肖麗容,陳大年,閆乃紅
四川大學(xué)華西醫(yī)院眼科/眼科學(xué)研究室,成都 610041
活體電轉(zhuǎn)化技術(shù)在新生小鼠視網(wǎng)膜中的應(yīng)用
肖麗容,陳大年,閆乃紅
四川大學(xué)華西醫(yī)院眼科/眼科學(xué)研究室,成都 610041
活體電轉(zhuǎn)化技術(shù)是在高電壓的脈沖作用下,瞬態(tài)增加細(xì)胞膜的滲透性從而將外源基因高效導(dǎo)入細(xì)胞的方法。與病毒載體等其他方法相比,活體電轉(zhuǎn)化技術(shù)具有安全、高效、快速、穩(wěn)定及應(yīng)用范圍廣等優(yōu)點(diǎn),近年來在很多組織和器官中得到廣泛使用,包括在眼科研究領(lǐng)域。文章介紹了活體電轉(zhuǎn)化技術(shù)在新生小鼠視網(wǎng)膜中的應(yīng)用,通過新生小鼠視網(wǎng)膜下注射的方法,經(jīng)幾次高電壓的脈沖,將高濃度的綠色熒光蛋白表達(dá)質(zhì)粒導(dǎo)入新生小鼠視網(wǎng)膜細(xì)胞內(nèi)。通過冰凍切片觀察綠色熒光蛋白在視網(wǎng)膜中的表達(dá)。結(jié)果表明綠色熒光蛋白在視網(wǎng)膜外核層高表達(dá),證實(shí)了活體電轉(zhuǎn)化技術(shù)可以將外源基因高效、快捷的導(dǎo)入視網(wǎng)膜,從而為研究視網(wǎng)膜發(fā)育及功能提供一種有效的手段。
活體電轉(zhuǎn)化;新生小鼠;視網(wǎng)膜;冰凍切片
近年來,隨著基因測(cè)序及芯片分析等方法的發(fā)展,大量可能與哺乳動(dòng)物視網(wǎng)膜發(fā)育及疾病相關(guān)的基因被發(fā)現(xiàn),現(xiàn)在比以往更需要一種快速、簡(jiǎn)便的方法去分析基因的功能[1~3]。在活體動(dòng)物中,基因功能的研究主要通過轉(zhuǎn)基因或基因敲除來實(shí)現(xiàn),而轉(zhuǎn)基因和基因敲除是一項(xiàng)費(fèi)時(shí)、費(fèi)力且花費(fèi)巨大的工作[4,5],利用病毒載體來攜帶目的基因?qū)霗C(jī)體雖然省時(shí)省力,但存在免疫原性低、潛在毒性、靶向特異性差等缺點(diǎn)[6,7]。為了克服這些問題,近年來一種新的導(dǎo)入外源基因的技術(shù)——活體電轉(zhuǎn)化技術(shù)快速發(fā)展并被廣泛應(yīng)用?;铙w電轉(zhuǎn)化技術(shù)是利用高脈沖瞬時(shí)改變細(xì)胞膜通透性,在膜上出現(xiàn)有利DNA等物質(zhì)快速進(jìn)入細(xì)胞的孔道,從而實(shí)現(xiàn)基因?qū)氲募夹g(shù)[8]。目前,活體電轉(zhuǎn)化技術(shù)已應(yīng)用于鼠、雞、牛蛙、豬、狗、羊、兔、恒河猴等動(dòng)物[9],成功轉(zhuǎn)染了腫瘤、皮膚、腦、肌肉、睪丸、脊柱、腎、肺、肝及眼等部位[10~19]。
2004年,Matsuda和 Cepko[20]將電轉(zhuǎn)化方法應(yīng)用于嚙齒動(dòng)物(Sprague-Dawley大鼠和 Swiss-Webster小鼠)視網(wǎng)膜功能的研究,在體外用高電壓脈沖,將DNA有效地轉(zhuǎn)染入視網(wǎng)膜內(nèi),發(fā)現(xiàn)綠色熒光蛋白(Green fluorescent protein, GFP)可以表達(dá)至少50 d。2011年,Melo1和 Blackshaw[21]進(jìn)一步利用活體電轉(zhuǎn)化技術(shù),在新生小鼠視網(wǎng)膜中進(jìn)行了嘗試,詳細(xì)地描述了新生小鼠視網(wǎng)膜下注射及電轉(zhuǎn)化的步驟。