郭紅玉,夏大平,蘇現(xiàn)波,馬俊強,張雙斌,王 振
(1.河南省瓦斯地質(zhì)與瓦斯治理重點實驗室——省部共建國家重點實驗室培育基地,河南焦作 454000;2.河南理工大學能源科學與工程學院,河南焦作 454000)
二氧化氯作為煤儲層壓裂液破膠劑的可行性實驗研究
郭紅玉1,2,夏大平2,蘇現(xiàn)波1,2,馬俊強2,張雙斌2,王 振2
(1.河南省瓦斯地質(zhì)與瓦斯治理重點實驗室——省部共建國家重點實驗室培育基地,河南焦作 454000;2.河南理工大學能源科學與工程學院,河南焦作 454000)
針對煤層溫度低、高黏壓裂液無法及時破膠返排的難題,探討二氧化氯作為壓裂液破膠劑的可行性及其對煤層氣開采的影響。實驗選擇清潔壓裂液、交聯(lián)凍膠壓裂液和二氧化氯溶液對不同煤階煤樣進行處理,對處理后煤樣再分別進行光學顯微鏡、等溫吸附和壓汞等測試。結(jié)果表明:殘留的壓裂液會對煤層造成污染傷害,二氧化氯不但具有良好的低溫破膠作用,同時還可以提高大孔和中孔的孔容比,使得孔隙連通性得到改善,進而提高儲層滲透率;經(jīng)二氧化氯處理后煤樣的朗格繆爾體積顯著降低,表明了煤的親甲烷能力顯著降低,從而使得煤層氣臨界解吸壓力、含氣飽和度與采收率均得到不同程度的提高。研究表明二氧化氯可以作為煤儲層壓裂液的破膠劑。
煤層氣;二氧化氯;壓裂液;破膠劑;親甲烷能力;采收率;含氣飽和度;臨界解吸壓力
郭紅玉,夏大平,蘇現(xiàn)波,等.二氧化氯作為煤儲層壓裂液破膠劑的可行性實驗研究[J].煤炭學報,2014,39(5):908-912.doi:10.13225/j.cnki.jccs.2013.0638
Guo Hongyu,Xia Daping,Su Xianbo,et al.Experimental study on the feasibility of chlorine dioxide as fracturing fluid gel-breaker for coal reservoirs[J].Journal of China Coal Society,2014,39(5):908-912.doi:10.13225/j.cnki.jccs.2013.0638
我國煤儲層滲透率普遍較低,煤層氣的開采面臨諸多不利條件[1-2]。水力壓裂是煤儲層增透的主要措施,壓裂液性能是影響壓裂成敗的關鍵因素之一[3-6]。目前,我國煤層氣井壓裂主要采用活性水,因其黏度接近清水,無法攜帶更多支撐劑進入地層裂縫[7-9]。若添加增稠劑提高黏度,又面臨煤層低溫條件下破膠困難的問題,一旦壓裂液破膠不徹底而滯留地層裂縫,儲層污染嚴重,甚至抵消壓裂改造的效果[10-13]。為解決這一矛盾,亟需選擇一種低溫快速破膠劑,這對高黏壓裂液的推廣應用尤為重要。二氧化氯主要在油氣田上用以解堵,即利用二氧化氯強氧化性和殺菌效率高的特點,解除壓裂液、鉆井液濾液中有機高分子堵塞、溶除鐵垢、殺死細菌,達到解堵的目的,已在國內(nèi)外得到成功實踐,并取得較好的經(jīng)濟效益[14-17]。依據(jù)強氧化性的特性,選擇二氧化氯作為煤層氣井壓裂液的破膠劑,并通過壓裂液污染、破膠、等溫吸附和壓汞等實驗手段,探討二氧化氯作為煤層壓裂液破膠劑的可行性對煤層氣開采的影響,為高黏壓裂液的破膠劑選擇提供實驗支撐。
1.1 樣品制備
(1)煤樣。分別在焦作古漢山煤礦、陽泉寺家莊煤礦、柳林沙曲煤礦、義馬千秋煤礦和大同泉嶺煤礦井下采集新鮮煤樣,進行工業(yè)分析與反射率測試(表1)。
