亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于高通量測序的全基因組關(guān)聯(lián)研究策略

        2014-05-10 01:25:04周家蓬裴智勇陳禹保陳潤生
        遺傳 2014年11期
        關(guān)鍵詞:覆蓋度外顯子變異

        周家蓬,裴智勇,2,陳禹保,陳潤生

        1. 北京市計(jì)算中心,北京 100094;

        2. 中國科學(xué)院北京基因組研究所,北京 100101;

        3. 中國科學(xué)院生物物理研究所,北京 100101

        全基因組關(guān)聯(lián)研究(Genome-wide association study,GWAS)是對(duì)多個(gè)個(gè)體在全基因組范圍的遺傳變異多態(tài)性進(jìn)行檢測,獲得基因型,進(jìn)而將基因型與可觀測的性狀,即表型,進(jìn)行群體水平的統(tǒng)計(jì)學(xué)分析,根據(jù)統(tǒng)計(jì)量或P值篩選出最有可能影響該性狀的遺傳變異。GWAS的主要方法學(xué)依據(jù)是歸納法中的共變法,是探究復(fù)雜因果關(guān)系的最主要的思想和方法。因此,GWAS特別適用于遺傳機(jī)理不明的復(fù)雜疾病或性狀。得到高密度、高可信的遺傳變異是GWAS的基礎(chǔ),這些遺傳變異包括單核苷酸多態(tài)性(Single nucleotide polymorphisms,SNP)、插入缺失(Insertion and deletion,InDel)及拷貝數(shù)變異(Copy number variation,CNV)等,其中最主要的是SNP,占標(biāo)記總量的90%以上。目前獲得高密度SNP的方法主要是SNP芯片(Array),因其高效、易用、廉價(jià)等特點(diǎn)在近些年被廣泛使用。而第二代測序技術(shù)(Next-generation sequencing,NGS)的快速發(fā)展,為GWAS的相關(guān)研究工作提供了新的技術(shù)和思路。NGS可以獲得大量低頻甚至稀有的遺傳變異,一些無法由芯片的高頻或常規(guī)變異(即 MAF ≥ 5%的變異)檢測到的表型關(guān)聯(lián),有望通過基于NGS的GWAS方法得到有意義的結(jié)果。本文對(duì)基于高通量測序的GWAS的原理、策略及相關(guān)研究進(jìn)展進(jìn)行了闡述,并對(duì)其如何應(yīng)用于個(gè)體化醫(yī)療(Personalized medicine,PM)進(jìn)行了展望。

        1 GWAS概述

        GWAS的研究思路最早于1996 年由Risch等[1]提出,目的是將人類復(fù)雜疾病的研究從候選基因轉(zhuǎn)向全基因組水平,以期用更大規(guī)模的檢測得到與疾病相關(guān)的每一個(gè)基因。近年來,已有多篇報(bào)道對(duì)GWAS研究進(jìn)展進(jìn)行了綜述[2~4]。多年來,在人類疾病相關(guān)研究中,關(guān)于年齡相關(guān)性黃斑變性[5]、冠心病[6,7]、皮膚病[8,9]、2 型糖尿病[10~13]、癌癥[14,15]、精神分裂癥[16~18]、阿爾茨海默氏癥[19]等 GWAS成果相繼被報(bào)道。據(jù)NHGRI GWA Catalog網(wǎng)站(www.genome.gov/GWAStudies)的統(tǒng)計(jì),截至 2013年底,在人類疾病或重要性狀研究方面,共有1778篇高質(zhì)量的GWAS研究工作被收錄,累計(jì)發(fā)現(xiàn)12123個(gè)SNP位點(diǎn),影響癌癥、心血管系統(tǒng)、免疫系統(tǒng)、神經(jīng)系統(tǒng)等17大類800多種重大疾病或其相關(guān)性狀。GWAS不僅在人類醫(yī)學(xué)研究中被廣泛應(yīng)用,在動(dòng)植物遺傳選育等方面也在逐漸興起。在動(dòng)物育種方面,利用GWAS方法研究了奶牛[20~24]、豬[25,26]、肉雞[27,28]等經(jīng)濟(jì)動(dòng)物的數(shù)量性狀。GWAS在植物上也有較多報(bào)道,如玉米的開花時(shí)間[29]、葉片結(jié)構(gòu)[30]、抗枯萎病[31,32],還有水稻的十幾種農(nóng)藝性狀的研究[33]等。以上研究主要采用基于芯片的GWAS方法。

        2 基于NGS的GWAS

        2.1 “合成關(guān)聯(lián)”假設(shè)

        傳統(tǒng)GWAS是基于“Common disease-common variation”(CD-CV)的假設(shè),該假設(shè)比較符合諸如“身高”等數(shù)量性狀的遺傳模式。Allen等[34]收集了約18萬例樣本進(jìn)行分析,發(fā)現(xiàn)了180個(gè)與身高顯著關(guān)聯(lián)的基因座(Loci)在生物學(xué)通路上高度富集,并且這些基因均與骨骼生長缺陷有關(guān),累計(jì)可解釋約10%~16%的表型變異。另一種觀點(diǎn)認(rèn)為,一個(gè)常見變異的“致病”效應(yīng)可能是從一個(gè)稀有變異的致病效應(yīng)“稀釋”而來,即“Common disease-rare variation”(CD-RV)假設(shè)。Dickson等[35]首次提出“合成關(guān)聯(lián)”(Synthetic association)的概念來描述這一現(xiàn)象,利用模擬數(shù)據(jù)證實(shí)合成關(guān)聯(lián)普遍存在于常見變異與稀有變異之間。越來越多的研究證實(shí)“合成關(guān)聯(lián)”模型的真實(shí)性[36~38]。Yang等[39]對(duì)近4000個(gè)無關(guān)個(gè)體的295 K芯片基因型數(shù)據(jù)和身高表型數(shù)據(jù)進(jìn)行關(guān)聯(lián)分析,發(fā)現(xiàn)全部SNP可解釋高達(dá)45%的表型變異;然而,尚有35%的表型變異無法通過芯片上已有的SNP解釋,這主要由常見變異和稀有變異(Rare variation)間的連鎖不平衡所導(dǎo)致。千人基因組計(jì)劃(1000 Genomics Project,http://www.1000genomes.org/)提供了大量可供研究的人群遺傳變異數(shù)據(jù),統(tǒng)計(jì)研究發(fā)現(xiàn),人類基因區(qū)域的遺傳變異一般在進(jìn)化上是近期發(fā)生的,且具有稀有性和人群特異性的特點(diǎn)[40~42]。目前認(rèn)為,常見變異和稀有變異都在致病效應(yīng)上有所貢獻(xiàn)[34,39,43](圖1),效應(yīng)的大小可能與頻率成反比[44,45],符合進(jìn)化和選擇的觀點(diǎn)。隨著研究的不斷深入,稀有變異所占的份量可能會(huì)越來越重,如Fu等[42]對(duì)6500例非、歐裔美國人外顯子組進(jìn)行測序發(fā)現(xiàn),在多達(dá)1.1 M的外顯子區(qū)域變異中,73%在進(jìn)化上是近期發(fā)生,且頻率較低;而在可能致病的變異中,這個(gè)比例高達(dá)86%。以上研究表明,NGS技術(shù)可以為“缺失的遺傳力”[44]問題提供新的解決方案,而隨著NGS技術(shù)的不斷成熟與實(shí)驗(yàn)成本的降低,NGS- GWAS的研究和應(yīng)用可能會(huì)逐漸興起。

        2.2 基于NGS的GWAS新策略和方法

        圍繞CD-CV假設(shè)而設(shè)計(jì)的GWAS芯片主要面向高頻SNP,國際人類基因組單體型圖計(jì)劃(International HapMap Project,http://www.hapmap.org)的數(shù)據(jù)庫主要基于芯片技術(shù)構(gòu)建,因而也以常見變異為主,目前 HapMap III期共收錄約 10 M 個(gè) SNP。傳統(tǒng)GWAS對(duì) MAF<0.05的 SNP很少研究。隨著 NGS技術(shù)的興起,特別是千人基因組計(jì)劃的實(shí)施及其第Ⅰ階段工作的完成,獲得了37 M SNP,此外還檢測出1.4 M插入缺失(InDel)和14 K結(jié)構(gòu)變異(SV);2014年發(fā)布的第Ⅲ階段結(jié)果,遺傳變異位點(diǎn)總量已高達(dá)79 M。此外,外顯子組測序和轉(zhuǎn)錄組測序也累積了大量的遺傳變異。

        基于NGS的GWAS可以驗(yàn)證CD-RV假設(shè)。該假設(shè)認(rèn)為,復(fù)雜疾病是由低頻或稀有變異引起的,且這些攜帶較大遺傳效應(yīng)的變異往往不與常規(guī) SNP緊密連鎖,這可能是造成芯片GWAS的所謂“缺失的遺傳力”問題[44,45]的主要原因。NGS技術(shù)采用高通量的平行測序方式,可以快速地獲取高密度的SNP。隨著該技術(shù)的完善和成熟,以及實(shí)驗(yàn)成本的降低,研究者開始嘗試進(jìn)行基于NGS技術(shù)的GWAS工作,一些新的策略和方法也應(yīng)運(yùn)而生。

        圖1 基于等位基因頻率的復(fù)雜疾病遺傳假設(shè)

