吳志勇+顏光烈+陳詩泉+等
福建醫(yī)科大學省立臨床醫(yī)學院 福建省立醫(yī)院心內(nèi)科,福建福州 350001
[摘要] 目的 探討定位性動脈粥樣硬化模型中動脈粥樣硬化的發(fā)病機制及各因素間內(nèi)在聯(lián)系。 方法 將48只新西蘭白兔隨機分成兩組:對照組6只給予基礎(chǔ)飼料+假手術(shù),模型組42只飼以1%膽固醇、6%豬油的高脂飼料8周,進食高脂飼料后1周行髂動脈球囊內(nèi)膜剝脫術(shù)。酶學法測定三酰甘油(TG)、總膽固醇(TC)、低密度脂蛋白膽固醇(LDL-C)、高密度脂蛋白膽固醇(HDL-C)水平;放免法測定血漿內(nèi)皮素(ET)、血栓素B2(TXB2)、6-酮-前列腺素F1α(6-Keto-PGF1α)水平;硝酸還原法測定血清一氧化氮(NO)水平;免疫比濁法測定二磷酸腺苷(ADP)誘導的最大血小板聚集率(MPA)。8周時進行髂動脈造影,處死對照組及部分模型組動物行光鏡檢查。使用SPSS 19.0統(tǒng)計軟件進行配對或非配對t檢驗,并進行多元線性回歸分析,相關(guān)分析采用Pearson檢驗。 結(jié)果 模型組中所有髂動脈都有不同程度(15%~100%)的狹窄,平均(61.47±28.10)%,對照組未見明顯狹窄。與對照組[TG:(0.96±0.78) mmol/L,TC:(1.89±0.60)mmol/L,LDL-C:(0.85±0.42)mmol/L,ET:(297.55±44.67)ng/L,MPA:(33.72±6.35)%,TXB2:(68.55±8.90)ng/L,TXB2/6-Keto-PGF1α:19.67±3.38]相比,血清或血漿TG、TC、LDL-C、ET、MPA、TXB2和TXB2/6-Keto-PGF1α比值在模型組中均顯著增高[TG:(4.61±2.15)mmol/L,TC:(40.49±9.53)mmol/L,LDL-C:(36.96±8.17)mmol/L,ET:(386.78±52.92)ng/L,MPA:(48.10±7.25)%,TXB2:(184.14±27.51)ng/L,TXB2/6-Keto-PGF1α:85.75±37.50],差異有高度統(tǒng)計學意義(P < 0.01),除TG外上述指標血清或血漿濃度均分別與髂動脈最大狹窄程度(MSD)呈正相關(guān)(P < 0.05);而與對照組[HDL-C:(0.64±0.18)mmol/L,NO:(71.83±3.81)μmol/L,6-Keto-PGF1α:(361.11±71.69)ng/L,NO/ET比值:23.30±0.76]比較,血清或血漿HDL-C、NO、6-Keto-PGF1α以及NO/ET比值在模型組均顯著減少[HDL-C:(0.33±0.19)mmol/L,NO:(51.43±11.10)μmol/L,6-Keto-PGF1α:(240.20±67.53)ng/L,NO/ET比值:13.45±3.15],差異有高度統(tǒng)計學意義(P < 0.01),均與髂動脈MSD呈負相關(guān)(P < 0.05)。多元線性回歸分析顯示,MSD與血漿TXB2和ADP誘導的MPA相關(guān)(R2=0.804,P = 0.015)。組織病理學檢查顯示,內(nèi)膜明顯增厚,粥樣斑塊形成。 結(jié)論 高脂飲食及內(nèi)皮損傷成功復制定位性動脈粥樣硬化模型,通過血小板分泌及聚集功能變化而發(fā)揮作用,體現(xiàn)了脂質(zhì)浸潤學說、內(nèi)皮損傷學說、血栓學說在動脈粥樣硬化形成中存在一定的內(nèi)在聯(lián)系。
[關(guān)鍵詞] 動脈粥樣硬化;疾病模型;發(fā)病機制;兔
[中圖分類號] R543.5 [文獻標識碼] A [文章編號] 1673-7210(2014)03(c)-0012-05
Experimental study on the pathogenesis of focal atherosclerosis in rabbits
WU Zhiyong YAN Guanglie CHEN Shiquan PU Xiaodong
Department of Cardiology, Provincial Clinical College of Fujian Medical University Fujian Provincial Hospital, Fujian Province, Fuzhou 350001, China
[Abstract] Objective To investigate the pathological mechanism of atherosclerosis and internal relations among various factors in focal atherosclerotic model. Methods 48 New Zealand white rabbits were randomly divided into two groups: control group was given standard diet and sham operation (n=6), model group was given an atherogenic diet with 1% cholesterol and 6% pig oil for 8 weeks and balloon endometrial stripped in iliac artery was done 1 week after atherogenic diet (n=42). Before and after 8 weeks of dietary intervention, bood samples were collected for enzymatic measurement of serum triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholestrol (LDL-C) and high-density lipoprotein cholestrol (HDL-C). Plasma endothelin (ET), thromboxane B2 (TXB2), 6-keto-prostaglandin F1α (6-keto-PGF1α) were detected by radioimmunoassy. Serum nitric oxide (NO) was measured by nitrate reductase, and maximal platelet aggregation (MPA) rate following adenosine diphosphate (ADP) activation in vitro was assessed by immunoprecipitation. At the end of the dietary intervention, iliac artery quantitative angiography was made and iliac arteries in control and partial model group (n=6) were examined by light microscopy. Paired or unpaired t test, multiple linear regression analysis and Pearson correlation analysis were carried out by SPSS 19.0. Results All iliac arteries had various degrees of stenosis ranging from 15% to 100%, with the average of (61.47 ± 28.10) % in model group, but no obvious stenosis in control group. Compared with control group [TG: (0.96±0.78) mmol/L, TC: (1.89±0.60) mmol/L, LDL-C: (0.85±0.42) mmol/L, ET: (297.55±44.67) ng/L, MPA: (33.72±6.35) %,TXB2: (68.55±8.90) ng/L,TXB2/6-Keto-PGF1α:19.67±3.38], serum or plasma TG, TC, LDL-C, ET, TXB2 concentration and the ratio of TXB2 to 6-keto-PGF1α significantly increased in model group [TG: (4.61±2.15) mmol/L, TC: (40.49±9.53) mmol/L, LDL-C: (36.96±8.17) mmol/L, ET: (386.78±52.92) ng/L, MPA: (48.10±7.25) %, TXB2: (184.14±27.51) ng/L ,TXB2/6-Keto-PGF1α: 85.75±37.50], with statistically significant differences (P < 0.01), and had positive relation to the maximal stenotic degree (MSD) except TG for all rabbit iliac arteries, respectively (P < 0.05). In contrast, compared with control group [HDL-C: (0.64±0.18) mmol/L, NO: (71.83±3.81) μmol/L, 6-Keto-PGF1α: (361.11±71.69) ng/L, the ratio of NO to ET: 23.30±0.76], serum or plasma HDL-C, NO, 6-keto-PGF1α levels and the ratio of NO to ET significantly decreased in model group [HDL-C: (0.33±0.19) mmol/L, NO: (51.43±11.10) μmol/L, 6-Keto-PGF1α: (240.20±67.53) ng/L,the ratio of NO to ET: 13.45±3.15], with statistically significant differences (P < 0.01), and negatively related to the MSD for all rabbit iliac arteries, respectively (P < 0.05). Multiple linear regression revealed that plasma TXB2 level and ADP-induced MPA rate contributed to the MSD (R2=0.804, P= 0.015). Histopathologic examination showed endometrium obvious thickening, atheromatous plaque had formed. Conclusion Focal atherosclerotic model in rabbit iliac artery is successfully replicated by combination an atherogenic diet with endothelial dedutation through platelet function changes of secretion and aggregation within a short period of time, which also reveals the intrinsic relations among lipid infiltration, endothelial injury and thrombogenicity during atherosclerotic progression.
