鞏崇賢 王 東
(華中師范大學生命科學學院, 武漢430079)
水生植物荇菜和菹草分解對物種混合的響應研究
鞏崇賢 王 東
(華中師范大學生命科學學院, 武漢430079)
為探討水生植物混合的分解效應, 研究了浮葉植物荇菜(Nymphoides peltatum)、沉水植物菹草(Potamogeton crispus)及兩物種混合的分解速率和養(yǎng)分動態(tài)。結果顯示: (1)兩單物種的分解速率與初始N含量呈顯著正相關關系(P<0.05, r=0.862), 荇菜和菹草分解90d后的干重剩余率分別為24.74%和44.91%。物種混合干重剩余率在分解初期階段的實測值比期望值高6.63% (P<0.05), 表明物種混合對分解速率具有拮抗效應, 但在隨后的分解時間里無顯著的混合效應, 分解90d后干重剩余率為30.39%; (2)在分解初期的N、P釋放階段, 物種混合的N、P剩余率實測值比其期望值分別高14.36%和12.88% (P<0.05), 表明物種混合對初期N、P元素釋放具有拮抗效應, 在隨后的分解過程中對N元素無顯著的混合效應, 但分解后期P剩余率實測值比期望值低4.26% (P<0.05), 表現(xiàn)為協(xié)同效應; (3)物種混合N、P動態(tài)在分解初期呈一個快速釋放的過程,但在隨后的分解階段N元素釋放或積累, P元素持續(xù)釋放, 最終N、P均表現(xiàn)為凈釋放, 與兩單物種分解的N、P動態(tài)的規(guī)律基本一致。另外, 總酚在物種混合分解初期釋放迅速, 隨后釋放緩慢。研究結果表明, 荇菜和菹草混合分解存在非加和效應, 即單物種的分解速率和營養(yǎng)動態(tài)變化不能用來預測兩物種混合的分解速率和營養(yǎng)動態(tài)變化。物種混合在分解的不同階段其分解效應不同, 這說明混合效應具出一定的時間依賴性。此外, 混合效應與浮葉植物和沉水植物其初始質量特征有較密切的關系。
水生植物; 混合; 分解速率; N、P動態(tài); 非加和效應
水生植物是構成湖泊生物多樣性的主體之一,植物殘體的腐爛分解影響湖泊的元素循環(huán)和水體的營養(yǎng)平衡[1—3]。在淡水湖泊中, 水生植物以單優(yōu)種群或由多種水生植物組成群落的情況普遍存在, 不同物種的殘體經常在湖泊沿岸帶混合堆積, 其有機物質在分解后歸還水體[1,2]。前人對混合分解的研究表明, 物種混合對分解的影響可表現(xiàn)為加和效應(Additive effect), 即混合對分解速率和養(yǎng)分的釋放速率沒有顯著影響; 或表現(xiàn)為非加和效應(Nonadditive effect), 包括協(xié)同效應(Synergistic effect)即提高分解速率和養(yǎng)分的釋放速率和拮抗效應(Antagonistic effect)即降低分解速率和養(yǎng)分的釋放速率[4,5]。已有的相關研究關于陸生植物的較多, 對水生植物腐爛分解的研究相對薄弱[6]。目前對水生植物多涉及單一物種的分解研究[2,3,7,8—10], 有關物種混合分解的研究報道很少。
荇菜(Nymphoides peltatum)和菹草(Potamogeton crispus)是長江中下游湖泊常見的水生植物, 植物組織的 N和P含量不同[11]。荇菜為根生浮葉植物, 菹草為沉水植物, 在擾動環(huán)境下它們可產生大量的莖葉殘體并混合堆積于湖邊沿岸帶。為揭示荇菜和菹草混合的分解效應, 本文運用分解袋法研究了荇菜、菹草及其混合的分解速率及N、P釋放動態(tài), 以期為探討水生植物的分解規(guī)律提供資料, 也為認識水生植物的整個生態(tài)過程和湖泊生態(tài)系統(tǒng)的管理提供參考。
1.1 實驗材料