        2.2.1 外顯子組測序

        根據(jù)對(duì)孟德爾遺傳病的研究發(fā)現(xiàn),外顯子突變是其主要病因,而復(fù)雜疾病很可能是由與其功能相關(guān)孟德爾遺傳病的致病變異所影響。因此,外顯子組測序相當(dāng)于對(duì)基因組水平的致病變異進(jìn)行了濃縮,只考慮外顯子組,這樣較易于解釋生物學(xué)功能,且易于取得醫(yī)學(xué)上的應(yīng)用,是一種合理的優(yōu)化策略。一些稀有變異與復(fù)雜性狀的關(guān)聯(lián)關(guān)系,可以通過外顯子組測序的方法進(jìn)行研究[46]。

        在一些疾病研究中,如帕金森氏綜合征,基于外顯子測序的關(guān)聯(lián)分析可在一定程度上得到更加豐富的數(shù)據(jù)[47]。Ng等[48]對(duì)4個(gè)Freeman-Sheldon綜合征患者和 8個(gè)正常對(duì)照進(jìn)行了外顯子組測序,在 4個(gè)患者上發(fā)現(xiàn)的致病基因變異位點(diǎn),不存在于任一對(duì)照個(gè)體中,也未在dbSNP數(shù)據(jù)庫中發(fā)現(xiàn),表明該策略在發(fā)掘致病變異研究中是可靠的。外顯子組測序同樣可用于檢測病因未知的疾病,Ng等[49]通過對(duì)4個(gè)未知病因的Miller綜合征患者和8個(gè)正常對(duì)照進(jìn)行外顯子組測序,通過對(duì)非同義突變、InDel、可變剪切變異等篩查,檢測到DHODH基因在4個(gè)病例中存在上述變異而在對(duì)照個(gè)體中不存在。外顯子組測序還可用于疾病輔助診斷和治療。在皮膚病的相關(guān)研究中,Tang等[50]對(duì)781名銀屑病患者以及676名健康對(duì)照個(gè)體的樣本進(jìn)行了外顯子組測序,并在第二階段擴(kuò)大樣本總量至 21309例。通過 GWAS分析,科研人員在IL23R和GJB2基因上檢測到了2個(gè)低頻錯(cuò)義突變,在LCE3D、ERAP1、CARD14 和ZNF816A基因上檢測到了5個(gè)常見錯(cuò)義突變,都與銀屑病的發(fā)生顯著關(guān)聯(lián)。Leslie等[51]通過對(duì)2005個(gè)個(gè)體進(jìn)行外顯子組測序及GWAS分析,發(fā)現(xiàn)PCSK9、LDLR和 APOB基因與人體內(nèi)低密度脂蛋白膽固醇的含量相關(guān)。這兩項(xiàng)研究在GWAS分析中均采用了BURDEN test的方法對(duì)稀有變異進(jìn)行檢測,該方法在近些年的相關(guān)研究中應(yīng)用較為普遍。Choi等[52]通過檢測致病突變位點(diǎn),間接確認(rèn)某患者的疾病癥狀。他們識(shí)別出一些純合同義突變,這些突變從無脊椎動(dòng)物到人類都高度保守。檢測這些突變可能引發(fā)的疾病類型和癥狀后,發(fā)現(xiàn)其中一個(gè)突變位于導(dǎo)致先天性失氯性腹瀉(Congenital chloridediarrhea,CCD)的基因上。外顯子組測序也在復(fù)雜疾病研究中得以應(yīng)用,如 Bowden等[53]對(duì)漿乙二腈水平無顯著性差別的2個(gè)家系中的3個(gè)患者進(jìn)行外顯子組測序,發(fā)現(xiàn)ADIPOQ基因上的1個(gè)頻率為1.1%的低頻變異,能解釋 17%的西班牙裔美國人的血漿乙二腈水平,63%的家族存在該突變。Bilguvar等[54]對(duì)1列腦皮質(zhì)發(fā)育異?;颊哌M(jìn)行測序,發(fā)現(xiàn)WDR62基因與該疾病相關(guān),結(jié)合功能分析可以解釋一系列的嚴(yán)重皮質(zhì)畸形,如小頭畸形、胼胝體發(fā)育不全等;WDR62基因突變的某些患者還會(huì)發(fā)生腦裂畸形、小腦發(fā)育不全等。

        基于外顯子測序進(jìn)行GWAS的計(jì)算和統(tǒng)計(jì)方法[55]包括:(1)沿用傳統(tǒng)的單SNP位點(diǎn)模型,由于低頻突變樣本數(shù)少,可選用Fisher精確檢驗(yàn);(2)使用多因素模型,將單SNP位點(diǎn)的效應(yīng)加和及校正,計(jì)算過程也需要借助一些降維的方法如Lasso[56]等,以減少運(yùn)算量;(3)折疊法(Collapsing methods),其原理是將同一個(gè)功能元件上的變異合并,根據(jù)功能元件的不同,分為 CAST[57]和 CMC[58]兩種主要檢測方法,前者考慮全部稀有變異,后者則關(guān)注非同義稀有突變,前文提到的BURDEN test即屬于此方法,此外還有“變量閾值”法[59]和 RareCover[60]等方法;(4)聚合法(Aggregation methods),相當(dāng)于對(duì)折疊法中稀有變異以及常規(guī)GWAS中的常規(guī)變異進(jìn)行加權(quán),可分為“加權(quán)和”法[61]和 KBAC[62]兩種。

        由于外顯子組測序只關(guān)注外顯子及其剪切位點(diǎn),因而對(duì)某些類型的致病變異無能為力,如線粒體基因中的突變、結(jié)構(gòu)變異、內(nèi)含子中的基因、調(diào)控序列、CNV、表觀遺傳學(xué)改變、“單親二倍體”、基因之間的相互作用等;另外,有些外顯子藏在染色體末端的重復(fù)區(qū)域內(nèi),因而無法被外顯子測序所檢測。

        2.2.2 低覆蓋度測序結(jié)合基因型填充

        低覆蓋度測序結(jié)合基因型填充的策略,是利用已有的公共基因組數(shù)據(jù),如千人基因組數(shù)據(jù),來填充覆蓋度較低的測序數(shù)據(jù),使之達(dá)到有效進(jìn)行GWAS研究的數(shù)據(jù)量。該策略的有效性已有許多研究報(bào)道。該策略方案中應(yīng)當(dāng)主要注重兩點(diǎn):一是檢測效力;二是計(jì)算速度。

        檢測效力的高低主要取決于數(shù)據(jù)量,因此,關(guān)鍵要找到SNP數(shù)量與樣本量的均衡點(diǎn)。SNP數(shù)據(jù)量要足以涵蓋致病突變;樣本數(shù)量也應(yīng)充足,以期檢測到致病效應(yīng)較小的變異,獲得更多的缺失遺傳力。Zheng等[63]對(duì)153例樣本分別用3種芯片(317 K、610K和1 M)進(jìn)行基因分型,分別用HapMap2和千人基因組預(yù)實(shí)驗(yàn)(1000G pilot)數(shù)據(jù)作為參考,進(jìn)行缺失基因型填充。HapMap2填充的準(zhǔn)確性大約 94%,1000G pilot約84%。對(duì)于MAF介于0.3%~5%的稀有SNP,三款芯片數(shù)據(jù)的填充準(zhǔn)確性分別為49%,60%和69%。值得一提的是,盡管1000G pilot的準(zhǔn)確性比HapMap2低,但其填充SNP的數(shù)據(jù)量(約8.5 M)要遠(yuǎn)高于后者(約2.5 M)。

        對(duì)原始數(shù)據(jù)的產(chǎn)出量的選擇問題,即如何控制測序覆蓋度以達(dá)到SNP分型目的,千人基因組研究[64]給出了參考,即2~4×測序深度即可獲得個(gè)人基因組約 85%的區(qū)域,數(shù)據(jù)產(chǎn)出和測序成本的比例最優(yōu)。而這個(gè)最優(yōu)解是針對(duì)個(gè)人基因組而非群體基因組測序而估計(jì)的,隨著參考數(shù)據(jù)的不斷累積,個(gè)體測序的覆蓋度可以降得更低,如Pasaniuc等[65]采用極低覆蓋度的策略(平均~0.24×)依然可以獲得較好的填充效果。

        由于NGS的數(shù)據(jù)量大,基因型填充的過程運(yùn)算量大、耗時(shí)長,因而一些研究者開發(fā)出了加快運(yùn)算的優(yōu)化算法。Howie等[66]開發(fā)的Pre-phasing填充方法,通過對(duì)GWAS樣本進(jìn)行連鎖相構(gòu)建,進(jìn)而利用參考庫的單倍型進(jìn)行缺失基因型填充。該方法可以在很大程度上縮短運(yùn)算時(shí)間,在大樣本中效果更加明顯。Howie等使用MaCH、IMPUTE2軟件,利用WTCCC2、GAIN、WHI以及 1000G數(shù)據(jù),對(duì)該方法進(jìn)行了測試,結(jié)果顯示Pre-phasing方法的效率明顯高于常規(guī)方法。

        表1 高密度芯片與低覆蓋度測序技術(shù)對(duì)比

        因此,低覆蓋度全基因組重測序結(jié)合缺失基因型填充的方法應(yīng)當(dāng)是一種可行的策略。高密度 SNP芯片與低覆蓋度測序的技術(shù)參數(shù)比較見表1。