[Key words] Atherosclerosis; Disease model; Pathogenesis; Rabbits
動脈粥樣硬化的形成機制極其復雜,涉及血管內(nèi)皮細胞、平滑肌細胞、巨噬細胞/單核細胞表型改變、血小板功能變化,進而相互影響,最終導致動脈粥樣硬化的形成。本文采用血管內(nèi)皮損傷及高脂飲食建立動脈粥樣硬化模型,觀察血管活性物質(zhì)及血小板功能變化,探討動脈粥樣硬化的形成機制及其內(nèi)在聯(lián)系。
1 材料與方法
1.1 動物與分組
純種新西蘭大白兔48只購自福建省藥檢所,雌雄不限,體重2.5~3.5 kg,5~6月齡,每只單籠飼養(yǎng)于福建省立醫(yī)院動物實驗室內(nèi)。隨機分為兩組:對照組6只,喂養(yǎng)普通顆粒飼料(購自福建省科洪技術(shù)有限公司),每日100 g;模型組42只,喂養(yǎng)高脂飼料(含1%膽固醇,6%豬油,93%普通飼料),每日100 g,自由飲水。
1.2 雙側(cè)髂動脈內(nèi)膜剝脫術(shù)
模型組動物在相應(yīng)飼料飼養(yǎng)7~10 d后,行雙側(cè)髂動脈內(nèi)膜剝脫術(shù),3%戊巴比妥鈉1 mL/kg經(jīng)耳緣靜脈注射麻醉,經(jīng)股動脈逆行插入球囊導管(導管直徑1.2 mm,球囊直徑2.5 mm,球囊長度20 mm,Cordis公司產(chǎn)品),插入深度為6 cm,采用壓力注射器向球囊內(nèi)注入肝素生理鹽水,維持壓力4 atm,緩慢回拉導管至切口處,抽空球囊內(nèi)液體,重復上述過程3次,退出導管,結(jié)扎動脈,縫合皮膚。以同樣方法剝脫對側(cè)髂動脈內(nèi)皮。術(shù)后給予肌注青霉素80萬U/只,連續(xù)3 d。對照組僅分離出相應(yīng)動脈未予結(jié)扎及剝脫。繼續(xù)上述各自飼料喂養(yǎng)。
1.3 雙側(cè)髂動脈造影術(shù)
在高脂飼料喂養(yǎng)8周后行髂動脈造影術(shù)。動物麻醉后,在1000 mA血管數(shù)字減影機X線透視下,經(jīng)右頸總動脈上段引入4F造影導管(Cordis公司產(chǎn)品)至腹降主動脈分叉上方,經(jīng)導管注入肝素300單位后,快速注入38%泛影葡胺2~3 mL,并電影攝片。
1.4 觀察指標
在動物實驗室所有動物先進食普通飼料后1周,稱體重,空腹自耳中央動脈抽血后,給予相應(yīng)飼料喂養(yǎng),并在內(nèi)膜剝脫術(shù)后7周,復查血清或血漿指標。
1.4.1 血脂測定 空腹取血約2 mL于10 mL離心管中,1500 r/min離心20 min(離心半徑8 cm),取上清液,采用美國貝克曼公司生產(chǎn)的SRX型全自動生化分析儀測定血清總膽固醇(TC)、三酰甘油(TG)、高密度脂蛋白膽固醇(HDL-C)、低密度脂蛋白膽固醇(LDL-C)水平。
1.4.2 血清及血漿各指標測定 一氧化氮(NO)按試劑盒要求進行測定,購自南京建成生物工程有限公司(其濃度用μmol/L為單位);血漿內(nèi)皮素(ET)、血漿血栓素B2(TXB2)、6-酮-前列腺素F1α(6-Keto-PGF1α)分別采用125I-ET、125I-TXB2及125I-6-Keto-PGF1α標記的放射免疫分析法測定,按試劑盒要求進行,以GC-1200γ放射免疫計數(shù)器(中佳光電儀器分公司)記錄結(jié)果(其濃度以ng/L為單位),試劑盒均購自解放軍總醫(yī)院科技開發(fā)中心放免研究所。
1.4.3 血小板最大聚集率(MPA)測定 按試劑盒要求進行,以ADP(4 μmol/L)為誘導劑,運用北京普利生血液凝集儀LBY-NJ2進行測定,以百分率為單位;采用Medonic CA620血常規(guī)分析儀自動測量血小板計數(shù)。
1.4.4 髂動脈狹窄情況測定 運用血管數(shù)字減影機放映攝片電影,測量雙側(cè)髂動脈的狹窄部位及其程度。
1.4.5 組織病理學檢查 在髂動脈造影術(shù)后,隨機取模型組動物6只以及對照組動物,以生理鹽水、4%多聚甲醛溶液灌注髂動脈,分離雙側(cè)髂動脈,以造影片為參照,切取相應(yīng)狹窄部位血管,置10%中性福爾馬林中繼續(xù)固定24 h。根據(jù)造影片選取髂動脈血管0.5~1.0 cm,石蠟包埋,間斷均勻切片5~10張,切片厚度5 μm,分別制作蘇木精伊紅染色,彈力纖維染色(醛品紅法)觀察形態(tài)學變化。
1.5 統(tǒng)計學方法
使用SPSS 19.0統(tǒng)計學軟件進行數(shù)據(jù)分析,計量資料數(shù)據(jù)用均數(shù)±標準差(x±s)表示,兩組間比較采用配對或非配對t檢驗,并進行多元線性回歸分析。相關(guān)分析采用Pearson分析。以P < 0.05為差異有統(tǒng)計學意義。
