張憲亮 徐波 鄧玉強(qiáng),2 賀強(qiáng) 錢帥偉
1青少年健康評價(jià)與運(yùn)動(dòng)干預(yù)教育部重點(diǎn)實(shí)驗(yàn)室 華東師范大學(xué) (上海 200241)
2南通大學(xué)體育科學(xué)學(xué)院
3煙臺(tái)大學(xué)體育學(xué)院
成年神經(jīng)發(fā)生(adult neurogenesis)是指成年后,哺乳動(dòng)物某些腦區(qū)還能夠生成新的內(nèi)源性神經(jīng)干細(xì)胞,并轉(zhuǎn)化成功能性神經(jīng)元加入到現(xiàn)有的神經(jīng)網(wǎng)絡(luò)回路中,最終整合到成年腦的結(jié)構(gòu)和功能中的過程,其主要分布在側(cè)腦室的室管膜下區(qū) (the subventricular zone of the lateral ventricle,SVZ) 和海馬齒狀回的顆粒下層(the subgranular zone of the hippocampal dentate gyrus,SGZ)。 SVZ產(chǎn)生3型祖細(xì)胞(成神經(jīng)細(xì)胞),并沿著遷移流遷移到嗅覺中樞,整合到嗅覺回路;而SGZ產(chǎn)生顆粒細(xì)胞,并在神經(jīng)回路中進(jìn)行功能性整合,形成新的突觸聯(lián)系,與學(xué)習(xí)記憶密切相關(guān)[1]。正常生理?xiàng)l件下,神經(jīng)發(fā)生處于一個(gè)相對平衡狀態(tài),以維持神經(jīng)元功能穩(wěn)定以及腦功能健康。但運(yùn)動(dòng)、衰老、豐富環(huán)境和應(yīng)激等因素會(huì)引起神經(jīng)發(fā)生的改變[2]。一般來說,適宜的運(yùn)動(dòng)可促進(jìn)成年海馬齒狀回SGZ神經(jīng)干細(xì)胞的增殖、存活和分化,提高學(xué)習(xí)記憶能力,維持腦健康[3]。那么,運(yùn)動(dòng)是如何影響成年大腦神經(jīng)發(fā)生過程呢?其生物學(xué)機(jī)制又如何呢?
動(dòng)物實(shí)驗(yàn)發(fā)現(xiàn),新生神經(jīng)元的產(chǎn)生受到細(xì)胞間相互作用和某些信號(hào)通路的影響。不管是通過降低神經(jīng)發(fā)生速率使神經(jīng)元產(chǎn)生過少,還是通過抑制細(xì)胞凋亡使神經(jīng)元產(chǎn)生過多,都會(huì)損害海馬學(xué)習(xí)記憶能力。因此,成年海馬的神經(jīng)發(fā)生必須受到精確調(diào)控[4]。機(jī)體通過哪一信號(hào)通路整合各種刺激,精確調(diào)控神經(jīng)發(fā)生以滿足機(jī)體的需求仍不清楚。但新生神經(jīng)元的存活以及形態(tài)的成熟都涉及到cAMP反應(yīng)元件結(jié)合蛋白(cyclic-AMP response binding protein,CREB)。據(jù)此,本文將運(yùn)動(dòng)、CREB以及神經(jīng)發(fā)生的研究進(jìn)展進(jìn)行綜述。
CREB是真核細(xì)胞內(nèi)核轉(zhuǎn)錄增強(qiáng)因子,受多種因素激活,進(jìn)而調(diào)控靶基因轉(zhuǎn)錄。它是由一段30bp左右的DNA片段構(gòu)成的cAMP應(yīng)答序列,這段序列含有高度保守的5’-TGACGTCA-3’的8堿基回文結(jié)構(gòu),主要存在于基因的啟動(dòng)子與增強(qiáng)子上。CREB信號(hào)通路的關(guān)鍵環(huán)節(jié)是CREB磷酸化。免疫組化實(shí)驗(yàn)證實(shí),CREB信號(hào)通路在神經(jīng)發(fā)生中的作用主要由磷酸化的CREB(pCREB)調(diào)控。海馬SGZ區(qū)產(chǎn)生的絕大多數(shù)新生未成熟神經(jīng)元都伴隨有CREB磷酸化[5,6]。 Jagasia等[6]發(fā)現(xiàn),成年海馬齒狀回新生顆粒細(xì)胞從產(chǎn)生后的3~21天一直伴有CREB磷酸化,且pCREB的免疫活性伴隨著DCX(doublecortin+,主要用于標(biāo)記未成熟的新生神經(jīng)細(xì)胞)的表達(dá),隨著顆粒細(xì)胞的成熟,DCX的表達(dá)減少,pCREB也隨之下調(diào)。