        Rohland等[67]發(fā)明了一種廉價(jià)高效的建庫方法,一個(gè)技術(shù)人員可以在一天內(nèi)構(gòu)建 192個(gè)測序庫,使建庫成本降至每樣本15美元。這些庫不僅可以用于低覆蓋度測序,還可以在多達(dá) 100例加標(biāo)簽樣本(Barcoded samples)混池的條件下進(jìn)行有效測序。他們用極低覆蓋度的外顯子組測序數(shù)據(jù)(0.1~0.5×)結(jié)合千人基因組基因型數(shù)據(jù)做填充,證明了該方法的有效性。這使得在成本降低的情況下,捕獲或填充的SNP的數(shù)目、分型的準(zhǔn)確性都有所增加,檢測效力也得到提高[65]。目前該策略的缺點(diǎn)是對(duì)稀有變異的基因型推斷與填充效果不夠理想。填充策略的準(zhǔn)確性和有效性取決于實(shí)驗(yàn)樣本和參考數(shù)據(jù)庫的數(shù)據(jù)樣本量的多少,隨著測序技術(shù)不斷提高、成本不斷降低,以及公共數(shù)據(jù)庫數(shù)據(jù)量的快速增加,低覆蓋度測序的策略可能將會(huì)更多地被采用。此外,測序的準(zhǔn)確性對(duì)于科學(xué)研究十分重要,測序錯(cuò)誤來源有許多因素[68],應(yīng)當(dāng)在研究中注意。

        2.2.3 家系病例或極端性狀個(gè)體重測序

        由于全基因組測序的費(fèi)用比較高,要求對(duì)樣本進(jìn)行選擇性測序。在這一策略中,可挑選有多個(gè)發(fā)病個(gè)體的家系進(jìn)行測序,也可以挑選表型比較極端的個(gè)體進(jìn)行測序。Yang等[69]使用發(fā)病個(gè)體家系的設(shè)計(jì),對(duì)發(fā)病家系的19個(gè)發(fā)病個(gè)體和27個(gè)正常對(duì)照進(jìn)行選擇性測序,最終識(shí)別出11個(gè)風(fēng)險(xiǎn)CNV位點(diǎn)。之后對(duì)其中4個(gè)CNV在大群體進(jìn)行驗(yàn)證,發(fā)現(xiàn)其確實(shí)在發(fā)病人群中高度富集。Sobreira等[70]使用類似的設(shè)計(jì)發(fā)現(xiàn)了混合性軟骨瘤的致病變異。Lander等[71]在 1989年就提出選擇極端表型個(gè)體進(jìn)行分析可以降低實(shí)驗(yàn)成本,同時(shí)保證檢測效力不會(huì)過多喪失。在高密度芯片興起之后,Manolio等[72]根據(jù)HapMap高密度SNP數(shù)據(jù)討論了這種策略的可行性;Verlaan等[73]進(jìn)一步對(duì)其進(jìn)行了檢測效力的研究。Cirulli等[74]首先篩選出一般人群中的極端表型個(gè)體,然后對(duì)這些個(gè)體進(jìn)行高覆蓋度測序,找出明顯高于一般人群等位基因頻率的SNP位點(diǎn),再對(duì)這些位點(diǎn)區(qū)域進(jìn)行目標(biāo)區(qū)域測序或分型。

        基于醫(yī)院病例(Hospital-based)數(shù)據(jù)的實(shí)驗(yàn)設(shè)計(jì)屬于該策略[50,51],例如高血壓患者就是由極端表型個(gè)體(160/100 mmHg)轉(zhuǎn)化為病例的,其他種類疾病的診斷過程也可看作是極端表型的篩選,即以某指標(biāo)為閾值進(jìn)行病例篩選。該策略目前主要的問題是有可能會(huì)因?yàn)槌闃悠罨蚝雎阅承┲匾膮f(xié)變量產(chǎn)生假陽性結(jié)果。如基于醫(yī)院病例的數(shù)據(jù),一般只重視對(duì)癥狀的診斷,而忽略患者的發(fā)病影響因素。

        2.2.4 其他策略

        除了以上3種主要的策略,還有其他研究策略或方法,如目標(biāo)區(qū)域捕獲測序[75]、混池測序[76]等。目標(biāo)區(qū)域捕獲測序的原理和外顯子組測序一樣,而目標(biāo)更加明確,通常將幾個(gè)至幾十個(gè)疾病風(fēng)險(xiǎn)基因的外顯子、內(nèi)含子、上下游序列進(jìn)行測序,從而降低實(shí)驗(yàn)成本?;斐販y序則是將多個(gè)樣本混合成一個(gè)樣本進(jìn)行測序,該策略適用于病例對(duì)照設(shè)計(jì),而不太適合于連續(xù)型表型;若結(jié)合加標(biāo)簽(Barcoding)技術(shù)則可區(qū)分個(gè)體,可用于連續(xù)型表型。另外,隨著Illumina Hiseq X Ten和Nextseq 500等新的測序平臺(tái)的應(yīng)用,實(shí)驗(yàn)成本將進(jìn)一步降低。

        3 結(jié)語與展望

        NGS技術(shù)在實(shí)驗(yàn)成本和速度上優(yōu)于傳統(tǒng)的Sanger測序,在數(shù)據(jù)類型和通量等方面優(yōu)于芯片技術(shù)。目前,在植物育種方面已經(jīng)有多篇NGS-GWAS的文章發(fā)表,如采用低覆蓋度測序結(jié)合基因型填充策略對(duì)水稻14個(gè)農(nóng)藝性狀的研究[77],利用RNA-seq數(shù)據(jù)對(duì)玉米產(chǎn)油量性狀的 eQTL研究[78]等。然而,對(duì)關(guān)聯(lián)分析顯著性結(jié)果的解釋及功能發(fā)掘,需要進(jìn)一步研究。例如,利用生物信息學(xué)的工具可以發(fā)掘出許多新的功能作用元件。此外,用變異位點(diǎn)解釋復(fù)雜疾病的機(jī)理有一定難度。目前,傳統(tǒng)GWAS主要使用單SNP位點(diǎn)模型,顯得過于單薄,因此需要開發(fā)更加復(fù)雜和精密的模型,例如針對(duì)外顯子組測序數(shù)據(jù)的 Lasso回歸、折疊法、聚合法,及針對(duì)生物調(diào)控網(wǎng)絡(luò)的互作模型等。隨著大量新的遺傳變異類型及其變異位點(diǎn)被發(fā)現(xiàn),對(duì)變異的注釋和使用方式將面臨新的挑戰(zhàn)。NGS將產(chǎn)生海量的新變異,不僅包括SNP、InDel、SV,還包括cSNP、表達(dá)量變異、可變剪切、甲基化變異等數(shù)據(jù),使分析變得更加復(fù)雜。

        關(guān)于人類基因組研究,目前基于NGS的GWAS策略多是圍繞降低成本而設(shè)計(jì),但不同策略中需要考慮的問題是相同的,即如何更全面系統(tǒng)地檢測出致病變異并有效應(yīng)用于醫(yī)藥。因此,不斷積累并共享的數(shù)據(jù)必不可少,系統(tǒng)性的生物信息學(xué)挖掘也至關(guān)重要。由于NGS和GWAS兩種技術(shù)成本高,因此人們需要將其策略和實(shí)驗(yàn)設(shè)計(jì)進(jìn)行優(yōu)化,在保證不過多喪失檢測效力和準(zhǔn)確性的情況下,極大提高研究實(shí)施的可行性。目前,隨著公共數(shù)據(jù)庫的不斷累積和共享,外顯子組測序、極低覆蓋度重測序結(jié)合基因型填充策略,可能會(huì)在醫(yī)學(xué)健康研究領(lǐng)域被廣泛采用。隨著基于NGS的RNA-seq、ChIP-seq等功能學(xué)方面數(shù)據(jù)不斷積累,以及非編碼RNA(ncRNA)等新型功能數(shù)據(jù)庫的發(fā)展,有必要對(duì)前人的一些結(jié)果進(jìn)行重新注釋,并嘗試在醫(yī)學(xué)上加以實(shí)際應(yīng)用。

        運(yùn)用GWAS方法對(duì)復(fù)雜疾病的研究、早期預(yù)警及個(gè)性化醫(yī)療方面已開始起步。以高血壓為例,結(jié)合遺傳變異信息的降壓治療方法已有多篇文獻(xiàn)報(bào)道[79]。高血壓的傳統(tǒng)療法是服用抗高血壓類藥物,如噻嗪類利尿劑、β-受體阻滯劑、ACE抑制劑、血管緊張素受體阻滯劑和鈣通道阻滯劑等。全世界范圍內(nèi)約有30%的患者只服用一種藥物,40%服用兩種,30%服用三種或以上。但是這類藥物對(duì)收縮壓或舒張壓的控制率不到35%[80]。其根本原因之一在于個(gè)體遺傳變異對(duì)藥物反應(yīng)的特異性,因此開展藥物基因組學(xué)研究具有重要意義。藥物基因組學(xué)研究藥物反應(yīng)的遺傳機(jī)制及藥物反應(yīng)的個(gè)體差異性,是功能基因組學(xué)和分子藥物學(xué)的結(jié)合。早期的研究主要圍繞單個(gè)候選基因與降壓藥物的作用關(guān)系,如ACE、ADD1、NEDD4L、ADRB1和KCNMB1基因。2008年,第1篇基于GWAS的藥物基因組學(xué)研究被報(bào)道,發(fā)現(xiàn)人類12號(hào)染色體YEATS4基因附近區(qū)段影響噻嗪類利尿劑的治療效果[81]。之后,越來越多的采用GWAS方法的藥物基因組學(xué)工作被相繼報(bào)道,如抗高血壓藥物氫氯噻嗪的治療效果[82]等。未來的疾病防治工作,應(yīng)該是治療向預(yù)防前移,防大于治,并且應(yīng)該結(jié)合遺傳因素、環(huán)境因素、生活方式、藥物反應(yīng)等,對(duì)患者或潛在患者進(jìn)行全方位、個(gè)體化的評(píng)估、預(yù)警、診斷和治療?;诓粩喟l(fā)展的 NGS新技術(shù)的GWAS策略將在人類醫(yī)學(xué)研究領(lǐng)域發(fā)揮重要作用。

        [1]Risch N,Merikangas K. The future of genetic studies of complex human diseases. Science,1996,273(5281):1516–1517.