2013年,Venkatesh等[22]針對(duì)活體電轉(zhuǎn)化技術(shù)在小鼠視網(wǎng)膜中使用的注意事項(xiàng)等進(jìn)行討論,提出電轉(zhuǎn)化參數(shù)、DNA濃度及視網(wǎng)膜下注射的位置等是影響電轉(zhuǎn)化效率的關(guān)鍵,并且電轉(zhuǎn)化小鼠視網(wǎng)膜的理想時(shí)間是出生后24 h內(nèi),而電轉(zhuǎn)化產(chǎn)后3 d基本上不會(huì)轉(zhuǎn)染任何細(xì)胞。2014年,研究者們利用活體電轉(zhuǎn)化技術(shù)將不同的基因?qū)胄∈笠暰W(wǎng)膜,對(duì)視網(wǎng)膜不同類型細(xì)胞的功能進(jìn)行研究[23,24]。
綜上所述,活體電轉(zhuǎn)化是研究小鼠視網(wǎng)膜發(fā)育、疾病及功能的強(qiáng)有力技術(shù),但目前還沒有見到活體電轉(zhuǎn)化技術(shù)在新生小鼠視網(wǎng)膜中應(yīng)用的中文報(bào)道。本文利用活體電轉(zhuǎn)化技術(shù)成功將GFP表達(dá)質(zhì)粒導(dǎo)入新生小鼠視網(wǎng)膜內(nèi),并在電轉(zhuǎn)化后3 d和28 d觀察熒光蛋白的表達(dá),為后續(xù)導(dǎo)入目的基因并研究基因的功能提供了可靠的技術(shù)支撐。
1.1 實(shí)驗(yàn)動(dòng)物、材料、設(shè)備
成年ICR小鼠購自成都達(dá)碩生物科技有限公司,交配后繁殖得到新生小鼠(P0,出生后第0 d)。真核表達(dá)載體pEZ-M90(帶有GFP綠色熒光報(bào)告基因)購于美國Genecopoeia公司;Plasmid Maxi Kit購于美國Qiagen公司;2.5 μL進(jìn)樣針及32G平末端針頭購于美國Hamilton公司,32G胰島素素注射針頭(#32017714)購自美國BD公司。包埋劑(Opti-mum cutting temperature compound, OCT)及冰凍切片包埋模具購自日本Tissue-Tek公司。電轉(zhuǎn)化儀(型號(hào)為 NEPA21,電極型號(hào)為CUY650P5)購自日本NEPA GENE公司。冰凍切片機(jī)(Leica CM 1850)及熒光顯微鏡(Leica DM3000)購于德國萊卡公司。常規(guī)試劑購于國產(chǎn)公司。
1.2 方法
1.2.1 高濃度質(zhì)粒提取
將真核表達(dá)載體pEZ-M90轉(zhuǎn)化DH5α大腸桿菌感受態(tài)細(xì)胞,氨芐青霉素培養(yǎng)基中 37℃過夜培養(yǎng)。挑取白色菌落,在5 mL LB/氨芐青霉素培養(yǎng)基中小量活化后,轉(zhuǎn)入50 mL LB/氨芐青霉素培養(yǎng)基中大量培養(yǎng),6000 g、4℃條件下離心15 min收集菌液,按照Plasmid Maxi Kit操作說明提取質(zhì)粒,最后用無內(nèi)毒素的TE溶解DNA為1 μg/μL。加入1% blue dye到DNA溶液中使其終濃度為0.01%,作為注射時(shí)的指示劑。
1.2.2 視網(wǎng)膜下腔注射
新生小鼠(P0)置于冰上數(shù)分鐘使之麻醉,用70%酒精擦拭小鼠眼表,準(zhǔn)確定位出兩眼瞼的結(jié)合處。用32G的尖銳針頭小心劃開兩眼瞼間的皮膚,暴露眼球(注意劃開面積與深度,避免劃傷周圍組織或內(nèi)部眼球)。用32G的尖銳針頭在角鞏膜緣穿刺并形成一個(gè)小口,用32G Hamilton平末端針頭的微量注射器吸取1 μL DNA溶液,將針頭45°角順著小口插入玻璃體腔,并穿透視網(wǎng)膜,直至遇到來自鞏膜的阻力停止(注意避免穿破晶狀體),此時(shí)針頭已插入到視網(wǎng)膜下,緩慢推動(dòng)注射器活塞將DNA溶液注射到視網(wǎng)膜下腔,可以觀察到藍(lán)色染料在視網(wǎng)膜下均勻擴(kuò)散,表明已成功地將 DNA溶液注射到視網(wǎng)膜下。退出注射器后合眼并用浸潤PBS的棉球擦拭眼表皮膚。
