish the normal and abnormal brain MR images quickly with less feature dimensions.
Keywords: NSCT; MR brain images; texture feature; support vector machine
0 引 言
圖像紋理反映了圖像基元的灰度分布規(guī)律,它描述了圖像局部無規(guī)則而宏觀有規(guī)則的特征。將空間域的紋理圖像變換到頻率域,能在更精細(xì)的尺度上分析紋理,且符合人類的視覺特征,因此得到了廣泛的應(yīng)用。在醫(yī)學(xué)上,通過分析病變組織和器官醫(yī)學(xué)圖像的紋理結(jié)構(gòu)特征,可以為醫(yī)生在臨床診斷和制定治療方案以及觀察療后恢復(fù)情況等方面獲得科學(xué)的依據(jù)[1?2]。近年來,針對(duì)醫(yī)學(xué)圖像在變換域提取紋理特征進(jìn)行病變圖像的識(shí)別,研究者做了大量的嘗試。Semler和Dettori使用從小波子帶中提取的平均值、方差、共生矩陣等統(tǒng)計(jì)特征作為紋理特征[3],對(duì)5種CT圖像進(jìn)行了分類研究,宋余慶等人用Gabor小波變換技術(shù)和SVM對(duì)醫(yī)學(xué)CT圖像進(jìn)行紋理特征分類,兩者使用特征向量維數(shù)較多,計(jì)算復(fù)雜且用時(shí)較長(zhǎng),識(shí)別的準(zhǔn)確率不高[4];Lee等使用基于M頻帶小波轉(zhuǎn)換和分形幾何的紋理特征來表征肝臟病變[5];Yeh等人用灰度共生矩陣和不可分小波變換進(jìn)行特征提取,用支持向量機(jī)作分類器,將肝臟纖維化進(jìn)行了分級(jí)[6],兩者雖相對(duì)減少了特征向量維數(shù),但由于小波變換只對(duì)輸入圖像進(jìn)行三個(gè)方向子帶的分解,限制了旋轉(zhuǎn)不變圖像的紋理特征分類效率。
Do和Vetterli在2002年提出的Contourlet變換可以對(duì)圖像進(jìn)行多子帶、多方向的分解[7?8]。但在對(duì)圖像進(jìn)行Contourlet變換的過程中,需要對(duì)圖像進(jìn)行下采樣操作,從而使得Contourlet變換不具備平移不變性,導(dǎo)致圖像失真。為此Cunha[9]等又提出一種具有平移不變性的非下采樣Contourlet變換。該方法更適宜具有豐富紋理信息的醫(yī)學(xué)圖像的處理,近年來得到了廣泛的應(yīng)用。
支持向量機(jī)(SVM,Support Vector Machine)是20世紀(jì)90年代Vapnik等人在統(tǒng)計(jì)學(xué)習(xí)理論框架下產(chǎn)生出的一種嶄新的通用機(jī)器學(xué)習(xí)方法[10?11]。由于該方法采用二次規(guī)劃尋優(yōu),因而可以得到全局最優(yōu)解,解決了神經(jīng)網(wǎng)絡(luò)中無法避免的局部極小問題;由于采用了核函數(shù),使得算法復(fù)雜度與樣本維數(shù)無關(guān),因而在圖像分類識(shí)別領(lǐng)域具有非常好的推廣能力[12]。
本文根據(jù)病變與非病變腦部MR圖像的差異,在對(duì)原圖像進(jìn)行NSCT變換分解后,分別提取低頻和高頻特征,并對(duì)特征向量分析、優(yōu)化,最終選取低頻子帶均值、方差和最高頻16個(gè)方向子帶的能量組成特征向量組,用支持向量機(jī)的方法進(jìn)行分類識(shí)別,自動(dòng)、快速區(qū)分病變和非病變腦部MR圖像。
1 紋理特征提取
非下采樣Contourlet變換(NSCT)是在Contourlet變換的基礎(chǔ)上發(fā)展起來的一種新的多尺度、多方向變換,解決了Contourlet變換因下采樣而不滿足平移不變性和頻譜泄漏及頻譜混疊等缺陷,在圖像表示上能更好地表現(xiàn)圖像的細(xì)節(jié)特征。