        [2]韓建文,張學(xué)軍. 全基因組關(guān)聯(lián)研究現(xiàn)狀. 遺傳,2011,33(1): 25–35.

        [3]嚴(yán)衛(wèi)麗. 復(fù)雜疾病全基因組關(guān)聯(lián)研究進(jìn)展——研究設(shè)計(jì)和遺傳標(biāo)記. 遺傳,2008,30(4): 400–406.

        [4]許睿瑋,嚴(yán)衛(wèi)麗. 原發(fā)性高血壓全基因組關(guān)聯(lián)研究進(jìn)展.遺傳,2012,34(7): 793–809.

        [5]Klein RJ,Zeiss C,Chew EY,Tsai JY,Sackler RS,Haynes C,Henning AK,Sangiovanni JP,Mane SM,Mayne ST,Bracken MB,Ferris FL,Ott J,Barnstable C,Hoh J. Complement factor H polymorphism in age-related macular degeneration. Science,2005,308(5720): 385–389.

        [6]Lettre G,Palmer CD,Young T,Ejebe KG,Allayee H,Benjamin EJ,Bennett F,Bowden DW,Chakravarti A,Dreisbach A,Farlow DN,Folsom AR,Fornage M,Forrester T,Fox E,Haiman CA,Hartiala J,Harris TB,Hazen SL,Heckbert SR,Henderson BE,Hirschhorn JN,Keating BJ,Kritchevsky SB,Larkin E,Li M,Rudock ME,Mckenzie CA,Meigs JB,Meng YA,Mosley TH,Newman AB,Newton-Cheh CH,Paltoo DN,Papanicolaou GJ,Patterson N,Post WS,Psaty BM,Qasim AN,Qu L,Rader DJ,Redline S,Reilly MP,Reiner AP,Rich SS,Rotter JI,Liu Y,Shrader P,Siscovick DS,Tang WH,Taylor HA,Tracy RP,Vasan RS,Waters KM,Wilks R,Wilson JG,Fabsitz RR,Gabriel SB,Kathiresan S,Boerwinkle E. Genome-wide association study of coronary heart disease and its risk factors in 8,090 African Americans: the NHLBI CARe Project. PLoS Genet,2011,7(2): e1001300.

        [7]Barbalic M,Reiner AP,Wu CY,Hixson JE,Franceschini N,Eaton CB,Heiss G,Couper D,Mosley T,Boerwinkle E.Genome-wide association analysis of incident coronary heart disease (CHD) in African Americans: a short report.PLoS Genet,2011,7(8): e1002199.

        [8]Wang LD,Zhou FY,Li XM,Sun LD,Song X,Jin Y,Li JM,Kong GQ,Qi H,Cui J,Zhang LQ,Yang JZ,Li JL,Li XC,Ren JL,Liu ZC,Gao WJ,Yuan L,Wei W,Zhang YR,Wang WP,Sheyhidin I,Li F,Chenbp,Ren SW,Liu B,Li D,Ku JW,Fan ZM,Zhou SL,Guo ZG,Zhao XK,Liu N,Ai YH,Shen FF,Cui WY,Song S,Guo T,Huang J,Yuan C,Huang J,Wu Y,Yue WB,Feng CW,Li HL,Wang Y,Tian JY,Lu Y,Yuan Y,Zhu WL,Liu M,Fu WJ,Yang X,Wang HJ,Han SL,Chen J,Han M,Wang HY,Zhang P,Li XM,Dong JC,Xing GL,Wang R,Guo M,Chang ZW,Liu HL,Guo L,Yuan ZQ,Liu H,Lu Q,Yang LQ,Zhu FG,Yang XF,Feng XS,Wang Z,Li Y,Gao SG,Qige Q,Bai LT,Yang WJ,Lei GY,Shen ZY,Chen LQ,Li EM,Xu LY,Wu ZY,Cao WK,Wang JP,Bao ZQ,Chen JL,Ding GC,Zhuang X,Zhou YF,Zheng HF,Zhang Z,Zuo XB,Dong ZM,Fan DM,He X,Wang J,Zhou Q,Zhang QX,Jiao XY,Lian SY,Ji AF,Lu XM,Wang JS,Chang FB,Lu CD,Chen ZG,Miao JJ,Fan ZL,Lin RB,Liu TJ,Wei JC,Kong QP,Lan Y,Fan YJ,Gao FS,Wang TY,Xie D,Chen SQ,Yang WC,Hong JY,Wang L,Qiu SL,Cai ZM,Zhang XJ. Genome-wide association study of esophageal squamous cell carcinoma in Chinese subjects identifies susceptibility loci at PLCE1 and C20orf54. Nat Genet,2010,42(9): 759–763.

        [9]Sun LD,Xiao FL,Li Y,Zhou WM,Tang HY,Tang XF,Zhang H,Schaarschmidt H,Zuo XB,Foelster-Holst R,He SM,Shi M,Liu Q,Lv YM,Chen XL,Zhu KJ,Guo YF,Hu DY,Li M,Li M,Zhang YH,Zhang X,Tang JP,Guo BR,Wang H,Liu Y,Zou XY,Zhou FS,Liu XY,Chen G,Ma L,Zhang SM,Jiang AP,Zheng XD,Gao XH,Li P,Tu CX,Yin XY,Han XP,Ren YQ,Song SP,Lu ZY,Zhang XL,Cui Y,Chang J,Gao M,Luo XY,Wang PG,Dai X,Su W,Li H,Shen CP,Liu SX,Feng XB,Yang CJ,Lin GS,Wang ZX,Huang JQ,Fan X,Wang Y,Bao YX,Yang S,Liu JJ,Franke A,Weidinger S,Yao ZR,Zhang XJ. Genome-wide association study identifies two new susceptibility loci for atopic dermatitis in the Chinese Han population. Nat Genet,2011,43(7): 690–694.

        [10]Cho YS,Chen CH,Hu C,Long J,Ong RT,Sim X,Takeuchi F,Wu Y,Go MJ,Yamauchi T,Chang YC,Kwak SH,Ma RC,Yamamoto K,Adair LS,Aung T,Cai Q,Chang LC,Chen YT,Gao Y,Hu FB,Kim HL,Kim S,Kim YJ,Lee JJ,Lee NR,Li Y,Liu JJ,Lu W,Nakamura J,Nakashima E,Ng DP,Tay WT,Tsai FJ,Wong TY,Yokota M,Zheng W,Zhang R,Wang C,So WY,Ohnaka K,Ikegami H,Hara K,Cho YM,Cho NH,Chang TJ,Bao Y,Hedman AK,Morris AP,Mccarthy MI,Consortium D,Mu TC,Takayanagi R,Park KS,Jia W,Chuang LM,Chan JC,Maeda S,Kadowaki T,Lee JY,Wu JY,Teo YY,Tai ES,Shu XO,Mohlke KL,Kato N,Han BG,Seielstad M. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. Nat Genet,2012,44(1): 67–72.

        [11]Kooner JS,Saleheen D,Sim X,Sehmi J,Zhang WH,Frossard P,Been LF,Chia KS,Dimas AS,Hassanali N,Jafar T,Jowett JB,Li X,Radha V,Rees SD,Takeuchi F,Young R,Aung T,Basit A,Chidambaram M,Das D,Grundberg E,Hedman AK,Hydrie ZI,Islam M,Khor CC,Kowlessur S,Kristensen MM,Liju S,Lim WY,Matthews DR,Liu J,Morris AP,Nica AC,Pinidiyapathirage JM,Prokopenko I,Rasheed A,Samuel M,Shah N,Shera AS,Small KS,Suo C,Wickremasinghe AR,Wong TY,Yang M,Zhang F,Diagram,Muther,Abecasis GR,Barnett AH,Caulfield M,Deloukas P,Frayling TM,Froguel P,Kato N,Katulanda P,Kelly MA,Liang J,Mohan V,Sanghera DK,Scott J,Seielstad M,Zimmet PZ,Elliott P,Teo YY,Mccarthy MI,Danesh J,Tai ES,Chambers JC. Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci. Nat Genet,2011,43(10): 984–989.

        [12]Hanson RL,Muller YL,Kobes S,Guo T,Bian L,Ossowski V,Wiedrich K,Sutherland J,Wiedrich C,Mahkee D,Huang K,Abdussamad M,Traurig M,Weil EJ,Nelson RG,Bennett PH,Knowler WC,Bogardus C,Baier LJ. A genome-wide association study in American Indians implicates DNER as a susceptibility locus for type 2 diabetes.Diabetes,2014,63(1): 369–376.