1.2.3 活體電轉(zhuǎn)化
電轉(zhuǎn)化所用電極為10 mm直徑的鑷子狀電極。為提高皮膚與電極間傳導(dǎo)性將電極浸泡在 PBS中,用電極夾住小鼠頭部?jī)蓚?cè),保證兩電極鑷子分別完全覆蓋左右眼睛,注射DNA的眼球用電極正極,另一側(cè)為負(fù)極。兩電極形成的電場(chǎng)應(yīng)完全垂直于視網(wǎng)膜所注射的部位,才能保證有效電轉(zhuǎn)化。如若注射位置恰好在視網(wǎng)膜中央,兩電極與角膜保持水平,則可以得到最高的轉(zhuǎn)化效率。電轉(zhuǎn)化條件:5次脈沖,80 V,50 ms,每?jī)纱蚊}沖間隔950 ms。電轉(zhuǎn)化后的小鼠在37℃下使其蘇醒,最后放回籠中與其母親共同飼養(yǎng)。
1.2.4 眼球的固定、包埋、切片及熒光觀察
電轉(zhuǎn)化3 d和28 d后處死小鼠,取出眼球,用針尖在角鞏膜緣處戳個(gè)小洞,注意不要擠壓眼球,然后用 4%多聚甲醛在 4℃固定過夜,取出眼球用PBS清洗3遍,于30%蔗糖脫水至眼球沉降管底。用OCT包埋眼球,然后用冰凍切片機(jī)切片,厚度為6 μm。將切片風(fēng)干后用PBS洗滌3次,去除OCT,用含DAPI染料的封片劑封片,觀察熒光。
2.1 視網(wǎng)膜下腔注射
新生小鼠視網(wǎng)膜下注射 DNA溶液示意圖見圖1A,要注意注射針的角度和位置,確保將 DNA溶液注射在視網(wǎng)膜下中央位置,然后緩慢推注射針,使DNA溶液沿著視網(wǎng)膜下空隙均勻擴(kuò)散。注射后小鼠眼球呈現(xiàn)均一的藍(lán)色(圖 1B),說明視網(wǎng)膜下注射成功。成功的操作對(duì)眼球損傷很小,也不會(huì)影響視網(wǎng)膜的正常發(fā)育。
2.2 新生小鼠眼球活體電轉(zhuǎn)化
視網(wǎng)膜下注射DNA后,將電極夾夾住小鼠雙眼,要注意電極夾的位置和方向(圖2A),而圖2B和2C不能將 DNA導(dǎo)入視網(wǎng)膜細(xì)胞。電流的方向、DNA注射的位置及確保電流穿過DNA注射的位置,是該實(shí)驗(yàn)的關(guān)鍵。實(shí)驗(yàn)完畢后,幾乎所有的動(dòng)物都能健康存活。
圖1 小鼠視網(wǎng)膜下注射DNA溶液A:圖解視網(wǎng)膜下注射的正確操作,其中R代表視網(wǎng)膜,V代表玻璃體,L代表晶狀體。將DNA液體注射到玻璃體腔、眼球外及晶狀體內(nèi)都是錯(cuò)誤的操作;B:新生小鼠(P0 d)注射DNA溶液后的眼球,可見藍(lán)色染料均勻分布在眼球內(nèi)。
圖2 活體電轉(zhuǎn)化電極位置對(duì)電轉(zhuǎn)化的影響A:圖解視網(wǎng)膜下注射后電轉(zhuǎn)化的正確操作,DNA分布在視網(wǎng)膜中部,并且電極板的方位貼于雙眼角膜中央;B:視網(wǎng)膜下液體分布在視網(wǎng)膜一邊,電流雖然穿過眼球,但是沒有穿過注射部位,將導(dǎo)致轉(zhuǎn)化失敗;C:視網(wǎng)膜下液體分布在視網(wǎng)膜一邊,電流也沒有穿過注射部位,將導(dǎo)致轉(zhuǎn)化失敗。
2.3 綠色熒光蛋白在視網(wǎng)膜中的表達(dá)