目前,通過各種方法已經(jīng)檢測到CREB信號(hào)通路在成年動(dòng)物腦內(nèi)神經(jīng)發(fā)生中的作用。磷酸二酯酶-4(phosphodiesterase 4,PDE-4)抑制劑激活了成年腦內(nèi)的CREB信號(hào)通路,促進(jìn)齒狀回神經(jīng)干細(xì)胞增殖,新生神經(jīng)元存活以及樹突分支[7]。 Giachino等[8]在敲除了CREB的轉(zhuǎn)基因鼠中發(fā)現(xiàn)新生顆粒細(xì)胞減少,說明CREB信號(hào)在成年新生神經(jīng)元的存活中起了關(guān)鍵作用。以上研究說明CREB信號(hào)通路可調(diào)節(jié)成年神經(jīng)發(fā)生,然而CREB信號(hào)通路是直接調(diào)控干細(xì)胞還是通過其它分子機(jī)制起作用,目前仍不清楚。
成年海馬神經(jīng)發(fā)生受到外源性和內(nèi)源性因素的共同調(diào)控。1997年,Kempermann等[9]首先發(fā)現(xiàn)豐富環(huán)境可促進(jìn)成年海馬神經(jīng)發(fā)生,同時(shí)提高了海馬依賴的空間學(xué)習(xí)記憶能力。豐富環(huán)境包含運(yùn)動(dòng)、社會(huì)交往、學(xué)習(xí)訓(xùn)練及身體活動(dòng)等多個(gè)因素。為了確定具體哪個(gè)因素在成年海馬神經(jīng)發(fā)生中具有關(guān)鍵作用,van Praag等[10]把各個(gè)因素剝離出來,將小鼠分為運(yùn)動(dòng)、學(xué)習(xí)、豐富環(huán)境及對照組,發(fā)現(xiàn)只有運(yùn)動(dòng)組小鼠海馬齒狀回神經(jīng)干細(xì)胞增殖及存活能力增強(qiáng)、空間記憶能力提高。Ehninger等[11]將小鼠分為豐富環(huán)境組及不含跑輪的豐富環(huán)境組,發(fā)現(xiàn)運(yùn)動(dòng)對神經(jīng)發(fā)生具有更明顯的促進(jìn)作用。Kobilo等[12]驗(yàn)證了Ehninger的研究,將C57BL/6雌性小鼠分為對照組、跑輪組、豐富環(huán)境組及不含跑輪的豐富環(huán)境組,發(fā)現(xiàn)運(yùn)動(dòng)在促進(jìn)海馬神經(jīng)發(fā)生及增加BDNF表達(dá)上起了關(guān)鍵作用。
運(yùn)動(dòng)可促進(jìn)成年腦內(nèi)神經(jīng)發(fā)生。一些研究發(fā)現(xiàn),不管是被動(dòng)運(yùn)動(dòng)還是主動(dòng)運(yùn)動(dòng)均可促進(jìn)成年海馬神經(jīng)發(fā)生。Kim等[13]研究了1周強(qiáng)制性跑臺(tái)訓(xùn)練對SD大鼠(5周齡)神經(jīng)發(fā)生的影響。結(jié)果表明,中、低強(qiáng)度訓(xùn)練均可顯著增加大鼠海馬齒狀回5-溴-2-脫氧尿苷陽性(BrdU+)細(xì)胞的數(shù)量。Lou等[14]的研究也發(fā)現(xiàn),低、中強(qiáng)度跑臺(tái)訓(xùn)練能促進(jìn)大鼠(5周齡)海馬神經(jīng)發(fā)生和相關(guān)基因表達(dá)。Synder等[15]探討了自主運(yùn)動(dòng)對6周齡小鼠新生神經(jīng)細(xì)胞存活和功能性整合的作用,結(jié)果發(fā)現(xiàn)12天自主運(yùn)動(dòng)增加了海馬齒狀回SGZ區(qū)新生細(xì)胞數(shù)量,提示自主運(yùn)動(dòng)促進(jìn)了新生神經(jīng)細(xì)胞的功能性整合。Mustroph等[16]將C57BL/6雄性小鼠分為對照組、跑輪運(yùn)動(dòng)組、豐富環(huán)境組和豐富環(huán)境+跑輪組。32天后進(jìn)行Morris水迷宮實(shí)驗(yàn),并采用BrdU+/NeuN+雙標(biāo)記新生神經(jīng)元。結(jié)果顯示,跑輪組和豐富環(huán)境+跑輪組BrdU+/NeuN+的陽性細(xì)胞顯著增加,學(xué)習(xí)記憶能力顯著提高,提示跑輪運(yùn)動(dòng)促進(jìn)了大腦神經(jīng)發(fā)生,提高學(xué)習(xí)記憶能力。以上實(shí)驗(yàn)表明,被動(dòng)運(yùn)動(dòng)與主動(dòng)運(yùn)動(dòng)均能誘導(dǎo)成年海馬神經(jīng)發(fā)生,且適宜的運(yùn)動(dòng)不僅在數(shù)量上,還在質(zhì)量上影響神經(jīng)發(fā)生。