        [13]Li HX,Gan W,Lu L,Dong X,Han XY,Hu C,Yang Z,Sun L,Bao W,Li PT,He MN,Sun LD,Wang YQ,Zhu JW,Ning QQ,Tang Y,Zhang R,Wen J,Wang D,Zhu XL,Guo KQ,Zuo XB,Guo XH,Yang HD,Zhou XH,Consortium D,Consortium A-TD,Zhang XJ,Qi L,Loos RJ,Hu FB,Wu TC,Liu Y,Liu LQ,Yang Z,Hu RM,Jia WP,Ji LN,Li YX,Lin X. A genome-wide association study identifies GRK5 and RASGRP1 as type 2 diabetes loci in Chinese Hans. Diabetes,2013,62(1): 291–298.

        [14]Pharoah PD,Tsai YY,Ramus SJ,Phelan CM,Goode EL,Lawrenson K,Buckley M,Fridley BL,Tyrer JP,Shen H,Weber R,Karevan R,Larson MC,Song H,Tessier DC,Bacot F,Vincent D,Cunningham JM,Dennis J,Dicks E,Australian Cancer S,Australian Ovarian Cancer Study G,Aben KK,Anton-Culver H,Antonenkova N,Armasu SM,Baglietto L,Bandera EV,Beckmann MW,Birrer MJ,Bloom G,Bogdanova N,Brenton JD,Brinton LA,Brooks-Wilson A,Brown R,Butzow R,Campbell I,Carney ME,Carvalho RS,Chang-Claude J,Chen YA,Chen Z,Chow WH,Cicek MS,Coetzee G,Cook LS,Cramer DW,Cybulski C,Dansonka-Mieszkowska A,Despierre E,Doherty JA,Dork T,Du Bois A,Durst M,Eccles D,Edwards R,Ekici AB,Fasching PA,Fenstermacher D,Flanagan J,Gao YT,Garcia-Closas M,Gentry-Maharaj A,Giles G,Gjyshi A,Gore M,Gronwald J,Guo Q,Halle MK,Harter P,Hein A,Heitz F,Hillemanns P,Hoatlin M,Hogdall E,Hogdall CK,Hosono S,Jakubowska A,Jensen A,Kalli KR,Karlan BY,Kelemen LE,Kiemeney LA,Kjaer SK,Konecny GE,Krakstad C,Kupryjanczyk J,Lambrechts D,Lambrechts S,Le ND,Lee N,Lee J,Leminen A,Lim BK,Lissowska J,Lubinski J,Lundvall L,Lurie G,Massuger LF,Matsuo K,Mcguire V,Mclaughlin JR,Menon U,Modugno F,Moysich KB,Nakanishi T,Narod SA,Ness RB,Nevanlinna H,Nickels S,Noushmehr H,Odunsi K,Olson S,Orlow I,Paul J,Pejovic T,Pelttari LM,Permuth-Wey J,Pike MC,Poole EM,Qu X,Risch HA,Rodriguez-Rodriguez L,Rossing MA,Rudolph A,Runnebaum I,Rzepecka IK,Salvesen HB,Schwaab I,Severi G,Shen H,Shridhar V,Shu XO,Sieh W,Southey MC,Spellman P,Tajima K,Teo SH,Terry KL,Thompson PJ,Timorek A,Tworoger SS,Van Altena AM,Van Den Berg D,Vergote I,Vierkant RA,Vitonis AF,Wang-Gohrke S,Wentzensen N,Whittemore AS,Wik E,Winterhoff B,Woo YL,Wu AH,Yang HP,Zheng W,Ziogas A,Zulkifli F,Goodman MT,Hall P,Easton DF,Pearce CL,Berchuck A,Chenevix-Trench G,Iversen E,Monteiro AN,Gayther SA,Schildkraut JM,Sellers TA. GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer. Nat Genet,2013,45(4): 362–370.

        [15]Turner AM. Fifty years on: GWAS confirms the role of a rare variant in lung disease. PLoS Genet,2013,9(8):e1003768.

        [16]Yue WH,Wang HF,Sun LD,Tang FL,Liu ZH,Zhang HX,Li WQ,Zhang YL,Zhang Y,Ma CC,Du B,Wang LF,Ren YQ,Yang YF,Hu XF,Wang Y,Deng W,Tan LW,Tan YL,Chen Q,Xu GM,Yang GG,Zuo XB,Yan H,Ruan YY,Lu TL,Han X,Ma XH,Wang Y,Cai LW,Jin C,Zhang HY,Yan J,Mi WF,Yin XY,Ma WB,Liu Q,Kang L,Sun W,Pan CY,Shuang M,Yang FD,Wang CY,Yang JL,Li KQ,Ma X,Li LJ,Yu X,Li QZ,Huang X,Lv LX,Li T,Zhao GP,Huang W,Zhang XJ,Zhang D. Genome-wide association study identifies a susceptibility locus for schizophrenia in Han Chinese at 11p11. 2. Nat Genet,2011,43(12):1228–1231.

        [17]Ripke S,O'Dushlaine C,Chambert K,Moran JL,K?hler AK,Akterin S,Bergen SE,Collins AL,Crowley JJ,Fromer M,Kim Y,Lee SH,Magnusson PK,Sanchez N,Stahl EA,Williams S,Wray NR,Xia K,Bettella F,Borglum AD,Bulik-Sullivan BK,Cormican P,Craddock N,De Leeuw C,Durmishi N,Gill M,Golimbet V,Hamshere ML,Holmans P,Hougaard DM,Kendler KS,Lin K,Morris DW,Mors O,Mortensen PB,Neale BM,O'neill FA,Owen MJ,Milovancevic MP,Posthuma D,Powell J,Richards AL,Rileybp,Ruderfer D,Rujescu D,Sigurdsson E,Silagadze T,Smit AB,Stefansson H,Steinberg S,Suvisaari J,Tosato S,Verhage M,Walters JT,Multicenter Genetic Studies of Schizophrenia Consortium,Levinson DF,Gejman PV,Kendler KS,Laurent C,Mowry BJ,O'Donovan MC,Owen MJ,Pulver AE,Rileybp,Schwab SG,Wildenauer DB,Dudbridge F,Holmans P,Shi J,Albus M,Alexander M,Campion D,Cohen D,Dikeos D,Duan J,Eichhammer P,Godard S,Hansen M,Lerer FB,Liang KY,Maier W,Mallet J,Nertney DA,Nestadt G,Norton N,O'Neill FA,Papadimitriou GN,Ribble R,Sanders AR,Silverman JM,Walsh D,Williams NM,Wormley B,Psychosis Endophenotypes International Consortium,Arranz MJ,Bakker S,Bender S,Bramon E,Collier D,Crespo-Facorro B,Hall J,Iyegbe C,Jablensky A,Kahn RS,Kalaydjieva L,Lawrie S,Lewis CM,Lin K,Linszen DH,Mata I,Mcintosh A,Murray RM,Ophoff RA,Powell J,Rujescu D,Van Os J,Walshe M,Weisbrod M,Wiersma D,Wellcome Trust Case Control Consortium 2,Donnelly P,Barroso I,Blackwell JM,Bramon E,Brown MA,Casas JP,Corvin AP,Deloukas P,Duncanson A,Jankowski J,Markus HS,Mathew CG,Palmer CN,Plomin R,Rautanen A,Sawcer SJ,Trembath RC,Viswanathan AC,Wood NW,Spencer CC,Band G,Bellenguez C,Freeman C,Hellenthal G,Giannoulatou E,Pirinen M,Pearson RD,Strange A,Su Z,Vukcevic D,Donnelly P,Langford C,Hunt SE,Edkins S,Gwilliam R,Blackburn H,Bumpstead SJ,Dronov S,Gillman M,Gray E,Hammond N,Jayakumar A,Mccann OT,Liddle J,Potter SC,Ravindrarajah R,Ricketts M,Tashakkori-Ghanbaria A,Waller MJ,Weston P,Widaa S,Whittaker P,Barroso I,Deloukas P,Mathew CG,Blackwell JM,Brown MA,Corvin AP,Mccarthy MI,Spencer CC,Bramon E,Corvin AP,O'Donovan MC,Stefansson K,Scolnick E,Purcell S,Mccarroll SA,Sklar P,Hultman CM,Sullivan PF. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet,2013,45(10): 1150–1159.

        [18]Yu H,Bi W,Liu C,Zhao Y,Zhang JF,Zhang D,Yue W.Protein-interaction-network-based analysis for genomewide association analysis of schizophrenia in Han Chinese population. J Psychiatr Res,2014,50: 73-78.

        [19]Cruchaga C,Kauwe JSK,Harari O,Jin SC,Cai Y,Karch CM,Benitez BA,Jeng AT,Skorupa T,Carrell D,Bertelsen S,Bailey M,Mckean D,Shulman JM,De Jager PL,Chibnik L,Bennett DA,Arnold SE,Harold D,Sims R,Gerrish A,Williams J,Van Deerlin VM,Lee VMY,Shaw LM,Trojanowski JQ,Haines JL,Mayeux R,Pericak-Vance MA,Farrer LA,Schellenberg GD,Peskind ER,Galasko D,Fagan AM,Holtzman DM,Morris JC,GERAD Consortium,Alzheimer's Disease Neuroimaging Initiative(ADNI),Alzheimer Disease Genetic Consortium (ADGC),Goate AM. GWAS of cerebrospinal fluid tau levels identifies risk variants for Alzheimer's disease. Neuron,2013,78(2): 256–268.

        [20]Feugang JM,Kaya A,Page GP,Chen L,Mehta T,Hirani K,Nazareth L,Topper E,Gibbs R,Memili E. Two-stage genome-wide association study identifies integrin beta 5 as having potential role in bull fertility. BMC Genomics,2009,10: 176.

