顧菊等
摘要 [目的]以擬南芥為材料克隆bZIP23基因,構建bZIP23基因的過量表達載體和篩選過表達植株,為驗證其功能奠定基礎。[方法]提取擬南芥總RNA和RTPCR克隆bZIP23基因,用限制性內切酶切割和T4 DNA連接酶連接,使bZIP23基因連接到35S強啟動子的pART27載體上;將連接產物轉化到Trans1T1感受態(tài)細胞中,篩選陽性單克隆進行菌落PCR鑒定并測序驗證,獲得重組質粒。將該重組質粒電激轉化至根瘤農桿菌GV3101菌株,浸花法轉化擬南芥野生型植株。[結果]通過單菌落PCR鑒定和DNA測序結果顯示,bZIP23基因與35S過量表達載體已連接,獲得了重組載體;抗性篩選與遺傳鑒定獲得相應的轉基因過量表達陽性植株。[結論]構建的過量表達載體及篩選得到的過量表達植株為驗證bZIP23基因功能奠定了基礎。
關鍵詞擬南芥(Arabidopsis athaliana);bZIP23;互補和過量表達載體;轉基因植株
中圖分類號Q754;S188文獻標識碼A文章編號0517-6611(2014)14-04199-03
Construction of Arabidopsis Gene bZIP23 Overexpression Vector and Screening of Expression Plant
GU Ju,CAO Shuqing et al(School of Biotechnology and Food Engineering,Hefei University of Technology,Hefei,Anhui 230009)
Abstract[Objective] Arabidopsis were used as material to clone bZIP23 gene,we construct gene bZIP23 overexpression vector and screen expression plant.[Method] Total RNA was extracted from Arabidopsis seedlings,and cDNA fragments of bZIP23 gene were amplified by RTPCR.Using the restriction enzymes and T4 DNA ligase,cDNA fragments were subsequently cloned into PART27 vectors,and then were transformed into TransT1 phage resistant chemically competent cells.Analysis of bacterial colony PCR and cDNA sequencing were performed to confirm that cDNA of the Arabidopsis thaliana bZIP23 gene was successfully cloned.The recombinant plasmids were obtained and transformed into Agrobacterium GV3101 cells.Wildtype Arabidopsis thaliana was transformed by using floraldip method.[Result] Analysis of bacterial colony PCR and DNA sequencing were performed to confirm recombinant plasmids,complementary and overexpression positive plants were obtained through genetic screening and identification of genetically modified methods.[Conclusion] Construction of Arabidopsis gene bZIP23 overexpression vector and screening of expression plant laid the foundation for the function of gene bZIP23.
Key wordsArabidopsis thaliana;bZIP23; Complementary and overexpression vector; Genetically modified plant
轉錄因子是一類識別DNA特異序列且結合在目的基因啟動子的特定位點并調節(jié)其轉錄活性的蛋白,在擬南芥中鑒定了1 600多個轉錄因子[1]。有文獻報道,轉錄因子bZIP23對重金屬鋅缺乏的響應[2]。轉錄因子對生物脅迫和非生物的響應,調節(jié)擬南芥對重金屬的耐受[3]分子機理有重要作用[4]。bZIP家族有很多成員[5]。bZIP23是水稻堿性亮氨酸拉鏈[6](basic leucine zipper,bZIP)轉錄因子家族的成員之一,是ABA依賴的抗旱耐鹽反應中主要調節(jié)因子,在通過遺傳改良提高作物抗逆性中具有潛在的應用價值。cDNA全長1 828 bp,包含4個外顯子,編碼一個由357氨基酸組成的蛋白產物,產物含有堿性亮氨酸拉鏈(bZIP)結構域。bZIP23突變體:TDNA插入第2個內含子。過量表達[7]bZIP23的轉基因水稻植株的抗旱性和耐鹽性顯著提高,同時增加ABA的敏感性[8];bZIP23突變體對ABA 的敏感性降低,抗旱性和耐鹽性也顯著降低。筆者構建基因35S:bZIP23過量表達載體,以期為進一步研究轉錄因子[9]調節(jié)擬南芥對重金屬[10]耐受的分子機理提供依據。