非下采樣Contourlet變換由非下采樣金字塔(Nonsubsampled Pyramid,NSP)和非下采樣方向?yàn)V波器(Nonsubsampled Directional Filter Banks,NSDFB)兩個(gè)具有平移不變性的部分組成。首先由非下采樣金字塔濾波器將圖像分解為低頻和高頻部分,由于不存在下采樣過程,因此具有平移不變性。再由非下采樣方向?yàn)V波器將高頻部分分解為若干個(gè)方向,如圖1所示。對(duì)圖像進(jìn)行NSP分解時(shí)若給定NSDFB的分解級(jí)數(shù)的系數(shù)為[l],則NSDFB分解的級(jí)數(shù)為[2l],即可得到[2l]個(gè)方向圖像。因此經(jīng)[j]級(jí)NSCT分解后可得到[1+j=1J2lj]個(gè)子帶圖像。其中為[lj]尺度[j]下的方向分解級(jí)數(shù),分解后各級(jí)圖像大小與源圖像相同[13]。
核磁共振(Magnetic Resonance,MR)成像利用射頻(RF)電磁波對(duì)置于磁場(chǎng)中的含有自旋不變?yōu)榱愕脑雍说奈镔|(zhì)進(jìn)行激發(fā),用感應(yīng)線圈采集磁共振信號(hào),經(jīng)計(jì)算機(jī)處理重建后形成一種數(shù)字圖像。因?yàn)镸R圖像通過人體器官中不同組織反映出的不同信號(hào)強(qiáng)度變化,來體現(xiàn)組織器官之間、正常組織和病理組織之間圖像明暗的對(duì)比,軟組織間具有高的對(duì)比度和分辨率等特點(diǎn)[14]。因此,對(duì)MR圖像來說,圖像的灰度對(duì)比度、均勻度、紋理的深淺程度和粗細(xì)度,是區(qū)分病變與非病變圖像的重要特征。均值反映圖像灰度值的分散程度,方差是灰度對(duì)比度的量度,表達(dá)了灰度值相對(duì)于均值的分布情況,可反映圖像中紋理的深淺程度。方差越大,則灰度級(jí)分布越分散,圖像反差大,對(duì)比度大;方差小,則圖像反差小,對(duì)比度小。能量是系數(shù)矩陣各元素的平方和,是圖像紋理灰度變化均一的度量,反映了灰度圖像紋理變化的均勻程度和紋理的粗細(xì)度。因此,可提取均值、方差和能量來表征MR圖像。
NSCT變換將圖像分解為低頻子帶和高頻子帶。本文提取分解后低頻子帶均值、方差和能量,高頻子帶的能量作為特征向量。特征向量的維數(shù)取決于NSCT變換所取的變換層數(shù)和方向數(shù)。
均值[μ]和方差[σ]計(jì)算表示為:
[μ=1M×Nx=1My=1NP(x,y)] (1)
[δ=1M×Nx=1My=1N(P(x,y)-μ)2] (2)
能量的計(jì)算表示為:
[E=x=1My=1NP(x,y)2] (3)
式中[P(x,y)]為大小為[M×N]的子帶系數(shù)矩陣中坐標(biāo)為[(x,y)]的分解系數(shù)。
提取低頻子帶的能量、均值和方差以及各高頻子帶能量組成特征向量f=[el,μ,σ,eh1,eh2,…,ehn]。其中n為子帶數(shù)。為了均衡各特征分量在特征向量中的比重,對(duì)特征向量做歸一化處理:
[fnormal=f-min(f)max(f)-min(f)] (4)
2 紋理識(shí)別方法?支持向量機(jī)
SVM是從線性可分情況下的最優(yōu)分類面發(fā)展而來的,圖2所示為二維兩類線性可分情況,圖中實(shí)心點(diǎn)和空心點(diǎn)分別代表兩類樣本,H為分類線,H1,H2分別為過兩類樣本中中離分類線最近的樣本且平行于H的直線,它們之間的距離稱為分類間隔(margin)。所謂最優(yōu)分類線不但能將兩類正確分開(訓(xùn)練錯(cuò)誤率為0),而且使樣本分類間隔最大。
要求兩類訓(xùn)練樣本正確分開就是保證經(jīng)驗(yàn)風(fēng)險(xiǎn)最?。?),使分類間隔最大也就是使推廣性界中的置信范圍最小,從而使真實(shí)風(fēng)險(xiǎn)最小[15]。
支持向量機(jī)對(duì)紋理特征進(jìn)行分類識(shí)別時(shí),核函數(shù)起著重要的作用,實(shí)驗(yàn)表明,核函數(shù)的構(gòu)造與選擇可以提升分類器的分類性能。目前研究中常用的核函數(shù)有:
(1) 線性核函數(shù)
[K(x,xi)=(x?xi)] (5)
(2) 多項(xiàng)式核函數(shù)(高斯核函數(shù)):
[K(x,xi)=[(x,xi)+1]q] (6)
式中[q]是多項(xiàng)式的階次。
(3) 徑向基核函數(shù)(RBF核函數(shù))