        [21]Snelling WM,Allan MF,Keele JW,Kuehn LA,Mcdaneld T,Smith TPL,Sonstegard TS,Thallman RM,Bennett GL.Genome-wide association study of growth in crossbred beef cattle. J Anim Sci,2010,88(3): 837–848.

        [22]Hayes BJ,Bowman PJ,Chamberlain AJ,Savin K,Van Tassell CP,Sonstegard TS,Goddard ME. A validated genome wide association study to breed cattle adapted to an environment altered by climate change. PLoS ONE,2009,4(8): e6676.

        [23]Pryce JE,Bolormaa S,Chamberlain AJ,Bowman PJ,Savin K,Goddard ME,Hayes BJ. A validated genome-wide association study in 2 dairy cattle breeds for milk production and fertility traits using variable length haplotypes. J Dairy Sci,2010,93(7): 3331–3345.

        [24]Jiang L,Liu JF,Sun DX,Ma PP,Ding XD,Yu Y,Zhang Q.Genome wide association studies for milk production traits in Chinese Holstein population. PLoS ONE,2010,5(10): e13661.

        [25]Duijvesteijn N,Knol EF,Merks JW,Crooijmans RP,Groenen MA,Bovenhuis H,Harlizius B. A genome-wide association study on androstenone levels in pigs reveals a cluster of candidate genes on chromosome 6. BMC Genet,2010,11: 42.

        [26]Onteru SK,Fan B,Du ZQ,Garrick DJ,Stalder KJ,Roth-schild MF. A whole-genome association study for pig reproductive traits. Anim Genet,2012,43(1): 18–26.

        [27]Abasht B,Lamont SJ. Genome-wide association analysis reveals cryptic alleles as an important factor in heterosis for fatness in chicken F2 population. Anim Genet,2007,38(5): 491–498.

        [28]Gu XR,Feng CG,Ma L,Song C,Wang YQ,Da Y,Li HF,Chen KW,Ye SH,Ge CR,Hu XX,Li N. Genome-wide association study of body weight in chicken F2 resource population. PLoS ONE,2011,6(7): e21872.

        [29]Buckler ES,Holland JB,Bradbury PJ,Acharya CB,Brown PJ,Browne C,Ersoz E,Flint-Garcia S,Garcia A,Glaubitz JC,Goodman MM,Harjes C,Guill K,Kroon DE,Larsson S,Lepak NK,Li HH,Mitchell SE,Pressoir G,Peiffer JA,Rosas MO,Rocheford TR,Romay MC,Romero S,Salvo S,Sanchez Villeda H,Da Silva HS,Sun Q,Tian F,Upadyayula N,Ware D,Yates H,Yu JM,Zhang ZW,Kresovich S,Mcmullen MD. The genetic architecture of maize flowering time. Science,2009,325(5941): 714–718.

        [30]Tian F,Bradbury PJ,Brown PJ,Hung H,Sun Q,Flint-Garcia S,Rocheford TR,Mcmullen MD,Holland JB,Buckler ES. Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet,2011,43(2): 159–162.

        [31]Kump KL,Bradbury PJ,Wisser RJ,Buckler ES,Belcher AR,Oropeza-Rosas MA,Zwonitzer JC,Kresovich S,Mcmullen MD,Ware D,Balint-Kurti PJ,Holland JB. Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat Genet,2011,43(2): 163–168.

        [32]Poland JA,Bradbury PJ,Buckler ES,Nelson RJ. Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc Natl Acad Sci USA,2011,108(17): 6893–6898.

        [33]Zhao KY,Tung CW,Eizenga GC,Wright MH,Ali ML,Price AH,Norton GJ,Islam MR,Reynolds A,Mezey J,Mcclung AM,Bustamante CD,Mccouch SR. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun,2011,2: 467.

        [34]Lango Allen H,Estrada K,Lettre G,Berndt SI,Weedon MN,Rivadeneira F,Willer CJ,Jackson AU,Vedantam S,Raychaudhuri S,Ferreira T,Wood AR,Weyant RJ,Segrè AV,Speliotes EK,Wheeler E,Soranzo N,Park JH,Yang J,Gudbjartsson D,Heard-Costa NL,Randall JC,Qi L,Vernon Smith A,M?gi R,Pastinen T,Liang LM,Heid IM,Luan JA,Thorleifsson G,Winkler TW,Goddard ME,Sin Lo K,Palmer C,Workalemahu T,Aulchenko YS,Johansson A,Zillikens MC,Feitosa MF,Esko T,Johnson T,Ketkar S,Kraft P,Mangino M,Prokopenko I,Absher D,Albrecht E,Ernst F,Glazer NL,Hayward C,Hottenga JJ,Jacobs KB,Knowles JW,Kutalik Z,Monda KL,Polasek O,Preuss M,Rayner NW,Robertson NR,Steinthorsdottir V,Tyrer JP,Voight BF,Wiklund F,Xu J,Zhao JH,Nyholt DR,Pellikka N,Perola M,Perry JR,Surakka I,Tammesoo ML,Altmaier EL,Amin N,Aspelund T,Bhangale T,Boucher G,Chasman DI,Chen C,Coin L,Cooper MN,Dixon AL,Gibson Q,Grundberg E,Hao K,Juhani Junttila M,Kaplan LM,Kettunen J,Konig IR,Kwan T,Lawrence RW,Levinson DF,Lorentzon M,Mcknight B,Morris AP,Muller M,Suh Ngwa J,Purcell S,Rafelt S,Salem RM,Salvi E,Sanna S,Shi J,Sovio U,Thompson JR,Turchin MC,Vandenput L,Verlaan DJ,Vitart V,White CC,Ziegler A,Almgren P,Balmforth AJ,Campbell H,Citterio L,De Grandi A,Dominiczak A,Duan J,Elliott P,Elosua R,Eriksson JG,Freimer NB,Geus EJ,Glorioso N,Haiqing S,Hartikainen AL,Havulinna AS,Hicks AA,Hui J,Igl W,Illig T,Jula A,Kajantie E,Kilpelainen TO,Koiranen M,Kolcic I,Koskinen S,Kovacs P,Laitinen J,Liu J,Lokki ML,Marusic A,Maschio A,Meitinger T,Mulas A,Pare G,Parker AN,Peden JF,Petersmann A,Pichler I,Pietilainen KH,Pouta A,Ridderstrale M,Rotter JI,Sambrook JG,Sanders AR,Schmidt CO,Sinisalo J,Smit JH,Stringham HM,Bragi Walters G,Widen E,Wild SH,Willemsen G,Zagato L,Zgaga L,Zitting P,Alavere H,Farrall M,Mcardle WL,Nelis M,Peters MJ,Ripatti S,Van Meurs JB,Aben KK,Ardlie KG,Beckmann JS,Beilby JP,Bergman RN,Bergmann S,Collins FS,Cusi D,Den Heijer M,Eiriksdottir G,Gejman PV,Hall AS,Hamsten A,Huikuri HV,Iribarren C,Kahonen M,Kaprio J,Kathiresan S,Kiemeney L,Kocher T,Launer LJ,Lehtimaki T,Melander O,Mosley TH,Jr.,Musk AW,Nieminen MS,O'donnell CJ,Ohlsson C,Oostra B,Palmer LJ,Raitakari O,Ridker PM,Rioux JD,Rissanen A,Rivolta C,Schunkert H,Shuldiner AR,Siscovick DS,Stumvoll M,Tonjes A,Tuomilehto J,Van Ommen GJ,Viikari J,Heath AC,Martin NG,Montgomery GW,Province MA,Kayser M,Arnold AM,Atwood LD,Boerwinkle E,Chanock SJ,Deloukas P,Gieger C,Gronberg H,Hall P,Hattersley AT,Hengstenberg C,Hoffman W,Lathrop GM,Salomaa V,Schreiber S,Uda M,Waterworth D,Wright AF,Assimes TL,Barroso I,Hofman A,Mohlke KL,Boomsma DI,Caulfield MJ,Cupples LA,Erdmann J,Fox CS,Gudnason V,Gyllensten U,Harris TB,Hayes RB,Jarvelin MR,Mooser V,Munroe PB,Ouwehand WH,Penninx BW,Pramstaller PP,Quertermous T,Rudan I,Samani NJ,Spector TD,Volzke H,Watkins H,Wilson JF,Groop LC,Haritunians T,Hu FB,Kaplan RC,Metspalu A,North KE,Schlessinger D,Wareham NJ,Hunter DJ,O'connell JR,Strachan DP,Wichmann HE,Borecki IB,Van Duijn CM,Schadt EE,Thorsteinsdottir U,Peltonen L,Uitterlinden AG,Visscher PM,Chatterjee N,Loos RJ,Boehnke M,Mccarthy MI,Ingelsson E,Lindgren CM,Abecasis GR,Stefansson K,Frayling TM,Hirschhorn JN. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature,2010,467(7317): 832–838.

        [35]Dickson SP,Wang K,Krantz I,Hakonarson H,Goldstein DB. Rare variants create synthetic genome-wide associations. PLoS Biol,2010,8(1): e1000294.

        [36]Nejentsev S,Walker N,Riches D,Egholm M,Todd JA.Rare variants of IFIH1,a gene implicated in antiviral responses,protect against type 1 diabetes. Science,2009,324(5925): 387–389.