1材料與方法
1.1材料
1.1.1研究對象。哥倫比亞野生型擬南芥(Arabidopsis athaliana)(Col0),購自美國擬南芥種質資源中心,由實驗室繁衍保存。
1.1.2主要試劑。RevertAid First Strand cDNA Synthesis Kit、RNAiso Plus和PrimeSTAR MAX DNA Polymerase,均購自takara公司;T4 DNA連接酶、Easy Taq、TIANGel MiDi Purification Kit、TIANquick MiDi Purification Kit,TIANprep MiniPlasmid kit、XhoI和EcoRI,均購自NEB公司。
1.1.3宿主菌和載體。平末端載體pEASYblunt Simple Cloning Kit、感受態(tài)細胞Trans1T1 Chemically Competent Cell和pART27,由實驗室繁衍保存。
1.2方法
圖5獲得過表達植株PCR電泳結果3結論與討論
基因差異表達譜數(shù)據庫中顯示bZIP23基因表達水平受到鉛脅迫誘導,表明該基因可能參與鉛脅迫響應。為進一步研究該基因功能,試驗從美國種子資源庫獲得了該基因敲除的突變體bZIP231和bZIP232,并利用分子生物學方法獲得了bZIP23基因的過量表達植株。過量表達植株的獲得將有利于研究植物對重金屬的響應,在今后的研究中可能利用轉基因植株解決重金屬污染問題。隨著一些抗逆基因的鑒定和抗逆機理不斷深入研究,利用轉基因技術將外源抗逆基因導入植物基因組,該技術在提高植物抗逆性、改作物遺傳性狀及培育農作物優(yōu)良品系等方面具有廣闊的應用前景[12-13]。
參考文獻
[1] 劉強,張貴友.植物轉錄因子的結構與調控作用[J].科學通報,2000,45(14):1465-1474.
[2] ASSUNCA~OA A G L,HERREROA E.Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency [J].PNAS,2010,22:10296-10301.
[3] VANNINI C,LOCATELLI F,BRACALE M,et al.Overexpession of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants[J].Plant Journal,2001,37:115-127.
[4] CHEN Y H,YANG X Y,HE K,et al.The MYB transcription factor superfamily of Arabidopsis:expression analysis and phylogenetic comparison with the rice MYB family[J].Plant Molecular Biology,2006,60:107-124.
[5] JAKOBY M,WEISSHAAR B,DRGELASER W.bZIP transcription factors in Arabidopsis[J].Trends Plant Sci,2002,7(3):106- 111.
[6] RIECHMANN J L,HEARD J,MARTIN G,et al.Arabidopsis transcription factors:genomewide comparative analysis among eukaryotes [J].Science,2000,290(5499):2105-2110.
[7] NIJHAWAN A,JAIN M,AKHILESH K,et al.Genomic Survey and gene expression analysis of the basic Leucine Zipper transcription factor family in Rice [J].Plant Physiology2008,146(2):333-350.
[8] YONG X,NING T,HAO D,et al.Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice [J].Plant Physiology,2008,148(4):1938-1952.
[9] PABO C O,SAUER R T.Transcription factors:structural families and principles of DNA recognition[J].Annual Review of Biochemistry,1992,61(10):1053-1095.
[10] CLEMENS S.Molecular mechanisms of plant metal tolerance and homeostasis[J].Planta,2011,212(4):475-486.
[11] 柏曉婭,顧菊,陳光朗,等.擬南芥抗旱突變體csm11的鑒定及其基因克隆[J].合肥工業(yè)大學學報,2013,36(12):1518-1522.
[12] 侯文勝,郭三堆,路明,等.利用轉基因技術進行植物遺傳改良[J].生物技術通報,2002(1):10-15.
[13] 吳福彪.基因工程與植物的遺傳改良[J].生物學通報,2010,45(5):7-10.