運(yùn)動(dòng)也可抑制由年齡增加引起的神經(jīng)發(fā)生水平下降[17,18]。Lafenêtre等[18]發(fā)現(xiàn),運(yùn)動(dòng)抑制了由年齡增加引起的海馬神經(jīng)細(xì)胞增殖的減少,增加新生顆粒細(xì)胞的產(chǎn)生,老年小鼠神經(jīng)發(fā)生水平明顯低于成年小鼠。最近研究發(fā)現(xiàn),運(yùn)動(dòng)還可促進(jìn)AD模型鼠的神經(jīng)發(fā)生,提高認(rèn)知功能[19,20]。跑輪運(yùn)動(dòng)減少了AD轉(zhuǎn)基因鼠(過表達(dá)APP695swe)的Aβ沉積,改善其空間記憶能力[19]。Rodriguez等[20]發(fā)現(xiàn),AD轉(zhuǎn)基因鼠神經(jīng)發(fā)生水平下降,但是運(yùn)動(dòng)后神經(jīng)發(fā)生水平得以提高。因此,運(yùn)動(dòng)不僅可促進(jìn)成年鼠神經(jīng)發(fā)生,還可抑制由年齡增加或AD等因素造成的神經(jīng)發(fā)生水平的降低。
適宜的運(yùn)動(dòng)不僅可以促進(jìn)海馬齒狀回SGZ神經(jīng)發(fā)生,還可影響新生神經(jīng)元的成熟過程。Luo等[21]在小鼠腦缺血造模后令其進(jìn)行自主跑輪運(yùn)動(dòng),結(jié)果發(fā)現(xiàn)運(yùn)動(dòng)可促進(jìn)腦缺血小鼠海馬齒狀回新生顆粒細(xì)胞的產(chǎn)生,同時(shí)CREB磷酸化水平上調(diào),改善了腦缺血造成的學(xué)習(xí)記憶能力下降。Thakker等[22]發(fā)現(xiàn)運(yùn)動(dòng)調(diào)節(jié)了CREB的磷酸化水平,促進(jìn)新生神經(jīng)元的產(chǎn)生及存活。Huang等[23]發(fā)現(xiàn)自主跑輪運(yùn)動(dòng)后,成年海馬齒狀回新生神經(jīng)元細(xì)胞存活能力增強(qiáng),同時(shí)伴隨著齒狀回內(nèi)CREB磷酸化水平升高。因此,運(yùn)動(dòng)依賴的神經(jīng)發(fā)生伴隨著CREB的磷酸化。CREB作為一種細(xì)胞核內(nèi)轉(zhuǎn)錄因子,可通過自身磷酸化修飾調(diào)節(jié)下游靶基因的轉(zhuǎn)錄。CREB能整合Ca2+、cAMP及生長因子等信號(hào),是細(xì)胞內(nèi)多條信號(hào)轉(zhuǎn)導(dǎo)通路的集聚點(diǎn)。Ca2+、cAMP及生長因子等可誘導(dǎo)CREB的磷酸化,磷酸化的CREB與cAMP反應(yīng)元件 (cAMP response element,CRE)結(jié)合,與輔助激活因子CREB結(jié)合蛋白(CREB-binding protein,CBP)及p300(一種基因編碼的核蛋白)一起在共激活因子作用下,調(diào)控下游靶基因的轉(zhuǎn)錄。同時(shí),CRE序列中CpG的甲基化可抑制其與CREB結(jié)合;miRNA也可改變RNA結(jié)合蛋白的位置,按順序結(jié)合CBP/p300,抑制CBP/p300活性;DNA甲基化及miRNA都可以直接作用于CREB轉(zhuǎn)錄后的目的基因表達(dá),共同調(diào)控成年神經(jīng)發(fā)生(圖1)。
圖1 CREB各階段與神經(jīng)發(fā)生
Suijo等[24]研究發(fā)現(xiàn),14天自主運(yùn)動(dòng)后小鼠海馬內(nèi)腦源性神經(jīng)營養(yǎng)因子 (brain-derived neurotrophic factor,BDNF)、CREB上調(diào),mTOR及p70S6K磷酸化水平提高,并且海馬神經(jīng)發(fā)生能力增強(qiáng)。Lee等[25]研究發(fā)現(xiàn)自主運(yùn)動(dòng)提高了大鼠海馬內(nèi)BDNF、CREB、p-CREB的蛋白水平。運(yùn)動(dòng)通過CREB的磷酸化調(diào)節(jié)成年海馬神經(jīng)發(fā)生,同時(shí)伴隨著BDNF蛋白水平升高,說明運(yùn)動(dòng)調(diào)節(jié)神經(jīng)發(fā)生的機(jī)制可能與CREB的磷酸化及BDNF蛋白表達(dá)有關(guān)。海馬內(nèi)BDNF的快速增加會(huì)短暫激活TrkB導(dǎo)致CREB的磷酸化,而BDNF的漸進(jìn)性增強(qiáng)會(huì)持續(xù)性激活TrkB受體并使CREB持續(xù)性磷酸化[26]。急性和漸進(jìn)性增加BDNF對CREB磷酸化產(chǎn)生了不同的結(jié)果,說明CREB的磷酸化可能是由BDNF的改變引起的。BDNF蛋白高表達(dá)會(huì)激活絲裂原活化蛋白激酶 (mitogen activated protein kinase,MAPK),從而促進(jìn)CREB在133位點(diǎn)磷酸化[27]。同時(shí),運(yùn)動(dòng)可顯著提高BDNF水平。因此,運(yùn)動(dòng)可能提高了BDNF表達(dá)水平,通過TrkB受體,作用于MAPK途徑,促使CREB在133位點(diǎn)磷酸化,促進(jìn)海馬神經(jīng)發(fā)生。此外,與神經(jīng)發(fā)生相關(guān)的生長因子還包括VEGF、IGF-1等,運(yùn)動(dòng)促進(jìn)神經(jīng)發(fā)生的同時(shí)伴隨著VEGF[28]、IGF-1[29]表達(dá)增加。