2 結(jié)果
2.1 血脂測定結(jié)果
實驗前(0周)兩組間血脂水平差異無統(tǒng)計學意義(P > 0.05),8周后模型組TG、TC及LDL-C明顯高于對照組(P < 0.01),HDL-C則明顯低于對照組(P < 0.01)。見表1。
表1 高脂飼料對兔血脂的影響(mmol/L,x±s)
注:與對照組同時間比較,*P < 0.01;與同組0周比較,△P < 0.01;TG:三酰甘油;TC:總膽固醇;LDL-C:低密度脂蛋白膽固醇;HDL-C:高密度脂蛋白膽固醇
2.2 血TXB2、6-Keto-PGF1α及其比值的變化
實驗前(0周)兩組間血TXB2、6-Keto-PGF1α及其比值差異無統(tǒng)計學意義(P > 0.05),8周后與對照組比較,模型組TXB2及TXB2/6-Keto-PGF1α明顯升高(P < 0.01),而6-Keto-PGF1α明顯降低(P < 0.01)。見表2。
表2 血漿血栓素B2、6-酮-前列腺素F1α及其比值的變化(x±s)
注:與對照組同時間比較,*P < 0.01;與同組0周比較,△P < 0.01;TXB2:血栓素B2;6-Keto-PGF1α:6-酮-前列腺素F1α
2.3 血NO、ET及其比值的變化
實驗前(0周)兩組間血NO、ET及其比值差異無統(tǒng)計學意義(P > 0.05),8周后與對照組比較,模型組NO及NO/ET比值明顯降低(P < 0.01),而ET則明顯升高(P < 0.01)。見表3。
表3 血一氧化氮、內(nèi)皮素及其比值的變化(x±s)
注: 與對照組同時間比較,*P < 0.01;與同組0周比較,△P < 0.01;NO:一氧化氮;ET:內(nèi)皮素
2.4 MPA、血小板計數(shù)(PLT)及體重(WT)變化
實驗前(0周)兩組MPA、PLT及WT差異無統(tǒng)計學意義(P > 0.05),8周后與對照組比較,模型組MPA明顯升高(P < 0.01),WT及PLT差異無統(tǒng)計學意義(P > 0.05);8周后對照組WT較實驗前(0周)有所增加(P < 0.05)。見表4。
表4 最大血小板聚集率、血小板計數(shù)及體重變化(x±s)
注:與對照組同時間比較,*P < 0.01;與同組0周比較,#P < 0.05,△P < 0.01;MPA:最大血小板聚集率;PLT:血小板計數(shù);WT:體重
2.5 動脈造影結(jié)果
對照組兔雙側(cè)髂動脈管壁光滑,管腔未見明顯狹窄或閉塞。模型組可見雙側(cè)髂動脈管腔不同程度的狹窄,甚至完全閉塞,自15%~100%不等,平均狹窄程度為(61.47±28.10)%,多為向心性狹窄,病變可呈局限性或彌漫性狹窄改變,多分布于30%~50%以及75%~100%之間。
2.6 血管狹窄程度與血漿或血清各指標的相關(guān)性分析
以每只兔的雙側(cè)髂動脈最大狹窄程度作為其狹窄程度,發(fā)現(xiàn)其狹窄程度與高脂飲食后血漿或血清NO濃度(r = -0.598,P < 0.01)、6-keto-PGF1α(r = -0.546,P < 0.01)、NO/ET比值(r = -0.745,P < 0.01)、HDL-C濃度(r = -0.286,P < 0.05)呈負相關(guān),而與血清或血漿ET(r = 0.477,P < 0.01)、TXB2(r = 0.881,P < 0.01)、MPA(r = 0.606,P < 0.01)、 TXB2/6-Keto-PGF1α比值(r = 0.672,P < 0.01)、TC(r = 0.466,P < 0.01)、LDL-C(r = 0.732,P < 0.01)呈正相關(guān)。經(jīng)多元線性回歸分析顯示,其狹窄程度與TXB2及MPA相關(guān),Y=-75.478+0.583TXB2+0.874MPA,(R2 = 0.804,P = 0.015)。
2.7 病理學改變
光鏡觀察:對照組兔髂動脈內(nèi)膜完整,內(nèi)皮細胞連接緊密,其下可見完整的波浪狀內(nèi)彈力膜,中膜由多層整齊排列的平滑肌細胞組成,細胞核多呈梭形,外彈力膜完整。模型組髂動脈管壁明顯增厚,管腔向心或偏心性縮??;可見較稀疏的再生內(nèi)皮細胞形狀大小不一,核偏大;內(nèi)膜增厚,可見大量的脂質(zhì)和泡沫細胞、膠原纖維以及核形狀不一排列紊亂的平滑肌細胞,部分嚴重者可見典型的粥樣斑塊,其表層為纖維結(jié)締組織,深部為無細胞的不定形物質(zhì),其中含有膽固醇結(jié)晶、壞死組織和少量纖維素。內(nèi)彈力膜呈不同程度斷裂,外彈力膜尚完整。