[K(x,xi)=exp{-x-xi2σ2}] (7)
(4) Sigmoid核函數(shù):
[K(x,xi)=tanh(v(x?xi)+c)] (8)
此外還有其他形式的核函數(shù),如樣條核函數(shù)、傅里葉級(jí)數(shù)核函數(shù)、小波核函數(shù)、張量積核函數(shù)等。徑向基核函數(shù)對(duì)數(shù)據(jù)的描述能力較強(qiáng),可以得到很好的分類效果,因此本文選擇徑向基核函數(shù)作為SVM分類器的核函數(shù)。
3 仿真實(shí)驗(yàn)
實(shí)驗(yàn)使用的圖像是青島大學(xué)醫(yī)學(xué)院附屬醫(yī)院放射影像科提供的腦部MR圖像。每幅圖像大小均為512×512。采集200幅正常腦部MR圖像和200幅異常腦部MR圖像,共400幅,構(gòu)成醫(yī)學(xué)圖像庫(kù)。實(shí)驗(yàn)中,用
9?7濾波器將圖像進(jìn)行分解,分解尺度為4級(jí),分解層數(shù)為[1,2,3,4],則4個(gè)尺度的子帶數(shù)分別為2,4,8,16。方向?yàn)V波器組DBF選用‘pkva。
3.1 提取的特征向量仿真分析
隨機(jī)選取10幅非病變和10幅病變腦部MR圖像,如圖3和圖4所示。提取圖3和圖4中的20幅圖像經(jīng)NSCT變換后低頻子帶的均值、方差和能量,如圖5所示。由圖5可以看出,每幅圖像經(jīng)NSCT變換后低頻子帶的均值、方差和能量差別較大,可用來區(qū)分不同的圖像。因此選取低頻子帶的均值、方差和能量作為特征向量。
從圖3中任意選取兩幅非病變腦部MR圖像,從圖4中選取一幅病變腦部MR圖像,提取各圖像經(jīng)NSCT變換后各高頻子帶的能量,圖6為兩幅非病變圖像經(jīng)NSCT變換分解后的高頻子帶系數(shù)能量分布圖。圖7為非病變MR圖像和病變MR圖像經(jīng)NSCT變換分解后的各高頻子帶系數(shù)能量分布圖,共2+4+8+16=30維。
由圖6和圖7可以看出,兩幅非病變腦部MR圖像經(jīng)NSCT變換后各高頻子帶系數(shù)能量相差不大,而非病變和病變腦部MR圖像各高頻子帶系數(shù)能量相差較大,因此提取NSCT變換后各高頻子帶系數(shù)能量作為特征向量可以有效地區(qū)分非病變和病變腦部MR圖像。
3.2 圖像的仿真識(shí)別
選取建立的醫(yī)學(xué)圖像庫(kù)中的90幅正常圖像和90幅異常圖像共180幅作為訓(xùn)練樣本。110幅正常圖像和110幅異常圖像共220幅作為測(cè)試樣本。提取低頻子帶均值、方差和能量及各高頻子帶能量組成33維的特征向量組,歸一化后輸入識(shí)別系統(tǒng)進(jìn)行分類識(shí)別。結(jié)果見表1。
4 結(jié) 語
本文針對(duì)紋理信息較豐富的腦部MR圖像,分別提取NSCT分解后低頻子帶系數(shù)的均值和方差及高頻子帶最高層系數(shù)的能量組成特征向量組,用SVM方法進(jìn)行分類識(shí)別,確定病變腦部MR圖像。實(shí)驗(yàn)結(jié)果表明,所提取的特征能較準(zhǔn)確的表示腦部MR圖像的紋理特征,識(shí)別準(zhǔn)確率較高,從而為醫(yī)生初步進(jìn)行快速腦疾病診斷提供了依據(jù)。
參考文獻(xiàn)
[1] PENG S H, KIM D H, LEE S L, et al. Texture feature extraction based on a uniformity estimation method for local brightness and structure in chest CT image [J]. Computers in Biology and Medicine, 2010, 40(11/22): 931?939.
[2] PEREIRA W, ALVARENGA A, INFANTOSI A. A non?linear morphometric feature selection approach for breast tumor contour from ultrasonic images [J]. Computers in Biology and Medicine 2010, 40(11/12): 912?918.