        [37]Sanna S,Jackson AU,Nagaraja R,Willer CJ,Chen WM,Bonnycastle LL,Shen HQ,Timpson N,Lettre G,Usala G,Chines PS,Stringham HM,Scott LJ,Dei M,Lai S,Albai G,Crisponi L,Naitza S,Doheny KF,Pugh EW,Ben-Shlomo Y,Ebrahim S,Lawlor DA,Bergman RN,Watanabe RM,Uda M,Tuomilehto J,Coresh J,Hirschhorn JN,Shuldiner AR,Schlessinger D,Collins FS,Davey Smith G,Boerwinkle E,Cao A,Boehnke M,Abecasis GR,Mohlke KL. Common variants in the GDF5-UQCC region are associated with variation in human height. Nat Genet,2008,40(2): 198–203.

        [38]Weedon MN,Lango H,Lindgren CM,Wallace C,Evans DM,Mangino M,Freathy RM,Perry JR,Stevens S,Hall AS,Samani NJ,Shields B,Prokopenko I,Farrall M,Dominiczak A,Diabetes Genetics Initiative,The Wellcome Trust Case Control Consortium,Johnson T,Bergmann S,Beckmann JS,Vollenweider P,Waterworth DM,Mooser V,Palmer CN,Morris AD,Ouwehand WH,Cambridge GEM Consortium,Zhao JH,Li S,Loos RJ,Barroso I,Deloukas P,Sandhu MS,Wheeler E,Soranzo N,Inouye M,Wareham NJ,Caulfield M,Munroe PB,Hattersley AT,Mccarthy MI,Frayling TM. Genome-wide association analysis identifies 20 loci that influence adult height. Nat Genet,2008,40(5): 575–583.

        [39]Yang J,Benyamin B,Mcevoybp,Gordon S,Henders AK,Nyholt DR,Madden PA,Heath AC,Martin NG,Montgomery GW,Goddard ME,Visscher PM. Common SNPs explain a large proportion of the heritability for human height. Nat Genet,2010,42(7): 565–569.

        [40]1000 Genomes Project Consortium,Abecasis GR,Auton A,Brooks LD,Depristo MA,Durbin RM,Handsaker RE,Kang HM,Marth GT,Mcvean GA. An integrated map of genetic variation from 1,092 human genomes. Nature,2012,491(7422): 56–65.

        [41]Tennessen JA,Bigham AW,O'Connor TD,Fu WQ,Kenny EE,Gravel S,Mcgee S,Do R,Liu XM,Jun G,Kang HM,Jordan D,Leal SM,Gabriel S,Rieder MJ,Abecasis G,Altshuler D,Nickerson DA,Boerwinkle E,Sunyaev S,Bustamante CD,Bamshad MJ,Akey JM,Broad GO,Seattle GO,on behalf of the NHLBI Exome Sequencing Project. Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science,2012,337(6090): 64–69.

        [42]Fu W,O'Connor TD,Jun G,Kang HM,Abecasis G,Leal SM,Gabriel S,Rieder MJ,Altshuler D,Shendure J,Nickerson DA,Bamshad MJ,NHLBI Exome Sequencing Project,Akey JM. Analysis of 6,515 exomes reveals the recent origin of most human protein-coding variants. Nature,2013,493(7431): 216–220.

        [43]Wray NR,Purcell SM,Visscher PM. Synthetic associations created by rare variants do not explain most GWAS results. PLoS Biol,2011,9(1): e1000579.

        [44]Manolio TA,Collins FS,Cox NJ,Goldstein DB,Hindorff LA,Hunter DJ,Mccarthy MI,Ramos EM,Cardon LR,Chakravarti A,Cho JH,Guttmacher AE,Kong A,Kruglyak L,Mardis E,Rotimi CN,Slatkin M,Valle D,Whittemore AS,Boehnke M,Clark AG,Eichler EE,Gibson G,Haines JL,Mackay TF,Mccarroll SA,Visscher PM.Finding the missing heritability of complex diseases. Nature,2009,461(7265): 747–753.

        [45]Mccarthy MI,Abecasis GR,Cardon LR,Goldstein DB,Little J,Ioannidis JPA,Hirschhorn JN. Genome-wide association studies for complex traits: consensus,uncertainty and challenges. Nat Rev Genet,2008,9(5): 356–369.

        [46]Kiezun A,Garimella K,Do R,Stitziel NO,Neale BM,Mclaren PJ,Gupta N,Sklar P,Sullivan PF,Moran JL,Hultman CM,Lichtenstein P,Magnusson P,Lehner T,Shugart YY,Price AL,De Bakker PI,Purcell SM,Sunyaev SR. Exome sequencing and the genetic basis of complex traits. Nat Genet,2012,44(6): 623–630.

        [47]Bras JM,Singleton AB. Exome sequencing in Parkinson's disease. Clin Genet,2011,80(2): 104–109.

        [48]Ng SB,Turner EH,Robertson PD,Flygare SD,Bigham AW,Lee C,Shaffer T,Wong M,Bhattacharjee A,Eichler EE,Bamshad M,Nickerson DA,Shendure J. Targeted capture and massively parallel sequencing of 12 human exomes. Nature,2009,461(7261): 272–276.

        [49]Ng SB,Buckingham KJ,Lee C,Bigham AW,Tabor HK,Dent KM,Huff CD,Shannon PT,Jabs EW,Nickerson DA,Shendure J,Bamshad MJ. Exome sequencing identifies the cause of a mendelian disorder. Nat Genet,2010,42(1):30–35.

        [50]Tang HY,Jin X,Li Y,Jiang H,Tang XF,Yang X,Cheng H,Qiu Y,Chen G,Mei JP,Zhou FS,Wu RH,Zuo XB,Zhang Y,Zheng XD,Cai Q,Yin XY,Quan C,Shao HJ,Cui Y,Tian FZ,Zhao X,Liu H,Xiao FL,Xu FP,Han JW,Shi DM,Zhang AP,Zhou C,Li QB,Fan X,Lin LY,Tian HQ,Wang ZX,Fu HL,Wang F,Yang BQ,Huang SW,Liang B,Xie XF,Ren YQ,Gu QQ,Wen GD,Sun YL,Wu XL,Dang L,Xia M,Shan JJ,Li TH,Yang L,Zhang XY,Li YZ,He CD,Xu A,Wei LP,Zhao XH,Gao XH,Xu JH,Zhang FR,Zhang JZ,Li YR,Sun LD,Liu JJ,Chen RS,Yang S,Wang J,Zhang XJ. A large-scale screen for coding variants predisposing to psoriasis. Nat Genet,2014,46(1): 45–50.

        [51]Lange LA,Hu YN,Zhang H,Xue CY,Schmidt EM,Tang ZZ,Bizon C,Lange EM,Smith JD,Turner EH,Jun G,Kang HM,Peloso G,Auer P,Li KP,Flannick J,Zhang J,Fuchsberger C,Gaulton K,Lindgren C,Locke A,Manning A,Sim XL,Rivas MA,Holmen OL,Gottesman O,Lu YC,Ruderfer D,Stahl EA,Duan Q,Li Y,Durda P,Jiao S,Isaacs A,Hofman A,Bis JC,Correa A,Griswold ME,Jakobsdottir J,Smith AV,Schreiner PJ,Feitosa MF,Zhang Q,Huffman JE,Crosby J,Wassel CL,Do R,Franceschini N,Martin LW,Robinson JG,Assimes TL,Crosslin DR,Rosenthal EA,Tsai M,Rieder MJ,Farlow DN,Folsom AR,Lumley T,Fox ER,Carlson CS,Peters U,Jackson RD,Van Duijn CM,Uitterlinden AG,Levy D,Rotter JI,Taylor HA,Gudnason V Jr,Siscovick DS,Fornage M,Borecki IB,Hayward C,Rudan I,Chen YE,Bottinger EP,Loos RJ,Saetrom P,Hveem K,Boehnke M,Groop L,Mccarthy M,Meitinger T,Ballantyne CM,Gabriel SB,O'donnell CJ,Post WS,North KE,Reiner AP,Boerwinkle E,Psaty BM,Altshuler D,Kathiresan S,Lin DY,Jarvik GP,Cupples LA,Kooperberg C,Wilson JG,Nickerson DA,Abecasis GR,Rich SS,Tracy RP,Willer CJ,NHLBI Grand Opportunity Exome Sequencing Project.Whole-exome sequencing identifies rare and low-frequency coding variants associated with LDL cholesterol.Am J Hum Genet,2014,94(2): 233–245.

        [52]Choi M,Scholl UI,Ji WZ,Liu TW,Tikhonova IR,Zumbo P,Nayir A,Bakkalo?lu A,?zen S,Sanjad S,Nelson-Williams C,Farhi A,Mane S,Lifton RP. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci USA,2009,106(45):19096–19101.

        [53]Bowden DW,An SS,Palmer ND,Brown WM,Norris JM,Haffner SM,Hawkins GA,Guo XQ,Rotter JI,Chen YD,Wagenknecht LE,Langefeld CD. Molecular basis of a linkage peak: exome sequencing and family-based analysis identify a rare genetic variant in the ADIPOQ gene in the IRAS Family Study. Hum Mol Genet,2010,19(20):4112–4120.

        [54]Bilgüvar K,?ztürk AK,Louvi A,Kwan KY,Choi M,Tatli B,Yalnizo?lu D,Tüysüz B,?a?layan AO,G?kben S,Kaymak?alan H,Barak T,Bakircio?lu M,Yasuno K,Ho W,Sanders S,Zhu Y,Yilmaz S,Dincer A,Johnson MH,Bronen RA,Ko?er N,Per H,Mane S,Pamir MN,Yal?inkaya C,Kumanda? S,Top?u M,?zmen M,?estan N,Lifton RP,State MW,Günel M. Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations. Nature,2010,467(7312): 207–210.