Ma等[30]發(fā)現(xiàn)運(yùn)動(dòng)后5-HT1A受體、CREB的表達(dá)上調(diào)。運(yùn)動(dòng)首先激活了海馬5-HT系統(tǒng),促進(jìn)5-HT合成和5-HT1A受體表達(dá)增加,神經(jīng)傳遞功能增強(qiáng)。由于5-HT1A受體是G蛋白偶聯(lián)受體 (G-proteincoupled receptors,GPCRs),通過G 蛋白偶聯(lián)使cAMP環(huán)化酶活性升高,接著cAMP水平升高,進(jìn)而激活PKA,后者在133位點(diǎn)磷酸化CREB,促使下游靶基因轉(zhuǎn)錄。同時(shí),5-HT、去甲腎上腺素、多巴胺等神經(jīng)遞質(zhì)通過GPCRs介導(dǎo)的信號(hào)通路調(diào)節(jié)成年神經(jīng)發(fā)生[31]。因此,運(yùn)動(dòng)后5-HT、多巴胺等神經(jīng)遞質(zhì)通過GPCRs,促使腺苷酸環(huán)化酶 (adenylate cyclase,AC)生成cAMP,cAMP激活PKA,轉(zhuǎn)移到核內(nèi)使CREB磷酸化,調(diào)控神經(jīng)發(fā)生。
在成年海馬齒狀回新生顆粒細(xì)胞內(nèi)發(fā)現(xiàn)了NMDA受體的激活[32],而敲除NMDA受體的成神經(jīng)細(xì)胞出現(xiàn)死亡[33]。這提示,NMDA受體與神經(jīng)發(fā)生密切相關(guān)。Lou等[14]發(fā)現(xiàn)運(yùn)動(dòng)促進(jìn)神經(jīng)發(fā)生,并提高了海馬NMDAR1 mRNA水平。 Real等[34]將大鼠分為3天、7天、15天、30天運(yùn)動(dòng)組及對照組,免疫組化檢測AMPA受體亞基GluR1、GluR2/3的變化,發(fā)現(xiàn)30天運(yùn)動(dòng)后GluR1、GluR2/3表達(dá)增加,運(yùn)動(dòng)誘導(dǎo)腦的可塑性增強(qiáng)。NMDA受體、AMPA受體激活后,胞內(nèi)Ca2+增加,激活了鈣調(diào)激酶 (CaMK),CaMKIV是CREB在133位點(diǎn)磷酸化的關(guān)鍵環(huán)節(jié),而CaMKⅡ可使CREB在142/143位點(diǎn)磷酸化。同時(shí),Ca2+還可通過第二信使cAMP促使CREB在133位點(diǎn)磷酸化。因此,運(yùn)動(dòng)誘導(dǎo)神經(jīng)發(fā)生的機(jī)制可能是運(yùn)動(dòng)上調(diào)了NMDAR、AMPAR的表達(dá)。同時(shí),適宜的運(yùn)動(dòng)可使谷氨酸在正常范圍內(nèi)升高,與其受體結(jié)合,促使Ca2+通道打開,Ca2+濃度增加,激活CaMK或cAMP,調(diào)節(jié)CREB的磷酸化,調(diào)控神經(jīng)發(fā)生。豐富性環(huán)境小鼠海馬神經(jīng)祖細(xì)胞增殖的同時(shí),其海馬組織中CaMK和CREB的表達(dá)量也顯著增加,證實(shí)了CaMK/CREB表達(dá)增加可能在豐富環(huán)境介導(dǎo)的神經(jīng)發(fā)生中起重要作用。
以上研究表明,運(yùn)動(dòng)可通過CREB上游分子(如BDNF等營養(yǎng)因子介導(dǎo)的MAPK途徑、5-HT介導(dǎo)的cAMP/PKA/CREB信號(hào)通路、Ca2+介導(dǎo)的Ca2+/CaMK通路)促進(jìn)CREB磷酸化,調(diào)控神經(jīng)發(fā)生(圖2)。
圖2 運(yùn)動(dòng)對CREB磷酸化水平的調(diào)控
CREB的轉(zhuǎn)錄水平依賴于CBP/p300等的募集。CBP/p300是一種組蛋白乙?;D(zhuǎn)移酶,可促進(jìn)核小體上組蛋白乙?;谷旧w結(jié)構(gòu)松散,從而更有利于轉(zhuǎn)錄因子、RNA聚合酶與DNA的結(jié)合。CREB磷酸化后,必須與CRE結(jié)合,在CBP/p300的共同作用下才能發(fā)揮作用。影響CRE位點(diǎn)及CBP/p300募集的共激活因子包括CREB活性調(diào)節(jié)傳導(dǎo)子 (transducers of regulated CREB activity ,TORC)、TOX3、神經(jīng)細(xì)胞特異性轉(zhuǎn)錄因子4(LIM domain only4,LMO4)、下游監(jiān)管元素拮抗劑調(diào)制器(Downstream regulatory element antagonist modulator,DREAM)和鈣反應(yīng)激活因子(Calcium responsive transactivator,CREST)、 血清效應(yīng)因子(serum response factor,SRF)等。 運(yùn)動(dòng)可能通過影響這些共激活因子調(diào)控神經(jīng)發(fā)生。