荇菜、菹草的新鮮莖葉于2012年5月16日取自華中師范大學南湖校區(qū)水生植物實驗基地(N30°30′, E 114°21′), 材料用池水洗凈帶回實驗室, 自然風干后剪成5 cm左右的小段, 在60℃下烘干至恒重, 樣品放入干燥器并于10d后用于實驗。
1.2 實驗方法
將烘干處理后的荇菜、菹草和等量混合的荇菜和菹草三種樣品各10 g分別裝入尼龍網袋(大小20 cm× 15 cm, 網孔1 mm×1 mm)。采用經過篩處理(以去除雜物和根系)、洗干凈的細沙[TC (0.67±0.20) mg/g、TN (0.07±0.05) mg/g、TP (0.12±0.01) mg/g, 根據(jù)底質干重獲得]作為分解實驗的基質, 沙厚約 1.5 cm,待穩(wěn)定10d后作為植物腐爛分解實驗反應器。將分解袋置于塑料盆(54 cm × 27 cm × 6 cm, 長×寬×高)中, 保持分解袋處于濕潤狀態(tài), 一個處理每個樣品6袋(按6次取樣計)并置于1個塑料盆中, 3組重復。實驗共計9個塑料盆、54袋樣品。取部分剩余材料用于實驗材料初始質量特征參數(shù)的測定。在實驗中,塑料盆在生物園室內實驗區(qū)有遮雨處隨機放置, 保持盆中無雜物和分解袋濕潤。
1.3 樣品采集與分析
于2012年5月26日將分解袋放置在塑料盆中,在分解袋放置后的第10、第20、第30、第40、第60和第90天分別取樣, 實驗周期為90d。每種材料每次在每組處理中分別取1袋, 共3袋。帶回實驗室后用純凈水沖去沙子等雜物。60℃烘干至恒重, 稱重后,磨碎過0.25 mm篩, 用于樣品中TC、TN、TP、總酚含量及干重測定。采用K2Cr2O7氧化-FeSO4滴定法測定TC, 材料經 H2SO4-H2O2消化, 分別采用靛酚藍比色法和鉬銻抗比色法測定TN和TP[12]; 采用范氏分析方法(Analysis of Van Soest)測定木質素、纖維素、半纖維素含量[13]; 采用福林酚法測定總酚含量[14]。
1.4 統(tǒng)計分析
用指數(shù)分解模型描述分解材料干重變化: Wt=W0×e–kt(t為分解時間; k為分解常數(shù); W0為初始干重; Wt為經 t天分解后的剩余干重), 用非線性回歸分析計算分解速率[15]。為了直觀地反映分解材料的損失情況, 采用剩余率表示分解過程中干重和養(yǎng)分含量的變化。干重剩余率和養(yǎng)分剩余率分別為分解后材料干重和養(yǎng)分剩余量占初始量的百分率。
根據(jù)Salamanca等[16]采用的方法計算混合材料的期望干重剩余率和養(yǎng)分剩余率: 期望干重剩余率=[M1/(M1+M2)]×R1+[M2/(M1+M2)]×R2; 期望養(yǎng)分剩余率=[N1/(N1+N2)]×R1+[N2/(N1+N2)]×R2。式中, 以1、 2表示混合物中的兩種組分, M和N分別表示各組分在初始混合物中的干重和養(yǎng)分含量, R表示各組分單一物種的干重剩余率和養(yǎng)分剩余率。對混合材料混合分解時是否存在混合效應進行判斷: 若實測值與期望值之間差異顯著(P<0.05), 則表示混合材料各組分之間存在非加和效應, 實測值大于期望值,則混合效應是負的, 即拮抗效應, 實測值小于期望值, 則混合效應是正的, 即協(xié)同效應。若實測值與期望值之間差異不顯著(P>0.05), 則表示混合材料各組分之間存在加和效應, 即無明顯的相互作用。