本實(shí)驗(yàn)使用真核表達(dá)載體pEZ-M90為CMV啟動(dòng)子,電轉(zhuǎn)化后3 d,可在視網(wǎng)膜中觀測(cè)到GFP熒光的表達(dá)(圖3A)。出生后3 d的小鼠視網(wǎng)膜沒有發(fā)育完全,視網(wǎng)膜只有2層結(jié)構(gòu),為成神經(jīng)細(xì)胞層(Neuroblastic layer, NBL)和神經(jīng)節(jié)細(xì)胞層(Ganglion cell layer, GCL),GFP主要分布在外成神經(jīng)細(xì)胞層。電轉(zhuǎn)化28 d后,GFP仍然表達(dá)較強(qiáng),視網(wǎng)膜已經(jīng)完全分化,GFP主要在視網(wǎng)膜外核層(Outer nuclear layer, ONL)中表達(dá),而內(nèi)核層(Inner nuclear layer, INL)被轉(zhuǎn)化的細(xì)胞較少。
圖3 電轉(zhuǎn)化后3 d及28 d視網(wǎng)膜中GFP的表達(dá)A:新生小鼠視網(wǎng)膜電轉(zhuǎn)化后3 d的熒光表達(dá)圖,GFP綠色熒光主要在視網(wǎng)膜NBL中;B:新生小鼠視網(wǎng)膜電轉(zhuǎn)化后28 d的熒光表達(dá)圖,GFP綠色熒光主要在ONL中表達(dá),而INL熒光較少。
本文介紹了一種高效、快速將外源基因?qū)胄律∈笠暰W(wǎng)膜的方法,該活體電轉(zhuǎn)化與其他基因?qū)敕椒ㄏ啾?,具有很多無法比擬的優(yōu)點(diǎn)[20]。第一,理論上任何組織和器官都可以作為活體電轉(zhuǎn)化的靶器官;第二,電轉(zhuǎn)化技術(shù)操作簡(jiǎn)單、快速和安全,且DNA制備容易。第三,當(dāng)DNA注射方式準(zhǔn)確時(shí),DNA轉(zhuǎn)導(dǎo)效率非常高;第四,電轉(zhuǎn)化技術(shù)對(duì)于導(dǎo)入的外源基因片段大小沒有限制,優(yōu)于病毒載體;第五,可以同時(shí)導(dǎo)入多個(gè)基因表達(dá)質(zhì)粒或shRNA進(jìn)入視網(wǎng)膜細(xì)胞。有研究表明,多個(gè)轉(zhuǎn)錄因子的結(jié)合,而不是單一的轉(zhuǎn)錄因子導(dǎo)入視網(wǎng)膜,對(duì)研究不同類型的視網(wǎng)膜細(xì)胞很重要[25,26]。另外,該技術(shù)可以用來研究多重復(fù)雜基因的相互作用。
由于電轉(zhuǎn)化技術(shù)具有上述優(yōu)點(diǎn),此項(xiàng)技術(shù)已廣泛應(yīng)用于多個(gè)物種的不同組織[9,27,28]。在中樞神經(jīng)系統(tǒng),此技術(shù)也已成功應(yīng)用于不同物種包括鳥類和嚙齒動(dòng)物。早期神經(jīng)發(fā)育的研究對(duì)象通常是胚胎,目前研究表明,在出生后或成年動(dòng)物的大腦仍然有很高效率[12]。由于眼睛處于淺表,易于觀察和定位,是電轉(zhuǎn)化技術(shù)最好的靶器官。電轉(zhuǎn)化技術(shù)除了在視網(wǎng)膜中廣泛應(yīng)用之外,還廣泛應(yīng)用于角膜、玻璃體、晶狀體、睫狀肌等組織中[19,29~31]。Chen等[30]將表達(dá)GFP和雞neurofibromatosis 2( cNf2)質(zhì)粒注入雞胚晶狀體,用電轉(zhuǎn)化技術(shù)將該質(zhì)粒轉(zhuǎn)入晶狀體上皮細(xì)胞,轉(zhuǎn)染4 h后可明顯觀察到GFP表達(dá),表明在活體雞胚中用電轉(zhuǎn)化技術(shù)可有效轉(zhuǎn)導(dǎo)目的基因于晶狀體上皮細(xì)胞。Bloquel等[31]利用電轉(zhuǎn)化技術(shù)將腫瘤壞死因子受體基因(Tumor necrosis factor receptor, TNFR)導(dǎo)入大鼠睫狀肌,有助房水高蛋白質(zhì)分泌,明顯抑制葡萄膜炎。