(2)壓裂液。清潔壓裂液配方:表面活性劑(0.8%VES)+膠束促進劑(0.2%SYN)+防膨劑(鹽) (1.0%KCl)。交聯(lián)凍膠壓裂液配方:0.3%羥丙基瓜膠(HPG)+0.01%潤濕劑+2.0%KCl+0.02%硼砂。
表1 煤樣基礎數(shù)據(jù)Table 1 Basic data of coal samples
(3)二氧化氯溶液。按照比例稱取A試劑和B試劑,加入小口錐形瓶中,加入蒸餾水充分攪拌至無顆粒或塊狀物;按比例加入C添加劑,充分攪拌溶液,直至溶液呈淺黃色,即二氧化氯溶液,并對其密封保存,本實驗采用的二氧化氯的濃度為4 000×10-6。
1.2 實驗方法
(1)光學顯微鏡實驗。大同泉嶺煤礦和柳林沙曲煤礦煤樣拋光處理后放入交聯(lián)凍膠壓裂液中浸泡6 h,在光學顯微鏡下觀察浸泡前后的表面特征(圖1)。
(2)壓汞實驗。選擇千秋煤礦煤樣,放入濃度為4 000×10-6的二氧化氯溶液中浸泡72 h,取出自然風干后采用Auto poreⅣ9505全自動壓汞儀對煤的孔隙結(jié)構進行測試,為避免水分對測試結(jié)果的影響,在實驗前首先對煤樣進行干燥處理(圖2)。
(3)等溫吸附實驗。每個煤樣粉碎至60~80目,平均分為3份,每份質(zhì)量不小于150 g,其中一份保持原樣、一份被清潔壓裂液浸泡48 h、另一份放入清潔壓裂液和濃度為4 000×10-6的ClO2混合溶液浸泡48 h,分別烘干和稱重,然后在25.6℃下在IS-300型等溫吸附儀測試,實驗嚴格執(zhí)行《煤的高壓等溫吸附試驗方法》(GB/T 19560—2008)標準。等溫吸附實驗結(jié)果見表2,等溫吸附曲線擬合如圖3所示。
圖1 凍膠浸泡前后煤表面污染對比Fig.1 Surface pollution comparison of coal samples before and after gel immersion
圖2 煤樣進-退汞曲線Fig.2 Mercury injection and ejection curves of coal samples
表2 等溫吸附實驗結(jié)果Table 2 Results of isothermal adsorption
圖3 不同方式處理煤樣的等溫吸附曲線Fig.3 Isothermal adsorption curves of coal samples with different actions
2.1 二氧化氯破膠效果及其作用機理
煤層溫度一般僅20℃左右,遠遠低于油氣儲層,油氣田儲層改造常用的高黏壓裂液的破膠劑主要是過硫酸銨、雙氧水和過硫酸鉀等,但其普遍存在溫度低于40℃釋放游離氧速度減慢的問題,難以達到低溫煤層壓裂液徹底破膠的目的。從圖1可知,煤經(jīng)過凍膠壓裂液浸泡后,表面有許多附著物,表明若壓裂液不能及時破膠返排,滯留在煤儲層中,就會堵塞空隙和裂隙等煤層氣運移產(chǎn)出的通道,造成儲層傷害,嚴重影響壓裂增透的效果。二氧化氯依靠強氧化性能使大分子有機物斷鏈降解為有小分子機物或無機物,可以在低溫條件下對高黏壓裂液進行快速破膠。
2.2 二氧化氯對煤樣孔隙結(jié)構的影響
由圖3可知在相同壓力下,處理煤樣的進汞量增大,大孔與中孔的孔容比增加(表3)。原煤樣進-退曲線存在明顯的拐點,為“細頸瓶”孔;處理后煤樣拐點消失,為開放型孔。說明二氧化氯有助于提高煤層的孔隙連通性,這對改善煤層滲透率有重要意義。