TORC1在成年腦內(nèi)神經(jīng)發(fā)生及突觸可塑性中起重要作用。磷酸化的TORC1沒有轉(zhuǎn)錄活性,Ca2+和cAMP可調(diào)節(jié)TORC1去磷酸化,從而調(diào)節(jié)海馬神經(jīng)元發(fā)生[35]。Ca2+水平增加,激活了鈣調(diào)磷酸酶的活性,后者可使磷酸化的TORC1去磷酸化,從而激活CREB的轉(zhuǎn)錄。運(yùn)動(dòng)上調(diào)了谷氨酸水平,增加胞內(nèi)Ca2+濃度,且運(yùn)動(dòng)激活GPCR,使cAMP表達(dá)增加[30]。因此,運(yùn)動(dòng)后Ca2+濃度及cAMP增加,介導(dǎo)TORC1的去磷酸化,TORC1去磷酸化后被轉(zhuǎn)運(yùn)至核內(nèi),結(jié)合CREB,促進(jìn)CBP/p300的募集,作用于靶基因,引起腦內(nèi)神經(jīng)發(fā)生。
運(yùn)動(dòng)后NDMA、AMPA受體激活以及谷氨酸水平上升均能引起Ca2+內(nèi)流[14,34]。 目前在Ca2+介導(dǎo)的CREB信號(hào)通路中發(fā)現(xiàn)了許多轉(zhuǎn)錄因子。TOX3是一種快速移動(dòng)的盒蛋白,在CREB與CBP結(jié)合后起作用,激活神經(jīng)元內(nèi)相關(guān)基因的轉(zhuǎn)錄。敲除TOX3的小鼠神經(jīng)元內(nèi),CREB介導(dǎo)的c-fos活性降低。并且TOX3的轉(zhuǎn)錄與CRE位點(diǎn)密切相關(guān)。有學(xué)者提出TOX3可能通過結(jié)合小溝和彎曲DNA,使CREB與CBP結(jié)合物靠近轉(zhuǎn)錄位點(diǎn),從而促進(jìn)轉(zhuǎn)錄[36]。LMO4在齒狀回及嗅覺系統(tǒng)等成年腦內(nèi)的中樞神經(jīng)系統(tǒng)中高度表達(dá),可調(diào)節(jié)軸突發(fā)育以及控制丘腦皮層模式和神經(jīng)元密度[37]。Ca2+的流動(dòng)激活了MAPK和CaMKIV,上調(diào)LMO4,促進(jìn)神經(jīng)元轉(zhuǎn)錄;同時(shí)LMO4也可被PKA通路激活。DREAM和CREST抑制CREB的轉(zhuǎn)錄。DREAM和CREB結(jié)合后抑制CBP的募集,Ca2+內(nèi)流時(shí),DRE釋放出DREAM,抑制作用消除。總之,DREAM蛋白的減少促使CREB介導(dǎo)的基因轉(zhuǎn)錄增加,抵制神經(jīng)元降解。CREST結(jié)合CREB后抑制皮質(zhì)及海馬神經(jīng)元樹突發(fā)育[38]。因此,運(yùn)動(dòng)引起Ca2+內(nèi)流,上調(diào)了TOX3、LMO4,下調(diào)了DREAM、CREST,促進(jìn)CBP的募集,激活神經(jīng)元內(nèi)相關(guān)基因的轉(zhuǎn)錄,調(diào)節(jié)神經(jīng)發(fā)生。
SRF在海馬齒狀回顆粒細(xì)胞發(fā)生以及早期未成熟神經(jīng)元遷移中起重要作用[39]。生長因子、神經(jīng)營養(yǎng)因子以及神經(jīng)元的活性可通過MAPKs、鈣調(diào)激酶、Rho/肌動(dòng)蛋白等信號(hào)通路,激活SRF或SRF輔助因子(包括MRTF、TCF),促使SRF與CREB結(jié)合,調(diào)節(jié)下游c-fos基因[40]。同時(shí),大量實(shí)驗(yàn)已證實(shí)運(yùn)動(dòng)可上調(diào)BDNF、VEGF、IGF-1的表達(dá)[24,28,29],因此,運(yùn)動(dòng)還可能通過生長因子、營養(yǎng)因子等調(diào)節(jié)SRF,促進(jìn)未成熟神經(jīng)元遷移,神經(jīng)顆粒細(xì)胞存活。