通過活體電轉(zhuǎn)化技術(shù)將質(zhì)粒導(dǎo)入新生小鼠視網(wǎng)膜下,并獲得較高的轉(zhuǎn)化效率,要注意以下幾個(gè)方面。第一,所需質(zhì)粒需要去除內(nèi)毒素,最好利用高濃度、高純度的質(zhì)粒,為成功轉(zhuǎn)化提供前提條件。第二,需要操作者掌握熟練的技巧,準(zhǔn)確將DNA溶液注射入視網(wǎng)膜下腔。第三,劃開眼瞼暴露眼球時(shí),操作者應(yīng)注意控制劃開力度和面積,以免劃傷眼球和周圍血管,將Hamilton平末端針頭插進(jìn)眼球時(shí)應(yīng)注意避開晶狀體,并穿過玻璃體進(jìn)入到視網(wǎng)膜下正中央,直到感覺來自鞏膜的壓力時(shí)再緩慢注射質(zhì)粒,使其均勻擴(kuò)散于整個(gè)視網(wǎng)膜。第四,電極需保證具有適當(dāng)?shù)膶?dǎo)電性,使用完的電極鑷子需保證干凈,防止被氧化影響電極接觸面積而影響轉(zhuǎn)化效率。第五,電轉(zhuǎn)化時(shí)電極鑷子的位置應(yīng)適當(dāng),保證注射的質(zhì)粒在兩電極范圍內(nèi)。第六,電壓、脈沖次數(shù)和時(shí)間要不斷優(yōu)化,將細(xì)胞損傷降低并可以獲得較高的轉(zhuǎn)化效率。
任何技術(shù)都存在一定的缺點(diǎn),電轉(zhuǎn)化技術(shù)也不例外。首先,與整合型的逆轉(zhuǎn)錄病毒載體相比,外源基因表達(dá)持續(xù)時(shí)間較短,不合適進(jìn)行遺傳性視網(wǎng)膜疾病等基因治療。Matsuda和 Cepko[20]研究表明GFP在視網(wǎng)膜中表達(dá)至少50 d,對(duì)于視網(wǎng)膜的發(fā)展研究時(shí)間足夠,包括晚期成熟的視桿細(xì)胞(Rod cell)、雙極細(xì)胞(Bipolar cell)及Muller細(xì)胞。其次,與病毒載體法相比,外源基因表達(dá)效率低于病毒載體。再次,電轉(zhuǎn)化技術(shù)可能會(huì)引起局部細(xì)胞損害和炎性反應(yīng)等不良反應(yīng)的風(fēng)險(xiǎn)。相信隨著該技術(shù)的不斷發(fā)展,上述缺點(diǎn)會(huì)逐一解決,活體電轉(zhuǎn)化技術(shù)將會(huì)更廣泛地應(yīng)用于基礎(chǔ)與臨床研究。
[1] Livesey FJ, Furukawa T, Steffen MA, Church GM, Cepko CL. Microarray analysis of the transcriptional network controlled by the photoreceptor homeobox gene Crx. Curr Biol, 2000, 10(6): 301–310.
[2] Farjo R, Yu JD, Othman MI, Yoshida S, Sheth S, Glaser T, Baehr W, Swaroop A. Mouse eye gene microarrays for investigating ocular development and disease. Vision Res, 2002, 42(4): 463–470.
[3] Blackshaw S, Fraioli RE, Furukawa T, Cepko CL. Comprehensive analysis of photoreceptor gene expression and the identification of candidate retinal disease genes. Cell, 2001, 107(5): 579–589.