使用統(tǒng)計軟件 SPSS 17.0 進行數(shù)據(jù)分析, 采用單因素方差分析(One-way analysis of variance)檢驗差異性水平, 若差異顯著, 則采用 Duncan法(Duncan’s multiple comparison test)對具顯著性差異的處理間進行多重比較檢驗。對3種材料的干重剩余率、C、N、P、總酚剩余率、C/N、C/P的比較先進行方差齊性檢驗, 如方差不齊則進行對數(shù)轉換(lg-transformed)。實測值與期望值的比較, 采用配對樣本 t檢驗其差異性水平。對于兩單種之間質量特征、分解速率的比較采用獨立樣本 t檢驗其差異性水平。對荇菜和菹草的分解速率與其初始N含量的相關性進行Pearson相關分析。
2.1 荇菜和菹草的初始質量特征
荇菜和菹草在 C、N、P、C/P、木質素、纖維素、總酚含量上存在顯著差異(P<0.05)(表 1)。與菹草相比, 荇菜具有較高的 C、N、C/P、木質素、總酚含量和較低的 P和纖維素含量; 荇菜的 C/N、半纖維素含量與菹草的差異不顯著。
2.2 荇菜、菹草及其混合分解的干重動態(tài)變化
荇菜和菹草干重動態(tài)變化均表現(xiàn)為先快后慢(圖 1), 其分解速率存在顯著差異(P<0.01), 分解速率分別為 0.032/d和 0.017/d, 實驗結束時干重剩余率分別為24.74%和 44.91%。荇菜 20d左右可分解50%的干重。菹草 40d左右可分解 50%的干重。Pearson相關分析表明, 兩單物種的分解速率與初始N含量呈顯著正相關關系(P<0.05, r=0.862)。荇菜和菹草混合的分解速率為0.023/d, 其分解速率介于兩物種單獨分解速率之間(表2)。1個月內可分解50%的干重。實驗結束時荇菜和菹草混合的干重剩余率為30.39% (表3)。物種混合對干重剩余率在不同分解階段有不同的分解效應, 在分解的第10天, 實測值比期望值高 6.63%(P<0.05), 表現(xiàn)出拮抗作用, 隨后的時間里實測值與期望值無明顯差異(P>0.05),表現(xiàn)為加和效應(表3)。
表1 荇菜和菹草的初始質量特征Tab. 1 Initial quality characteristics of N. peltatum and P. crispus materials
圖1 荇菜、菹草及其混合在分解過程中的干重動態(tài)變化Fig.1 Mass loss dynamics of N. peltatum and P. crispus and their mixture in decomposition
2.3 荇菜、菹草及其混合分解的N、P動態(tài)變化
荇菜、菹草的N剩余率在最初10d下降明顯, 分別為 62.30%和 64.68%。在隨后的時間里, 荇菜 N剩余率呈繼續(xù)下降趨勢, 到90d N剩余率略有增加,但仍低于初始值; 菹草N剩余率呈不規(guī)律的變化。在分解90d后荇菜和菹草的N剩余率分別為36.33%和53.09%。荇菜、菹草的P剩余率在最初10d下降明顯, 分別為 21.13%和 36.59%。在隨后的時間里,荇菜、菹草P剩余率在總體上呈平緩下降趨勢(荇菜在第90天和菹草在第60天P剩余率略有增加)。在分解90d后荇菜和菹草的P剩余率分別為11.84%和26.93%??傮w上, 荇菜N、P的釋放速率大于菹草N、P的釋放速率, 最終均表現(xiàn)為凈釋放(圖 2)。
表2 荇菜、菹草及其混合的分解速率比較Tab. 2 Comparison of the decomposition rates among and between N. peltatum and P. crispus and their mixture