表觀遺傳修飾可影響基因轉(zhuǎn)錄活性,但并不引起基因序列改變,包括DNA甲基化、miRNA的調(diào)控等。DNA甲基化和miRNA可調(diào)節(jié)CREB信號(hào)通路。CRE序列中含有CpG結(jié)構(gòu),可被DNA甲基化,CpG的甲基化可抑制其與CREB結(jié)合[41]。神經(jīng)元活性可調(diào)節(jié)DNA甲基化,說明新生神經(jīng)元可通過調(diào)節(jié)DNA的甲基化來激活CREB目的基因。CREB可與甲基CpG結(jié)合蛋白2 (methyl-CpG-binding protein 2,MeCP2)相互作用。MeCP2與甲基化的CpGs結(jié)合,募集抑制因子,改變?nèi)旧w結(jié)構(gòu)。然而有研究顯示,MeCP2也可募集輔助因子,激活CREB特殊目的基因的轉(zhuǎn)錄[42]。MeCP2活性受到絲氨酸殘基磷酸化以及去磷酸化的影響。神經(jīng)元活性以及Ca2+的內(nèi)流會(huì)激活CaMKII介導(dǎo)的MeCP2在Ser421的磷酸化,促進(jìn)樹突的形成和棘突的成熟[43]。BDNF是CREB的目的基因之一,有效的運(yùn)動(dòng)訓(xùn)練可降低BDNF基因啟動(dòng)子區(qū)域甲基化水平,加強(qiáng)BDNF基因轉(zhuǎn)錄,從而提高海馬BDNF mRNA水平[44]。BDNF對于神經(jīng)發(fā)生的促進(jìn)效應(yīng)已經(jīng)得到證實(shí)。因此,運(yùn)動(dòng)可能通過降低DNA甲基化水平改善CREB目的基因BDNF的表達(dá)來影響神經(jīng)發(fā)生。
miRNA是一類約有19~23個(gè)核苷酸大小的mRNA,主要通過RNA降解或翻譯抑制來抑制mRNA的表達(dá)。有研究發(fā)現(xiàn),某些miRNA(miR-132,miR-134等)在成年神經(jīng)發(fā)生中調(diào)控干細(xì)胞存活、分化。CREB可通過miR-132和MeCP2調(diào)節(jié)神經(jīng)元形態(tài)[45],而miR-134也可調(diào)節(jié)CREB轉(zhuǎn)錄后基因表達(dá)[46]。運(yùn)動(dòng)可通過調(diào)節(jié)肌肉特異性miRNA來調(diào)節(jié)肌細(xì)胞增殖分化,調(diào)控肌細(xì)胞發(fā)育。那么,運(yùn)動(dòng)是否通過miRNA調(diào)控神經(jīng)發(fā)生呢?研究發(fā)現(xiàn),BDNF通過TrkB/mTOR通路抑制miR-134促進(jìn)Limk1的合成。敲除miR-134的大鼠海馬神經(jīng)元棘突的長度及寬度增加[47]。而且抑制miR-134會(huì)誘導(dǎo)CREB的活性[46],因此,運(yùn)動(dòng)可能通過BDNF抑制miR-134,增強(qiáng)CREB活性,調(diào)節(jié)神經(jīng)發(fā)生。
運(yùn)動(dòng)不僅可促進(jìn)成年鼠海馬神經(jīng)發(fā)生,還可抑制由年齡增加、AD等導(dǎo)致的神經(jīng)發(fā)生的下降。并且成年海馬齒狀回神經(jīng)發(fā)生一直伴隨著CREB的磷酸化,說明運(yùn)動(dòng)可能通過CREB調(diào)控成年海馬神經(jīng)發(fā)生。 CREB磷酸化受到cAMP/PKA、Ca2+/CaMK、MAPK等通路調(diào)節(jié),多種共激活因子(TORC、TOX3、LMO-4、SRF)可促進(jìn)pCREB募集更多的CBP/p300,提高CREB基因轉(zhuǎn)錄水平,DNA甲基化、miRNA可直接作用于CREB靶基因,影響其表達(dá)。因此,運(yùn)動(dòng)對CREB的調(diào)控涉及到CREB磷酸化的調(diào)控、共激活因子對CREB轉(zhuǎn)錄水平的調(diào)控及CREB目的基因的調(diào)控。而運(yùn)動(dòng)通過哪一階段調(diào)控CREB,從而調(diào)節(jié)神經(jīng)發(fā)生,目前并不明確。現(xiàn)有的研究僅集中于運(yùn)動(dòng)影響CREB上游的BDNF等分子來調(diào)節(jié)神經(jīng)發(fā)生。運(yùn)動(dòng)是否可通過某個(gè)信號(hào)轉(zhuǎn)導(dǎo)通路來影響CREB的磷酸化從而調(diào)節(jié)神經(jīng)發(fā)生,是否可通過營養(yǎng)因子、Ca2+等影響CREB相關(guān)的共激活因子來調(diào)節(jié)CREB的轉(zhuǎn)錄,是否可影響DNA甲基化或某些miRNA來影響CREB目的基因的轉(zhuǎn)錄,從而調(diào)節(jié)神經(jīng)發(fā)生,這些問題在今后的研究中仍需進(jìn)一步探索。
[1]Zhao C,Deng W,Gage FH.Mechanisms and functional implications of adult neurogenesis.Cell,2008,132 (4):645-660.