3 討論
本實驗顯示經(jīng)高脂飲食后,可見血中TG、TC及LDL-C均明顯增高,而HDL-C明顯降低,與文獻報道[1]相似,有利于大量脂質(zhì)(膽固醇酯等)在血管壁內(nèi)沉積,誘發(fā)單核-巨噬細胞、平滑肌細胞等向內(nèi)膜遷移、浸潤,吞噬氧化LDL(OXLDL),最終形成泡沫細胞,并釋放各種細胞因子和生長因子,致使細胞外基質(zhì)合成增加,導致血管壁纖維化等病變。同時,也發(fā)現(xiàn)其變化程度與髂動脈的最大狹窄程度存在明顯相關(guān)性,與文獻報道相似[2]。
本實驗?zāi)P驮诟吣懝檀硷嬍车耐瑫r,進行內(nèi)膜剝脫,嚴重地導致局部內(nèi)皮細胞的損傷、脫落、丟失,從而暴露內(nèi)皮下血管壁組織,可有利于脂質(zhì)侵入血管壁,同時也協(xié)同促進細胞外基質(zhì)的合成,有利于局部粥樣硬化的形成[3]。大量動物實驗及臨床研究均已表明,高脂血癥可導致不同程度的內(nèi)皮功能異常,表現(xiàn)為內(nèi)皮依賴性舒張功能不全,血NO濃度降低,ET水平升高,以致血NO/ET比值下降等[4-6]。這與本模型所致的外周血改變相似。高脂血癥時,可導致血管壁內(nèi)皮細胞產(chǎn)生的超氧陰離子(O2-)增高而導致NO的滅活增加[7];OXLDL的升高,可明顯地抑制內(nèi)皮細胞中一氧化氮合酶(NOS)活性及其基因的表達,從而減少內(nèi)皮源性NO的產(chǎn)生[4];而OXLDL還可刺激巨噬細胞及內(nèi)皮細胞產(chǎn)生和釋放ET-1[8],導致血漿中ET升高[5],高膽固醇血癥除可導致ET-1本身mRNA表達增加[8]外,還可增加血管壁組織中內(nèi)皮素轉(zhuǎn)換酶活性,進而引起組織內(nèi)ET濃度的升高[5],而且本模型顯示血漿中ET水平與髂動脈的最大狹窄程度呈正相關(guān),與文獻報道相似[6]。在此模型中還發(fā)現(xiàn)血漿NO/ET比值與病變程度呈負相關(guān),NO、ET的失衡,則可導致單核細胞的黏附、浸潤,促進了平滑肌細胞有絲分裂和增殖等,最終導致動脈粥樣硬化的發(fā)生。
高膽固醇血癥對內(nèi)皮功能的影響,不僅表現(xiàn)在NO、ET之間的失衡,還導致血漿中前列環(huán)素(PGI2)的減少[9]。PGI2和血栓素(TXA2)都是花生四烯酸在磷脂酶、環(huán)氧化酶催化下輾轉(zhuǎn)生成的產(chǎn)物,前者主要產(chǎn)生于血管內(nèi)皮細胞,而后者主要產(chǎn)生于血小板,它們在血液中不穩(wěn)定,不易直接測定,檢測其代謝產(chǎn)物6-Keto-PGF1α和TXB2水平能較好地反映機體內(nèi)PGI2和TXA2水平。本模型顯示在高膽固醇血癥兔血漿中PGI2下降,TXA2明顯升高,與文獻報道相似[9],且其濃度變化與動脈粥樣硬化的主動脈壁內(nèi)改變相一致[9],可見動脈粥樣硬化的形成與血漿中PGI2/TXA2平衡紊亂密切相關(guān)。本模型中發(fā)現(xiàn)血漿TXB2及TXB2/6-Keto-PGF1α比值與髂動脈的最大狹窄程度呈正相關(guān),而6-Keto-PGF1α與后者呈負相關(guān),與Kobayashi等[10]報道不相符,可能與動脈種類、選擇的模型動脈以及模型中內(nèi)皮是否剝脫不同有關(guān)。OXLDL可抑制內(nèi)皮細胞和血小板合成PGI2,促進TXA2的生成[11]。PGI2和TXA2濃度改變及比例的失衡,有利于血管收縮、血小板聚集,參與動脈粥樣硬化的形成。
本模型顯示經(jīng)高膽固醇飲食后,兔ADP誘導的MPA明顯升高,與文獻報道相似,但對其動脈粥樣病變形成起作用較小[12],與本模型不相符,可能與內(nèi)皮剝脫差異有關(guān)。高膽固醇血癥時可能血小板和血漿中花生四烯酸含量明顯增高[13-14],而表現(xiàn)出血小板高反應(yīng)性(血小板聚集率明顯升高、TXA2合成增加等)。此外,本模型并未發(fā)現(xiàn)其血小板計數(shù)的變化,與文獻報道相似[15]。
經(jīng)多元回歸分析后顯示,動脈狹窄程度主要與血漿TXB2濃度及ADP誘導的MPA相關(guān),在一定程度上體現(xiàn)了血小板分泌、聚集功能的變化在此模型中起著不可忽視作用,也反映了動脈粥樣硬化模型形成中,脂質(zhì)浸潤學說、內(nèi)皮細胞損傷學說及血栓學說間存在一定的內(nèi)在聯(lián)系。
[參考文獻]
[1] 孫寶貴,傅世英,黃永麟,等.實驗性家兔動脈粥樣硬化狹窄模型[J].中國介入心臟病學雜志,1995,3(2):67-68.