[3] SEMLER L, DETTORI L, FURST J. Wavelet?based texture classification of tissues in computed tomography [C]// Proceedings of 18th IEEE Symposium on Computer Based Medical Systems. [S.l.]: IEEE, 2005: 265?270.
[4] 宋余慶,劉博,謝軍.基于Gabor小波變換的醫(yī)學(xué)圖像紋理特征分類[J].計(jì)算機(jī)工程,2010,36(11):200?202.
[5] LEE W, CHEN Y, HSIEH K. Ultrasonic liver tissues classification by fractal feature vector based on M?Band wavelet transform [J]. IEEE Transactions on Medical Imaging, 2003, 22 (3): 382?392.
[6] YE Wen?chun, HUANG Sheng?wen, LI pai?chi. Liver fibrosis grade classification with B?mode ultrasound [J]. Ultrasound in Medicine& Biology, 2003, 29(9): 1229?1235.
[7] DO M N, VETTERLI M. Contourlets:a directional multiresolution image representation[C]// Proceeding of IEEE International Conference on Image Processing. [S.l.]: IEEE, 2002, 1: 357?360.
[8] DO M N, VETTERLI M. The contourlet transform: an efficient directional multiresolution image representation [J]. IEEE Transactions on Image Processing, 2005, 14(12): 2091?2106.
[9] CUNHA A L, ZHOU Jiang?ping, DO M N. The nonsubsampled contourlet transform: theory, design, and application [J]. IEEE transactions on Image Processing, 2006, 15(10): 3089?3101.
[10] [英] CRISTIANINI Nello.支持向量機(jī)導(dǎo)論[M].李國(guó)正,譯.北京:電子工業(yè)出版社,2004.
[11] KIM K I, JUNG K, KIM J H. Texture?based approach for text detection in images using support vector machine and continuously adaptive mean shift algorithm [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(12): 1631?1639.
[12] KIM K I, JUNG K, PARK S H, et al. Support vector machine for texture classification [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(11): 1542?1550.
[13] 李希寧.基于多尺度幾何分析的圖像融合算法研究[D].青島:中國(guó)海洋大學(xué),2010.
[14] 車娜.基于偏移場(chǎng)的核磁共振腦圖像分割算法研究[D].長(zhǎng)春:吉林大學(xué),2013.
[15] 王佳奕.基于Contourlet變換和支持向量機(jī)的紋理識(shí)別方法[J].計(jì)算機(jī)應(yīng)用,2012,33(3):677?679.