[2]Ma DK,Bonaguidi MA,Ming GL,et al.Adult neural stem cell in the mammalian central nervous system.Cell Res,2009,19(6):672-682.
[3]Van Praag H.Exercise and the brain:something to chew on.Trends Neurosci,2009,32(5): 283-290.
[4]Dupret D,F(xiàn)abre A,Dobrossy MD,et al.Spatial learning depends on both the addition and removal of new hippocampal neurons.PLoS Biol,2007,5(8):e214.
[5]Herold S,Jagasia R,Merz K,et al.CREB-signalling regulates early survival,neuronal gene expression and morphological development in adult subventricular zone neurogenesis.Mol Cell Neurosci,2011,46(1):79-88.
[6]Jagasia R,Steib K,Englberger E,et al.GABA-cAMP response element binding protein signaling regulates maturation and survival of newly generated neurons in the adult hippocampus.Neurosci,2009,29(25):7966-7977.
[7]Fujioka T,F(xiàn)ujioka A,Duman RS.Activation of cAMP signaling facilitates the morphological maturation of newborn neurons in adult hippocampus.Neurosci,2004,24 (2):319-328.
[8]Giachino C,De Marchis S,Giampietro C,et al.cAMP response element-binding protein regulates differentiation and survival of newborn neurons in the olfactory bulb.Neurosci,2005,25(44):10105-10118.
[9]Kempermann G,Kuhn HG,Gage FH.More hippocampal neurons in adult mice living in an enriched environment.Nature,1997,386(6624):493-495.
[10]van Praag H,Kempermann G,Gage FH.Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus.Nat Neurosci,1999,2(3):266-270.
[11]Ehninger D,Kempermann G.Regional effects of wheel running and environmental enrichment on cell genesis and microglia proliferation in the adult murine neocortex.Cereb Cortex,2003,13(8):845-851.
[12]Kobilo T,Liu QR,Gandhi K,et al.Running is the neurogenic and neurotrophic stimulus in environmental enrichment.Learn Mem,2011,18(9):605-609.
[13]Kim SH,Kim HB,Jang MH,et al.Treadmill exercise increases cell proliferation without altering of apoptosis in dentate gyrus of Sprague-Dawley rats.Life Sci,2002,71(11): 1331-1340.
[14]Lou SJ,Liu JY,Chang H,et al.Hippocampal neurogenesis and gene expression depend on exercise intensity in juvenile rats.Brain Res,2008,1210:48-55.
[15]Snyder JS,Glover LR,Sanzone KM,et al.The effects of exercise and stress on the survival and maturation of adult-generated granule cells.Hippocampus,2009,19(10):898-906.
[16]Mustroph ML,Chen S,Desai SC,et al.Aerobic exercise is the critical variable in an enriched environment that increases hippocampal neurogenesis and water maze learning in male C57BL/6J mice.Neuroscience,2012,219:62-71.
[17]Michael WM,Michelle C,van Praag H,et al.Running throughout middle-Age improves memory function,hippocampalneurogenesis,and BDNF Levelsin female C57Bl/6J mice.Dev Neurobiol,2012,72(6):943-952.
[18]Lafenêtre P,Leske O,Ma-Z,et al.Exercise can rescue recognition memory impairment in a model with reduced adult hippocampal Neurogenesis.Front Behav Neurosci,2010,3:34-43.
[19]Adlard PA,Perreau VM,Pop V,et al.Voluntary exercise decreases amyloid load in a transgenic modelof Alzheimer’s disease.J Neurosci,2005,25 (17):4217-4221.
[20]Rodríguez JJ,Noristani HN,Olabarria M,et al.Voluntary running and environmental enrichment restores impaired hippocampal neurogenesis in a triple transgenic mouse model of Alzheimer’s disease.Curr Alzheimer Res,2011,8(7):707-717.
[21]Luo CX,Jiang J,Zhou QG,et al.Voluntary exercise-induced neurogenesis the postischemic dentate gyrus is associated with spatial memory recovery from stroke.J Neurosci Res,2007,85(8):1637-1646.
[22]Thakker VS,Alder J.Neuropeptides in depression: role of VGF.Behav Brain Res,2009,197(2):262-278.