[2] Tribouilloy CM,Peltier M,Iannetta-Peltier MC,et al. Relation between low-density lipoprotein cholesterol and thoracic aortic atherosclerosis [J]. Am J Cardiol,1999,84(5):603-605,A9.
[3] Alavi MZ,Wasty F,Li Z,et al. Enhanced incorporation of [14C] glucosamine into glycosaminoglycans of aortic neointima of balloon-injured and cholesterol-fed rabbits in vitro [J]. Atherosclerosis,1992,95(1):59-67.
[4] 徐少平,李魯光,唐朝樞,等.一氧化氮及其合酶在家兔粥樣硬化動脈的改變及L-精氨酸的作用[J].中國動脈硬化雜志,1999,7(3):197-200.
[5] Mitani H,Takimoto M,Bandoh T,et al. Increases of vascular endothelin-converting enzyme activity and endothelin-1 level on atherosclerotic lesions in hyperlipidemic rabbits [J]. Eur J Pharmacol,2000,387(3):313-319.
[6] 潘志紅,李東霞,張江蓉,等.不同程度動脈粥樣硬化癥患者血漿內(nèi)皮素和一氧化氮水平的研究[J].中國綜合臨床,2003,19(7):590-592.
[7] Judkins CP,Diep H,Broughton BR,et al. Direct evidence of a role for Nox2 in superoxide production,reduced nitric oxide bioavailability,and early atherosclerotic plaque formation in ApoE-/- mice [J]. Am J Physiol Heart Circ Physiol,2010,298(1):24-32.
[8] Tan MS,Lee YJ,Shin SJ,et al. Oxidized low-density lipoprotein stimulates endothelin-1 release and mRNA expression from rat mesangial cells [J]. J Lab Clin Med,1997,129(2):224-30.
[9] 劉月玲,朱秋玲.參七粉對動脈粥樣硬化家兔模型血脂代謝和血管內(nèi)皮功能的影響[J].中國醫(yī)藥導報,2012,9(6):26-28.
[10] Kobayashi T,Tahara Y,Matsumoto M,et al. Roles of thromboxane A(2) and prostacyclin in the development of atherosclerosis in apoE-deficient mice [J]. J Clin Invest,2004 ,114(6):784-794.
[11] Armstrong DA. Oxidized LDL,ceroid and prostaglandin metabolism in human atherosclerosis [J]. Med Hypotheses,1992,38(3):244.
[12] Hohlfeld T,Scharnowski F,Braun M,et al. Antiplatelet effects of ticlopidine are reduced in experimental hypercholesterolemia [J]. Thromb Haemost,1994,71(1):112-118.
[13] Chetty N,Naran NH. Platelet hyperreactivity in hyperlipidaemia with specific reference to platelet lipids and fatty acid composition [J]. Clin Chim Acta,1992 ,213(1-3):1-13.
[14] Aslam R,Saeed SA,Ahmed S,et al. Lipoproteins inhibit platelet aggregation and arachidonic acid metabolism in experimental hypercholesterolaemia [J]. Clin Exp Pharmacol Physiol,2008 ,35(5-6):656-662.
[15] Gross PL,Rand ML,Barrow DV,et al. Platelet hypersensitivity in cholesterol-fed rabbits:enhancement of thromboxane A2-dependent and thrombin-induced,thromboxane A2-independent platelet responses [J]. Atherosclerosis,1991,88(1):77-86.