3.2 圖像的仿真識(shí)別
選取建立的醫(yī)學(xué)圖像庫(kù)中的90幅正常圖像和90幅異常圖像共180幅作為訓(xùn)練樣本。110幅正常圖像和110幅異常圖像共220幅作為測(cè)試樣本。提取低頻子帶均值、方差和能量及各高頻子帶能量組成33維的特征向量組,歸一化后輸入識(shí)別系統(tǒng)進(jìn)行分類識(shí)別。結(jié)果見表1。
4 結(jié) 語
本文針對(duì)紋理信息較豐富的腦部MR圖像,分別提取NSCT分解后低頻子帶系數(shù)的均值和方差及高頻子帶最高層系數(shù)的能量組成特征向量組,用SVM方法進(jìn)行分類識(shí)別,確定病變腦部MR圖像。實(shí)驗(yàn)結(jié)果表明,所提取的特征能較準(zhǔn)確的表示腦部MR圖像的紋理特征,識(shí)別準(zhǔn)確率較高,從而為醫(yī)生初步進(jìn)行快速腦疾病診斷提供了依據(jù)。
參考文獻(xiàn)
[1] PENG S H, KIM D H, LEE S L, et al. Texture feature extraction based on a uniformity estimation method for local brightness and structure in chest CT image [J]. Computers in Biology and Medicine, 2010, 40(11/22): 931?939.
[2] PEREIRA W, ALVARENGA A, INFANTOSI A. A non?linear morphometric feature selection approach for breast tumor contour from ultrasonic images [J]. Computers in Biology and Medicine 2010, 40(11/12): 912?918.
[3] SEMLER L, DETTORI L, FURST J. Wavelet?based texture classification of tissues in computed tomography [C]// Proceedings of 18th IEEE Symposium on Computer Based Medical Systems. [S.l.]: IEEE, 2005: 265?270.
[4] 宋余慶,劉博,謝軍.基于Gabor小波變換的醫(yī)學(xué)圖像紋理特征分類[J].計(jì)算機(jī)工程,2010,36(11):200?202.
[5] LEE W, CHEN Y, HSIEH K. Ultrasonic liver tissues classification by fractal feature vector based on M?Band wavelet transform [J]. IEEE Transactions on Medical Imaging, 2003, 22 (3): 382?392.
[6] YE Wen?chun, HUANG Sheng?wen, LI pai?chi. Liver fibrosis grade classification with B?mode ultrasound [J]. Ultrasound in Medicine& Biology, 2003, 29(9): 1229?1235.
[7] DO M N, VETTERLI M. Contourlets:a directional multiresolution image representation[C]// Proceeding of IEEE International Conference on Image Processing. [S.l.]: IEEE, 2002, 1: 357?360.
[8] DO M N, VETTERLI M. The contourlet transform: an efficient directional multiresolution image representation [J]. IEEE Transactions on Image Processing, 2005, 14(12): 2091?2106.
[9] CUNHA A L, ZHOU Jiang?ping, DO M N. The nonsubsampled contourlet transform: theory, design, and application [J]. IEEE transactions on Image Processing, 2006, 15(10): 3089?3101.
[10] [英] CRISTIANINI Nello.支持向量機(jī)導(dǎo)論[M].李國(guó)正,譯.北京:電子工業(yè)出版社,2004.
[11] KIM K I, JUNG K, KIM J H. Texture?based approach for text detection in images using support vector machine and continuously adaptive mean shift algorithm [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(12): 1631?1639.
[12] KIM K I, JUNG K, PARK S H, et al. Support vector machine for texture classification [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(11): 1542?1550.
[13] 李希寧.基于多尺度幾何分析的圖像融合算法研究[D].青島:中國(guó)海洋大學(xué),2010.
[14] 車娜.基于偏移場(chǎng)的核磁共振腦圖像分割算法研究[D].長(zhǎng)春:吉林大學(xué),2013.
[15] 王佳奕.基于Contourlet變換和支持向量機(jī)的紋理識(shí)別方法[J].計(jì)算機(jī)應(yīng)用,2012,33(3):677?679.