[23]Huang FL,Huang KP,Wu J,et al.Environmental enrichment enhances neurogranin expression and hippocampal learning and memory but fails to rescue the impairments of neurogranin null mutant mice.J Neurosci,2006,26(23):6230-6237.
[24]Suijo K,Inoue S,Ohya Y,et al.Resistance exercise enhances cognitive function in mouse.Int J Sports Med,2012,10:1055-1064.
[25]Lee MC,Okamoto M,Liu YF,et al.Voluntary resistance running with short distance enhances spatial memory related to hippocampal BDNF signaling.J Appl Physiol,2012,113(8):1260-1266.
[26]Ji Y,Lu Y,Yang F,et al.Acute and gradual increases in BDNF concentration elicit distinct signaling and functions in neurons.Nat Neurosci,2010,13(3):302-309.
[27]Jeon SJ,Rhee SY,Seo JE,et al.Oroxylin A increases BDNF production by activation of MAPK-CREB pathway in rat primary cortical neuronal culture.Neurosci Res,2011,69(3):214-222.
[28]Fabel K,Tam B,Kaufer D,et al.VEGF is necessary for exercise-induced adult hippocampal neurogenesis.Eur J Neurosci,2003,18(10):2803-2812.
[29]Ding Q,Vaynman S,Akhavan M,et al.Insulin-like growth factor-1 interfaces with brain-derived neurotrophic factormediated synaptic plasticity to modulate aspects of exercise-induced cognitive function.Neuroscience,2006,140(3): 823-833.
[30]Ma Q.Beneficial effects of moderate voluntary physical exercise and its biological mechanisms on brain health.Neurosci Bull,2008,24(4):265-270.
[31]Doze VA,Perez DM.G-protein-coupled receptors in adult neurogenesis.Pharmacol Rev,2012,64(3):645-675.
[32]Ge S,Goh EL,Sailor KA,et al.GABA regulates synaptic integration of newly generated neurons in the adult brain.Nature,2006,439(7076):589-593.
[33]Platel JC,Dave KA,Gordon V,et al.NMDA receptors activated by subventricular zone astrocytic glutamate are critical for neuroblast survival prior to entering a synaptic network.Neuron,2010,65(6):859-872.
[34]Real CC,F(xiàn)erreira AF,Hernandes MS,et al.Exercise-induced plasticity of AMPA-type glutamate receptor subunits in the rat brain.Brain Res,2010,1363:63-71.
[35]Screaton RA,Conkright MD,Katoh Y,et al.The CREB coactivator TORC2 functions as a calcium-and cAMP-sensitive coincidence detecto.Cell,2004,119(1):61-74.
[36]Yuan SH,Qiu Z,Ghosh A.TOX3 regulates calcium-dependent transcription in neurons.Proc NatlAcad Sci USA,2009,106(8):2909-2914.
[37]Joshi K,Lee S,Lee B,et al.LMO4 controls the balance between excitatory and inhibitory spinal V2 interneurons.Neuron,2009,61(6):839-851.
[38]Aizawa H,Hu SC,Bobb K ,et al.Dendrite development regulated by CREST,a calcium-regulated transcriptional activator.Science,2004,303(5655):197-202.
[39]Knoll B,Kretz O,F(xiàn)iedler C,et al.Serum response factor controls neuronal circuit assembly in the hippocampus.Nat Neurosci,2006,9(2):195-204.
[40]Ravnskjaer K,Kester H,Liu Y,et al.Cooperative interactions between CBP and TORC2 confer selectivity to CREB target gene expression.EMBO J,2007,26 (12):2880-2889.
[41]Zhang X,Odom DT,Koo SH,et al.Genome-wide analysis of cAMP-response element binding protein occupancy,phosphorylation,and target gene activation in human tissues.Proc Natl Acad Sci USA,2005,102 (12):4459-4464.
[42]Chahrour M,Jung SY,Shaw C,et al.MeCP2,a key contributor to neurological disease,activates and represses transcription.Science,2008,320(5880):1224-1229.
[43]Zhou Z,Hong EJ,Cohen S,et al.Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription,dendritic growth,and spine maturation.Neuron,2006,52(2):255-269.
[44]Gomez Pinilla F,Zhuang Y,F(xiàn)eng J,et al.Exercise impacts brain derived neurotrophic factor plasticity by engaging mechanisms of epigenetic regulation.Eur J Neurosci,2011,33(3):383-390.
[45]Vo N,Klein ME,Varlamova O,et al.A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis.Proc Natl Acad Sci USA,2005,102(45):16426-16431.
[46]Gao J,Wang WY,Mao YW,et al.A novel pathway regulates memory and plasticity via SIRT1 and miR-134.Nature,2010,466(7310):1105-1109.
[47]Schratt GM,Tuebing F,Nigh EA,et al.A brain-specific microRNA regulates dendritic spine development.Nature,2006,439(16):283-289.
中國運(yùn)動(dòng)醫(yī)學(xué)雜志2014年1期