表3 千秋煤礦煤樣孔隙結(jié)構分析結(jié)果Table 3 Pore structure analysis results of coal samples in Qianqiu Coal Mine
2.3 二氧化氯對煤樣吸附性的影響
從圖3可看出,經(jīng)清潔壓裂液處理后,煤的吸附能力也相應降低,這與文獻[18]得到的結(jié)論是一致的。但二氧化氯作為破膠劑加入到清潔壓裂液,煤樣經(jīng)過該破膠液浸泡處理,對甲烷的吸附能力將進一步降低,其中義馬千秋煤礦和焦作古漢山煤礦的煤樣降低幅度更為明顯。該實驗不但證實了清潔壓裂液對煤吸附能力影響的事實,更說明二氧化氯作為清潔壓裂液的破膠劑將進一步降低煤的親甲烷能力。二氧化氯作為壓裂液破膠劑降低了煤的親甲烷能力,在煤層含氣量相同的條件下,吸附能力降低意味著煤層含氣飽和度與臨界解吸壓力兩項參數(shù)均有提高,縮短了排采階段見氣時間,且含氣飽和度和臨界解吸壓力增加對提高煤層氣井的單井產(chǎn)量也有重要作用。
2.4 二氧化氯對煤層氣開采的影響
采收率、臨界解吸壓力和含氣飽和度是影響煤層氣開采的3個主要參數(shù)。依據(jù)表2中的等溫吸附實驗結(jié)果、煤層含氣量、儲層壓力和廢棄壓力等對上述3個參數(shù)分別進行計算(表4),其中廢棄壓力根據(jù)美國目前的經(jīng)驗,取0.70 MPa[19]。
表4 二氧化氯對煤層氣開采的影響Table 4 Impact of chlorine dioxide on CBM development
由表4可看出,清潔壓裂液對煤層氣開采3個參數(shù)有不同程度的增加;經(jīng)清潔壓裂液和二氧化氯的破膠液處理煤樣的3個參數(shù)在清潔壓裂液影響的基礎上進一步提高,說明二氧化氯能有效降低煤的親甲烷能力,促進煤層氣解吸脫附,這有利于煤層氣開采。
(1)二氧化氯具有良好的低溫破膠作用,同時還可以提高煤體大孔和中孔的孔容比例,在采用高黏壓裂液進行水力壓裂后期注入適量的二氧化氯溶液,不但可以使高黏壓裂液迅速破膠返排,減少儲層污染,同時還能在水力壓裂形成裂縫增透的基礎上進一步提高煤基質(zhì)滲透性,有利于煤層氣的運移產(chǎn)出。
(2)等溫吸附實驗表明二氧化氯可以有效降低煤吸附甲烷的能力,這有助于提高煤儲層的臨界解吸壓力與含氣飽和度,縮短排采初期的見氣時間。二氧化氯對煤層氣的吸附/解吸性能的改變,促進煤層氣脫附,有利于煤層氣開采。因此,二氧化氯具有低溫破膠、提高含氣飽和度、臨界解吸壓力和采收率等多重效果,可以作為壓裂液的破膠劑。
[1] 張 群,馮三利,楊錫祿.試論我國煤層氣的基本儲層特點及開發(fā)策略[J].煤炭學報,2001,26(3):230-235.
Zhang Qun,Feng Sanli,Yang Xilu.Basic reservoir characteristics and development strategy of coalbed methane resource in China[J].Journal of China Coal Society,2001,26(3):230-235.
[2] 秦 勇,袁 亮,胡千庭,等.我國煤層氣勘探與開發(fā)技術現(xiàn)狀及發(fā)展方向[J].煤炭科學技術,2012,40(10):1-6.