(收稿日期:2013-11-30 本文編輯:程 銘)
本模型顯示經(jīng)高膽固醇飲食后,兔ADP誘導的MPA明顯升高,與文獻報道相似,但對其動脈粥樣病變形成起作用較小[12],與本模型不相符,可能與內(nèi)皮剝脫差異有關(guān)。高膽固醇血癥時可能血小板和血漿中花生四烯酸含量明顯增高[13-14],而表現(xiàn)出血小板高反應(yīng)性(血小板聚集率明顯升高、TXA2合成增加等)。此外,本模型并未發(fā)現(xiàn)其血小板計數(shù)的變化,與文獻報道相似[15]。
經(jīng)多元回歸分析后顯示,動脈狹窄程度主要與血漿TXB2濃度及ADP誘導的MPA相關(guān),在一定程度上體現(xiàn)了血小板分泌、聚集功能的變化在此模型中起著不可忽視作用,也反映了動脈粥樣硬化模型形成中,脂質(zhì)浸潤學說、內(nèi)皮細胞損傷學說及血栓學說間存在一定的內(nèi)在聯(lián)系。
[參考文獻]
[1] 孫寶貴,傅世英,黃永麟,等.實驗性家兔動脈粥樣硬化狹窄模型[J].中國介入心臟病學雜志,1995,3(2):67-68.
[2] Tribouilloy CM,Peltier M,Iannetta-Peltier MC,et al. Relation between low-density lipoprotein cholesterol and thoracic aortic atherosclerosis [J]. Am J Cardiol,1999,84(5):603-605,A9.
[3] Alavi MZ,Wasty F,Li Z,et al. Enhanced incorporation of [14C] glucosamine into glycosaminoglycans of aortic neointima of balloon-injured and cholesterol-fed rabbits in vitro [J]. Atherosclerosis,1992,95(1):59-67.
[4] 徐少平,李魯光,唐朝樞,等.一氧化氮及其合酶在家兔粥樣硬化動脈的改變及L-精氨酸的作用[J].中國動脈硬化雜志,1999,7(3):197-200.
[5] Mitani H,Takimoto M,Bandoh T,et al. Increases of vascular endothelin-converting enzyme activity and endothelin-1 level on atherosclerotic lesions in hyperlipidemic rabbits [J]. Eur J Pharmacol,2000,387(3):313-319.
[6] 潘志紅,李東霞,張江蓉,等.不同程度動脈粥樣硬化癥患者血漿內(nèi)皮素和一氧化氮水平的研究[J].中國綜合臨床,2003,19(7):590-592.
[7] Judkins CP,Diep H,Broughton BR,et al. Direct evidence of a role for Nox2 in superoxide production,reduced nitric oxide bioavailability,and early atherosclerotic plaque formation in ApoE-/- mice [J]. Am J Physiol Heart Circ Physiol,2010,298(1):24-32.
[8] Tan MS,Lee YJ,Shin SJ,et al. Oxidized low-density lipoprotein stimulates endothelin-1 release and mRNA expression from rat mesangial cells [J]. J Lab Clin Med,1997,129(2):224-30.
[9] 劉月玲,朱秋玲.參七粉對動脈粥樣硬化家兔模型血脂代謝和血管內(nèi)皮功能的影響[J].中國醫(yī)藥導報,2012,9(6):26-28.
[10] Kobayashi T,Tahara Y,Matsumoto M,et al. Roles of thromboxane A(2) and prostacyclin in the development of atherosclerosis in apoE-deficient mice [J]. J Clin Invest,2004 ,114(6):784-794.
[11] Armstrong DA. Oxidized LDL,ceroid and prostaglandin metabolism in human atherosclerosis [J]. Med Hypotheses,1992,38(3):244.
[12] Hohlfeld T,Scharnowski F,Braun M,et al. Antiplatelet effects of ticlopidine are reduced in experimental hypercholesterolemia [J]. Thromb Haemost,1994,71(1):112-118.
[13] Chetty N,Naran NH. Platelet hyperreactivity in hyperlipidaemia with specific reference to platelet lipids and fatty acid composition [J]. Clin Chim Acta,1992 ,213(1-3):1-13.
[14] Aslam R,Saeed SA,Ahmed S,et al. Lipoproteins inhibit platelet aggregation and arachidonic acid metabolism in experimental hypercholesterolaemia [J]. Clin Exp Pharmacol Physiol,2008 ,35(5-6):656-662.
[15] Gross PL,Rand ML,Barrow DV,et al. Platelet hypersensitivity in cholesterol-fed rabbits:enhancement of thromboxane A2-dependent and thrombin-induced,thromboxane A2-independent platelet responses [J]. Atherosclerosis,1991,88(1):77-86.