        [55]Stitziel NO,Kiezun A,Sunyaev S. Computational and statistical approaches to analyzing variants identified by exome sequencing. Genome Biol,2011,12(9): 227.

        [56]Wu TT,Chen YF,Hastie T,Sobel E,Lange K. Genome-wide association analysis by lasso penalized logistic regression. Bioinformatics,2009,25(6): 714–721.

        [57]Morgenthaler S,Thilly WG. A strategy to discover genes that carry multi-allelic or mono-allelic risk for common diseases: a cohort allelic sums test (CAST). Mutat Res,2007,615(1–2): 28–56.

        [58]Li BS,Leal SM. Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am J Hum Genet,2008,83(3): 311–321.

        [59]Price AL,Kryukov GV,De Bakker PI,Purcell SM,Staples J,Wei LJ,Sunyaev SR. Pooled association tests for rare variants in exon-resequencing studies. Am J Hum Genet,2010,86(6): 832–838.

        [60]Bhatia G,Bansal V,Harismendy O,Schork NJ,Topol EJ,Frazer K,Bafna V. A covering method for detecting genetic associations between rare variants and common phenotypes. PLoS Comput Biol,2010,6(10): e1000954.

        [61]Madsen BE,Browning SR. A groupwise association test for rare mutations using a weighted sum statistic. PLoS Genet,2009,5(2): e1000384.

        [62]Liu DJ,Leal SM. A novel adaptive method for the analysis of next-generation sequencing data to detect complex trait associations with rare variants due to gene main effects and interactions. PLoS Genet,2010,6(10): e1001156.

        [63]Zheng HF,Ladouceur M,Greenwood CMT,Richards JB.Effect of genome-wide genotyping and reference panels on rare variants imputation. J Genet Genomics,2012,39(10): 545–550.

        [64]1000 Genomes Project Consortium,Abecasis GR,Altshuler D,Auton A,Brooks LD,Durbin RM,Gibbs RA,Hurles ME,Mcvean GA. A map of human genome variation from population-scale sequencing. Nature,2010,467(7319):1061–1073.

        [65]Pasaniuc B,Rohland N,Mclaren PJ,Garimella K,Zaitlen N,Li H,Gupta N,Neale BM,Daly MJ,Sklar P,Sullivan PF,Bergen S,Moran JL,Hultman CM,Lichtenstein P,Magnusson P,Purcell SM,Haas DW,Liang LM,Sunyaev S,Patterson N,De Bakker PI,Reich D,Price AL. Extremely low-coverage sequencing and imputation increases power for genome-wide association studies. Nat Genet,2012,44(6): 631–635.

        [66]Howie B,Fuchsberger C,Stephens M,Marchini J,Abecasis GR. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat Genet,2012,44(8): 955–959.

        [67]Rohland N,Reich D. Cost-effective,high-throughput DNA sequencing libraries for multiplexed target capture.Genome Res,2012,22(5): 939–946.

        [68]Robasky K,Lewis NE,Church GM. The role of replicates for error mitigation in next-generation sequencing. Nat Rev Genet,2014,15(1): 56–62.

        [69]Yang SZ,Wang K,Gregory B,Berrettini W,Wang LS,Hakonarson H,Bucan M. Genomic landscape of a three-generation pedigree segregating affective disorder.PLoS ONE,2009,4(2): e4474.

        [70]Sobreira NLM,Cirulli ET,Avramopoulos D,Wohler E,Oswald GL,Stevens EL,Ge DL,Shianna KV,Smith JP,Maia JM,Gumbs CE,Pevsner J,Thomas G,Valle D,Hoover-Fong JE,Goldstein DB. Whole-genome sequencing of a single proband together with linkage analysis identifies a Mendelian disease gene. PLoS Genet,2010,6(6): e1000991.

        [71]Lander ES,Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics,1989,121(1): 185–199.

        [72]Manolio TA,Brooks LD,Collins FS. A HapMap harvest of insights into the genetics of common disease. J Clin Invest,2008,118(5): 1590–1605.

        [73]Verlaan DJ,Ge B,Grundberg E,Hoberman R,Lam KC,Koka V,Dias J,Gurd S,Martin NW,Mallmin H,Nilsson O,Harmsen E,Dewar K,Kwan T,Pastinen T. Targeted screening of cis-regulatory variation in human haplotypes.Genome Res,2009,19(1): 118–127.

        [74]Cirulli ET,Goldstein DB. Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat Rev Genet,2010,11(6): 415–425.

        [75]Sikkema-Raddatz B,Johansson LF,De Boer EN,Almomani R,Boven LG,Van Den Berg MP,Van Spaendonck-Zwarts KY,Van Tintelen JP,Sijmons RH,Jongbloed JDH,Sinke RJ. Targeted next-generation sequencing can replace Sanger sequencing in clinical diagnostics. Hum Mutat,2013,34(7): 1035–1042.

        [76]Kofler R,Pandey RV,Schl?tterer C. PoPoolation2: identifying differentiation between populations using sequencing of pooled DNA samples (Pool-Seq). Bioinformatics,2011,27(24): 3435–3436.

        [77]Huang XH,Wei XH,Sang T,Zhao Q,Feng Q,Zhao Y,Li CY,Zhu CR,Lu TT,Zhang ZW,Li M,Fan DL,Guo YL,Wang AH,Wang L,Deng LW,Li WJ,Lu YQ,Weng QJ,Liu KY,Huang T,Zhou TY,Jing YF,Li W,Lin Z,Buckler ES,Qian Q,Zhang QF,Li JY,Han B. Genome-wide association studies of 14 agronomic traits in rice landraces.Nat Genet,2010,42(11): 961–967.

        [78]Li H,Peng ZY,Yang XH,Wang WD,Fu JJ,Wang JH,Han YJ,Chai YC,Guo TT,Yang N,Liu J,Warburton ML,Cheng YB,Hao XM,Zhang P,Zhao JY,Liu YJ,Wang GY,Li JS,Yan JB. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels.Nat Genet,2013,45(1): 43–50.

        [79]Johnson JA. Pharmacogenomics of antihypertensive drugs:past,present and future. Pharmacogenomics,2010,11(4):487–491.

        [80]Thoenes M,Neuberger HR,Volpe M,Khan BV,Kirch W,B?hm M. Antihypertensive drug therapy and blood pressure control in men and women: an international perspective. J Hum Hypertens,2010,24(5): 336–344.

        [81]Turner ST,Bailey KR,Fridley BL,Chapman AB,Schwartz GL,Chai HS,Sicotte H,Kocher JP,Rodin AS,Boerwinkle E. Genomic association analysis suggests chromosome 12 locus influencing antihypertensive response to thiazide diuretic. Hypertension,2008,52(2): 359–365.

        [82]Johnson JA,Boerwinkle E,Zineh I,Chapman AB,Bailey K,Cooper-Dehoff RM,Gums J,Curry RW,Gong Y,Beitelshees AL,Schwartz G,Turner ST. Pharmacogenomics of antihypertensive drugs: rationale and design of the Pharmacogenomic Evaluation of Antihypertensive Responses (PEAR) study. Am Heart J,2009,157(3): 442–449.

        猜你喜歡
        覆蓋度外顯子變異
        外顯子跳躍模式中組蛋白修飾的組合模式分析
        呼和浩特市和林格爾縣植被覆蓋度變化遙感監(jiān)測
        基于NDVI的晉州市植被覆蓋信息提取
        外顯子組測序助力產(chǎn)前診斷胎兒骨骼發(fā)育不良
        變異危機(jī)
        變異
        低覆蓋度CO分子在Ni(110)面的吸附研究
        外顯子組測序助力產(chǎn)前診斷胎兒骨骼發(fā)育不良
        變異的蚊子
        人類組成型和可變外顯子的密碼子偏性及聚類分析
        韩国19禁主播深夜福利视频| 亚洲乱码中文字幕在线播放| 成在线人av免费无码高潮喷水 | 精品无码国产自产野外拍在线| 日本一区二区啪啪视频| 亚洲av色香蕉第一区二区三区| 精品国产一区二区三区18p| 国产男小鲜肉同志免费| 亚洲成人中文| 青青草免费在线手机视频| 一区二区三区人妻av| 免费大黄网站| 久久天天爽夜夜摸| 冲田杏梨av天堂一区二区三区| 日韩少妇人妻中文视频| 国产高清av首播原创麻豆| 精品人无码一区二区三区 | 精品一区二区av天堂| av成人资源在线观看| 极品少妇被黑人白浆直流| 久久九九国产精品怡红院| 国产在线不卡免费播放| 白白色日韩免费在线观看 | 日韩一卡2卡3卡4卡新区亚洲| 综合色久七七综合尤物| 亚洲国产天堂av成人在线播放| 无码爽视频| 三上悠亚久久精品| 无码a级毛片免费视频内谢| 尤物精品国产亚洲亚洲av麻豆| 国产成年女人毛片80s网站| 日韩无码视频淫乱| 精品人妻一区二区三区av| 亚洲国产精品无码一线岛国| aaa级久久久精品无码片| 亚洲欧美日韩国产综合专区| 中文字幕亚洲精品专区| 久久久久久久波多野结衣高潮| 国产成人精品三级麻豆 | 日美韩精品一区二区三区| 亚洲av午夜精品无码专区|