Qin Yong,Yuan Liang,Hu Qianting,et al.Status and development orientation of coal bed methane exploration and development technology in China[J].Coal Science and Technology,2012,40(10):1 -6.
[3] Elham Mohammed M Khair,Zhang Shicheng,Mou Shanbo,et al.Performance and application of new anionic D3F-AS05 viscoelastic fracturing fluid[J].Journal of Petroleum Science and Engineering, 2011,78:131-138.
[4] Alison Aminto,Mira Stone Olson.Four-compartment partition model of hazardous components in hydraulic fracturing fluid additives[J].Journal of Natural Gas Science and Engineering,2012,7:16-21.
[5] Palmer I D.Coalbed methane completions:A world view[J].International Journal of Coal Geology,2010,82:184-195.
[6] Luca Menegon,Holger Stünitza,Pritam Nasipuria,et al.Transition from fracturing to viscous flow in granulite facies perthitic feldspar (Lofoten,Norway)[J].Journal of Structural Geology,2013,48:95-112.
[7] 郭建春,盧 聰,趙金洲,等.支撐劑嵌入程度的實驗研究[J].煤炭學報,2008,33(6):661-664.
Guo Jianchun,Lu Cong,Zhao Jinzhou,et al.Experimental research on proppant embedment[J].Journal of China Coal Society,2008,33 (6):661-664.
[8] 鄒雨時,馬新仿,王 雷,等.中、高煤階煤巖壓裂裂縫導流能力實驗研究[J].煤炭學報,2011,36(3):473-476.
Zou Yushi,Ma Xinfang,Wang Lei,et al.Experimental evaluation of conductivity of fracturing in medium and high-rank coal beds[J].Journal of China Coal Society,2008,36(3):473-476.
[9] 王 雷,張士誠,張文宗,等.復合壓裂不同粒徑支撐劑組合長期導流能力實驗研究[J].天然氣工業(yè),2005,25(9):64-66.
Wang Lei,Zhang Shicheng,Zhang Wenzong,et al.Experimental research on long term conductivity of the proppant combination withdifferent grain sizes in complex fracturing[J].Natural Gas Industry, 2005,25(9):64-66.
[10] John Yilin Wang,Vitae Stephen A,Holditch Vitae,et al.Effect of gel damage on fracture fluid clean up and long-term recovery in tight gas reservoirs[J].Journal of Natural Gas Science and Engineering,2012,9:108-118.
[11] 陳 濤,林 鑫,方緒祥,等.煤層氣井壓裂傷害機理及低傷害壓裂液研究[J].重慶科技學院學報,2011,13(2):21-23.
Chen Tao,Lin Xin,Fang Xuxiang,et al.Fracturing damage mechanism and fracturing fluid with low damage of coalbed methane well [J].Journal of Chongqing University of Science and Technology, 2011,13(2):21-23.
[12] 戴彩麗,趙 輝,梁 利,等.煤層氣井用鋯凍膠壓裂液低溫破膠體系[J].天然氣工業(yè),2010,30(6):60-63.
Dai Caili,Zhao Hui,Liang Li,et al.A low temperature breaking system for zirconiumgel fracturing fluids in coalbed methane gas wells[J].Natural Gas Industry,2010,30(6):60-63.
[13] Chen Z,Khaja N,Valencia K L,et al.Formation damage induced by fracture fluids in coalbed methane reservoirs[A].Source:Proceedings-SPE Asia Pacific Oil and Gas Conference and Exhibition 2006:Thriving on Volatility[C].2006:740-745.
[14] 李 潔,趙立強,劉平禮,等.二氧化氯在油水井解堵增注中的應用[J].天然氣勘探與開發(fā),2009,32(1):67-70.
Li Jie,Zhao Liqiang,Liu Pingli,et al.Application of ClO2to plugging removal and stimulation in oil and water wells[J].Natural Gas Exploration and Development,2009,32(1):67-70.
[15] Cavallaro A.Design of an acid stimulation system with chlorine dioxide for the treatment of water-injection wells[J].SPE 69533, 2001.