(收稿日期:2013-11-30 本文編輯:程 銘)
本模型顯示經(jīng)高膽固醇飲食后,兔ADP誘導的MPA明顯升高,與文獻報道相似,但對其動脈粥樣病變形成起作用較小[12],與本模型不相符,可能與內(nèi)皮剝脫差異有關(guān)。高膽固醇血癥時可能血小板和血漿中花生四烯酸含量明顯增高[13-14],而表現(xiàn)出血小板高反應(yīng)性(血小板聚集率明顯升高、TXA2合成增加等)。此外,本模型并未發(fā)現(xiàn)其血小板計數(shù)的變化,與文獻報道相似[15]。
經(jīng)多元回歸分析后顯示,動脈狹窄程度主要與血漿TXB2濃度及ADP誘導的MPA相關(guān),在一定程度上體現(xiàn)了血小板分泌、聚集功能的變化在此模型中起著不可忽視作用,也反映了動脈粥樣硬化模型形成中,脂質(zhì)浸潤學說、內(nèi)皮細胞損傷學說及血栓學說間存在一定的內(nèi)在聯(lián)系。
[參考文獻]
[1] 孫寶貴,傅世英,黃永麟,等.實驗性家兔動脈粥樣硬化狹窄模型[J].中國介入心臟病學雜志,1995,3(2):67-68.
[2] Tribouilloy CM,Peltier M,Iannetta-Peltier MC,et al. Relation between low-density lipoprotein cholesterol and thoracic aortic atherosclerosis [J]. Am J Cardiol,1999,84(5):603-605,A9.
[3] Alavi MZ,Wasty F,Li Z,et al. Enhanced incorporation of [14C] glucosamine into glycosaminoglycans of aortic neointima of balloon-injured and cholesterol-fed rabbits in vitro [J]. Atherosclerosis,1992,95(1):59-67.
[4] 徐少平,李魯光,唐朝樞,等.一氧化氮及其合酶在家兔粥樣硬化動脈的改變及L-精氨酸的作用[J].中國動脈硬化雜志,1999,7(3):197-200.
[5] Mitani H,Takimoto M,Bandoh T,et al. Increases of vascular endothelin-converting enzyme activity and endothelin-1 level on atherosclerotic lesions in hyperlipidemic rabbits [J]. Eur J Pharmacol,2000,387(3):313-319.
[6] 潘志紅,李東霞,張江蓉,等.不同程度動脈粥樣硬化癥患者血漿內(nèi)皮素和一氧化氮水平的研究[J].中國綜合臨床,2003,19(7):590-592.
[7] Judkins CP,Diep H,Broughton BR,et al. Direct evidence of a role for Nox2 in superoxide production,reduced nitric oxide bioavailability,and early atherosclerotic plaque formation in ApoE-/- mice [J]. Am J Physiol Heart Circ Physiol,2010,298(1):24-32.
[8] Tan MS,Lee YJ,Shin SJ,et al. Oxidized low-density lipoprotein stimulates endothelin-1 release and mRNA expression from rat mesangial cells [J]. J Lab Clin Med,1997,129(2):224-30.
[9] 劉月玲,朱秋玲.參七粉對動脈粥樣硬化家兔模型血脂代謝和血管內(nèi)皮功能的影響[J].中國醫(yī)藥導報,2012,9(6):26-28.
[10] Kobayashi T,Tahara Y,Matsumoto M,et al. Roles of thromboxane A(2) and prostacyclin in the development of atherosclerosis in apoE-deficient mice [J]. J Clin Invest,2004 ,114(6):784-794.
[11] Armstrong DA. Oxidized LDL,ceroid and prostaglandin metabolism in human atherosclerosis [J]. Med Hypotheses,1992,38(3):244.
[12] Hohlfeld T,Scharnowski F,Braun M,et al. Antiplatelet effects of ticlopidine are reduced in experimental hypercholesterolemia [J]. Thromb Haemost,1994,71(1):112-118.
[13] Chetty N,Naran NH. Platelet hyperreactivity in hyperlipidaemia with specific reference to platelet lipids and fatty acid composition [J]. Clin Chim Acta,1992 ,213(1-3):1-13.
[14] Aslam R,Saeed SA,Ahmed S,et al. Lipoproteins inhibit platelet aggregation and arachidonic acid metabolism in experimental hypercholesterolaemia [J]. Clin Exp Pharmacol Physiol,2008 ,35(5-6):656-662.
[15] Gross PL,Rand ML,Barrow DV,et al. Platelet hypersensitivity in cholesterol-fed rabbits:enhancement of thromboxane A2-dependent and thrombin-induced,thromboxane A2-independent platelet responses [J]. Atherosclerosis,1991,88(1):77-86.
(收稿日期:2013-11-30 本文編輯:程 銘)