3.2 圖像的仿真識(shí)別
選取建立的醫(yī)學(xué)圖像庫(kù)中的90幅正常圖像和90幅異常圖像共180幅作為訓(xùn)練樣本。110幅正常圖像和110幅異常圖像共220幅作為測(cè)試樣本。提取低頻子帶均值、方差和能量及各高頻子帶能量組成33維的特征向量組,歸一化后輸入識(shí)別系統(tǒng)進(jìn)行分類識(shí)別。結(jié)果見表1。
4 結(jié) 語
本文針對(duì)紋理信息較豐富的腦部MR圖像,分別提取NSCT分解后低頻子帶系數(shù)的均值和方差及高頻子帶最高層系數(shù)的能量組成特征向量組,用SVM方法進(jìn)行分類識(shí)別,確定病變腦部MR圖像。實(shí)驗(yàn)結(jié)果表明,所提取的特征能較準(zhǔn)確的表示腦部MR圖像的紋理特征,識(shí)別準(zhǔn)確率較高,從而為醫(yī)生初步進(jìn)行快速腦疾病診斷提供了依據(jù)。
參考文獻(xiàn)
[1] PENG S H, KIM D H, LEE S L, et al. Texture feature extraction based on a uniformity estimation method for local brightness and structure in chest CT image [J]. Computers in Biology and Medicine, 2010, 40(11/22): 931?939.
[2] PEREIRA W, ALVARENGA A, INFANTOSI A. A non?linear morphometric feature selection approach for breast tumor contour from ultrasonic images [J]. Computers in Biology and Medicine 2010, 40(11/12): 912?918.
[3] SEMLER L, DETTORI L, FURST J. Wavelet?based texture classification of tissues in computed tomography [C]// Proceedings of 18th IEEE Symposium on Computer Based Medical Systems. [S.l.]: IEEE, 2005: 265?270.
[4] 宋余慶,劉博,謝軍.基于Gabor小波變換的醫(yī)學(xué)圖像紋理特征分類[J].計(jì)算機(jī)工程,2010,36(11):200?202.
[5] LEE W, CHEN Y, HSIEH K. Ultrasonic liver tissues classification by fractal feature vector based on M?Band wavelet transform [J]. IEEE Transactions on Medical Imaging, 2003, 22 (3): 382?392.
[6] YE Wen?chun, HUANG Sheng?wen, LI pai?chi. Liver fibrosis grade classification with B?mode ultrasound [J]. Ultrasound in Medicine& Biology, 2003, 29(9): 1229?1235.
[7] DO M N, VETTERLI M. Contourlets:a directional multiresolution image representation[C]// Proceeding of IEEE International Conference on Image Processing. [S.l.]: IEEE, 2002, 1: 357?360.
[8] DO M N, VETTERLI M. The contourlet transform: an efficient directional multiresolution image representation [J]. IEEE Transactions on Image Processing, 2005, 14(12): 2091?2106.
[9] CUNHA A L, ZHOU Jiang?ping, DO M N. The nonsubsampled contourlet transform: theory, design, and application [J]. IEEE transactions on Image Processing, 2006, 15(10): 3089?3101.
[10] [英] CRISTIANINI Nello.支持向量機(jī)導(dǎo)論[M].李國(guó)正,譯.北京:電子工業(yè)出版社,2004.
[11] KIM K I, JUNG K, KIM J H. Texture?based approach for text detection in images using support vector machine and continuously adaptive mean shift algorithm [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(12): 1631?1639.
[12] KIM K I, JUNG K, PARK S H, et al. Support vector machine for texture classification [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(11): 1542?1550.
[13] 李希寧.基于多尺度幾何分析的圖像融合算法研究[D].青島:中國(guó)海洋大學(xué),2010.
[14] 車娜.基于偏移場(chǎng)的核磁共振腦圖像分割算法研究[D].長(zhǎng)春:吉林大學(xué),2013.
[15] 王佳奕.基于Contourlet變換和支持向量機(jī)的紋理識(shí)別方法[J].計(jì)算機(jī)應(yīng)用,2012,33(3):677?679.