[4] Cho A, Haruyama N, Kulkarni AB. Generation of transgenic mice. Curr Protoc Cell Biol, 2009, Chapter 19: Unit 19.
[5] Testa G, Vintersten K, Zhang Y, Benes V, Muyrers JP, Stewart AF. BAC engineering for the generation of ES celltargeting constructs and mouse transgenes. Methods Mol Biol, 2004, 256: 123–139.
[6] Miyoshi H, Takahashi M, Gage FH, Verma IM. Stable and efficient gene transfer into the retina using an HIV–based lentiviral vector. Proc Natl Acad Sci USA, 1997, 94(19): 10319–10323.
[7] Flannery JG, Zolotukhin S, Vaquero MI, LaVail MM, Muzyczka N, Hauswirth WW. Efficient photoreceptortargeted gene expression in vivo by recombinant adenoassociated virus. Proc Natl Acad Sci USA,1997, 94(13): 6916–6921.
[8] Golzio M, Teissié J, Rols MP. Direct visualization at the single-cell level of electrically mediated gene delivery. Proc Natl Acad Sci USA,2002, 99(3): 1292–1297.
[9] Prud'homme GJ, Glinka Y, Khan AS, Draghia-Akli R. Electroporation-enhanced nonviral gene transfer for the prevention or treatment of immunological, endocrine and neoplastic diseases. Curr Gene Ther, 2006, 6(2): 243–273.
[10] Li SL. Delivery of DNA into tumors. Methods Mol Biol, 2008, 423: 311–318.
[11] Ferraro B, Cruz YL, Coppola D, Heller R. Intradermal delivery of plasmid VEGF165by electroporation promotes wound healing. Mol Ther, 2009, 17(4): 651–657.
[12] De Vry J, Martínez-Martínez P, Losen M, Temel Y, Steckler T, Steinbusch HWM, De Baets MH, Prickaerts J. In vivo electroporation of the central nervous system: a non- viral approach for targeted gene delivery. Prog Neurobiol, 2010, 92(3): 227–244.
[13] Martínez-Martínez P, Phernambucq M, Steinbusch L, Schaeffer L, Berrih-Aknin S, Duimel H, Frederik P, Molenaar P, De Baets MH, Losen M. Silencing rapsyn in vivo decreases acetylcholine receptors and augments sodium channels and secondary postsynaptic membrane folding. Neurobiol Dis, 2009, 35(1): 14–23.
[14] Hibbitt O, Coward K, Kubota H, Prathalingham N, Holt W, Kohri K, Parrington J. In vivo gene transfer by electroporation allows expression of a fluorescent transgene in hamster testis and epididymal sperm and has no adverse effects upon testicular integrity or sperm quality. Biol Reprod, 2006, 74(1): 95–101.
[15] Luo J, Ju MJ, Redies C. Regionalized cadherin-7 expression by radial glia is regulated by Shh and Pax7 during chicken spinal cord development. Neuroscience, 2006, 142(4): 1133–1143.
[16] Xu D, Zhang T, Chen X, Zhou Q, Liu C, Deng Z, Zhang L, Ying C, Zhang W, Gu M. Reduction of osteopontin in vivo inhibits tubular epithelial to mesenchymal transition in rats with chronic allograft nephropathy. Transplant Proc, 2013, 45(2): 659–665.
[17] Zhou R, Norton JE, Zhang N, Dean DA. Electroporationmediated transfer of plasmids to the lung results in reduced TLR9 signaling and inflammation. Gene Ther, 2007, 14(9): 775–780.
[18] Jaichandran S, Yap STB, Khoo ABM, Ho LP, Tien SL, Kon OL. In vivo liver electroporation: optimization and demonstration of therapeutic efficacy. Hum Gene Ther, 2006, 17(3): 362–375.
[19] Kachi S, Oshima Y, Esumi N, Kachi M, Rogers B, Zack DJ, Campochiaro PA. Nonviral ocular gene transfer. Gene Ther, 2005, 12(10): 843–851.
[20] Matsuda T, Cepko CL. Electroporation and RNA interference in the rodent retina in vivo and in vitro. Proc Natl Acad Sci USA, 2004, 101(1): 16–22.