[16] Jennifer R.Application of chlorine dioxide as an oil-field-felicitiestreatment fluid[J].SPE Production&Facilities,1996:18-21.
[17] Ghosh B,Bemani A S,Wahaibi Y M,et al.Development of a novel chemical water shut-off method for fractured reservoirs:Laboratory development and verification through core flow experiments[J].Journal of Petroleum Science and Engineering,2012,96-97:176-184.
[18] 陳尚斌,朱炎銘,劉通義,等.清潔壓裂液對煤層氣吸附性能的影響[J].煤炭學報,2009,34(1):89-94.
Chen Shangbin,Zhu Yanming,Liu Tongyi,et al.Impact of the clear fracturing fluid on the adsorption properties of CBM[J].Journal of China Coal Society,2009,34(1):89-94.
[19] 周尚忠,張文忠.當前我國煤層氣采收率估算方法及存在問題[J].中國煤層氣,2011,8(4):9-12,25.
Zhou Shangzhong,Zhang Wenzhong.The current methods for estimating recovery rate of CBM and the existing problems in China [J].China Coalbed Methane,2011,8(4):9-12,25.
[20] 郭紅玉,夏大平,王惠風,等.二氧化氯作用下的煤吸附性變化及其大分子結(jié)構響應[J].高校地質(zhì)學報,2012,18(3):568-572.
Guo Hongyu,Xia Daping,Wang Huifeng,et al.Variations in adsorption and macro-molecular responses of coals treated with chlorine dioxide solution[J].Geological Journal of China Universities, 2012,18(3):568-572.
Experimental study on the feasibility of chlorine dioxide as fracturing fluid gel-breaker for coal reservoirs
GUO Hong-yu1,2,XIA Da-ping2,SU Xian-bo1,2,MA Jun-qiang2,ZHANG Shuang-bin2,WANG Zhen2
(1.State Key Laboratory Cultivation Base for Gas Geology and Gas Control(Henan Polytechnic University),Jiaozuo 454000,China;2.School of Energy Science and Engineering,Henan Polytechnic University,Jiaozuo 454000,China)
Based on the difficulty that fracturing fluid with high viscosity is unable to break and flow back timely in the low-temperature coal seams,the feasibility of chlorine dioxide(ClO2)as gel-breaker of fracturing fluid and its impact on coalbed methane(CBM)development were studied.Different rank coal samples were treated with clean fracturing fluid,cross-linked gel fracturing fluid and ClO2solution,and were tested by optical microscope,isothermal adsorption and mercury porosimetric method,etc.The experiment results show:First,residual fracturing fluid will damage the coal seam.ClO2not only has a good effect on gel breaking at low temperature,but also it can increase the pore volumes ratio of macropores and mesopores for coal samples treated by ClO2.It improves the pore connectivity and further enhances the permeability of coal reservoirs.Second,the Langmuir volume of coal samples soaked by ClO2decreases significantly,indicating the coals’affinity for methane has fallen.As a result,the critical desorption pressure,gas saturation and the recovery factor of CBM will increase to some degrees.The study show that ClO2can be used as gel-breaker of fracturing fluid for coal reservoir.
coal bed methane;chlorine dioxide;fracturing fluid;gel-breaker;affinity for methane;recovery factor;gas saturation;the critical desorption pressure
P618.11
A
0253-9993(2014)05-0908-05
2013-05-16 責任編輯:韓晉平
國家自然科學基金資助項目(41002047);山西省煤層氣聯(lián)合研究基金資助項目(2013012004);河南省教育廳科學技術研究重點項目(12A440005)
郭紅玉(1978—),男,河南遂平人,副教授,博士。Tel:0391-3987981,E-mail:ghy1026@126.com。通訊作者:蘇現(xiàn)波(1963—),男,河南孟津人,教授,博士生導師。Tel:0391-3987981,E-mail:1054608403@qq.com