[21] de Melo J, Blackshaw S. In vivo electroporation of developing mouse retina. J Vis Exp, 2011(52):doi:10.3791/ 2847.
[22] Venkatesh A, Ma S, Langellotto F, Gao G, Punzo C. Retinal gene delivery by rAAV and DNA electroporation. Curr Protoc Microbiol, 2013, Chapter 14: Unit 14D.
[23] Aslanidis A, Karlstetter M, Walczak Y, J?gle H, Langmann T. RETINA-specific expression of Kcnv2 is controlled by cone-rod homeobox (Crx) and neural retina leucine zipper (Nrl). Adv Exp Med Biol, 2014, 801: 31–41.
[24] Wang S, Sengel C, Emerson MM, Cepko CL. A gene regulatory network controls the binary fate decision of rod and bipolar cells in the vertebrate retina. Dev Cell, 2014, 30(5): 513–527.
[25] Hatakeyama J, Tomita K, Inoue T, Kageyama R. Roles of homeobox and bHLH genes in specification of a retinal cell type. Development, 2001, 128(8): 1313–1322.
[26] Inoue T, Hojo M, Bessho Y, Tano Y, Lee JE, Kageyama R. Math3 and NeuroD regulate amacrine cell fate specification in the retina. Development, 2002, 129(4): 831–842.
[27] Thummel R, Bailey TJ, Hyde DR. In vivo electroporation of morpholinos into the adult zebrafish retina. J Vis Exp, 2011, (58): e3603.
[28] Hyde DR, Godwin AR, Thummel R. In vivo electroporation of morpholinos into the regenerating adult zebrafish tail fin. J Vis Exp, 2012, (61), pii: 3632 doi: 10. 3791/3632.
[29] Hao J, Li SK, Liu CY, Kao WW. Electrically assisted delivery of macromolecules into the corneal epithelium. Exp Eye Res, 2009, 89(6): 934–941.
[30] Chen YX, Krull CE, Reneker LW. Targeted gene expression in the chicken eye by in ovo electroporation. Mol Vis, 2004, 10: 874–883.
[31] Bloquel C, Bejjani R, Bigey P, Bedioui F, Doat M, BenEzra D, Scherman D, Behar-Cohen F. Plasmid electrotransfer of eye ciliary muscle: principles and therapeutic efficacy using hTNF-alpha soluble receptor in uveitis. FASEB J, 2006, 20(2): 389–391.
(責(zé)任編委: 許執(zhí)恒)
In vivo electroporation of newborn mouse retina
Lirong Xiao, Danian Chen, Naihong Yan
Ophthalmic Laboratories & Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China
In vivo electroporation is the process referred to a transient increase in the permeability of cell membranes upon high electric field pulses and delivery of engineered constructs into cells. Compared with the viral-mediated gene transfer system, the in vivo electroporation technique has several advantages, such as safe, high efficiency, rapid, stable and wide application. Thus, this technique has been widely used in the studies of many tissues or organs, including the eye. Here, we report the application of in vivo electroporation in the newborn mouse retina. DNA plasmid of GFP expression vector with high concentration was directly injected into the subretinal space of neonatal mouse pups. The DNA was then transfected into the retinal cells after several pulses of high voltage. Transfected GFP allowed clear visualization of cell morphologies in cryo-sections and the GFP was highly expressed in retinal outer nuclear layer. The results showed that this technique can effectively transfer the genes into retinal cells. In vivo electroporation will be a useful tool for the study of retinal development and function.
in vivo electroporation; newborn mouse; retina; cryo-sections
2014-10-14;
2014-10-14
國家自然科學(xué)基金項(xiàng)目(編號(hào):81371024)和四川省科技廳科技支撐項(xiàng)目(編號(hào):2014SZ0030)資助
肖麗容,學(xué)士,專業(yè)方向:醫(yī)學(xué)技術(shù)學(xué)。E-mail: lirongxiao@126.com
閆乃紅,博士,副教授,研究方向:醫(yī)學(xué)遺傳學(xué)。E-mail: yannaihong@126.com
10.3724/SP.J.1005.2014.1173
時(shí)間: 2014-10-16 10:07:36
URL: http://www.cnki.net/kcms/detail/11.1913.R.20141016.1007.001.html