荇菜和菹草混合在整個分解過程中, N、P剩余率變化均先表現(xiàn)出明顯的快速下降, 隨后呈繼續(xù)平緩下降趨勢(除N剩余率在第60天略有上升外), 在分解90d后N、P剩余率分別為43.60%和15. 88% (圖3)。在分解的第10天, 物種混合N、P剩余率實測值比其期望值分別高 14.36%和 12.88%, 且差異顯著(P<0.05), 表現(xiàn)出拮抗效應, 物種混合在分解初期抑制了N、P元素的釋放。在隨后的時間里, 除在分解的第90天P剩余率實測值比期望值低4.26%,且差異極顯著(P<0.01)外, N、P剩余率實測值與期望值均無顯著差異, 說明物種混合對N元素的釋放無顯著影響, 對 P的拮抗效應逐漸減弱并在最終表現(xiàn)出協(xié)同效應。此外, 物種混合N、P動態(tài)在分解初期呈一個快速釋放的過程, 但在隨后的分解階段N元素表現(xiàn)出釋放或積累, P元素持續(xù)釋放, 最終 N、P均表現(xiàn)為凈釋放。總酚在物種混合分解初期迅速釋放, 隨后緩慢釋放, 與物種混合的N、P釋放規(guī)律表現(xiàn)出一致的趨勢。
表3 荇菜和菹草混合分解的干重剩余率(%)(實測值和期望值)Tab. 3 Observed and expected values of the dry mass remaining percentage (%) of the mixed N. peltatum and P. crispus
圖2 荇菜、菹草及其混合在分解過程中的N、P剩余率(%)變化Fig. 2 Changes of nitrogen and phosphorus remaining percentage (%) of N. peltatum, P. crispus, and its mixture during the experiment
圖3 荇菜和菹草混合分解的N、P的實測剩余率(%)和期望剩余率(%)Fig. 3 The values of observed and expected nitrogen and phosphorus remaining percentage (%) of the mixed N. peltatum and P. crispus materials
表4 荇菜和菹草及其混合在分解過程中的質量特征變化Tab. 4 Changes of quality characteristics of N. peltatum, P. crispus and their mixture during the decomposition
3.1 質量特征對荇菜和菹草分解的影響
植物組織的質量特征是影響分解快慢的重要生物因素[3,17]。其中, N含量對初始階段的分解有較大的影響, 初始N含量較高其分解較快。荇菜的初始N含量顯著高于菹草, 荇菜的分解速率顯著高于菹草, 這表明荇菜和菹草的分解快慢也受其初始N含量所控制。另外, 具有較高P含量和較低C/P比的材料其分解也相對較快[18], 菹草較荇菜具有較高的P含量和較低的 C/P, 但菹草的分解速率小于荇菜,這可能與初始N含量較P含量和C/P對分解速率的影響更顯著有關[17]。此外, 有研究表明分解速率與材料初始纖維素、半纖維素、木質素含量、酚類化合物的含量呈負相關[1,7,19]。在本研究中, 荇菜較菹草有較高的總酚和木質素含量, 但荇菜仍表現(xiàn)出較高的分解速率, 荇菜的干重剩余率和N、P剩余率也均小于菹草, 這可能與荇菜在不同的分解階段各種物質的化學組成變化對微生物活動的影響有關。一些酚類物質可能會改變酶的結構使酶失活, 或與營養(yǎng)蛋白結合后阻礙微生物對N元素的利用, 從而降低分解速率等[20,21]。荇菜的初始纖維素含量顯著低于菹草, 荇菜的分解速率顯著高于菹草, 這表明荇菜和菹草的分解快慢也與其初始纖維素含量有關。有研究發(fā)現(xiàn)淋溶作用可導致水生植物組織中的可溶性成分在初期分解階段迅速釋放, 一般在 24h干重損失率可達初始重量的25%[1]或50%[22—24]。本研究也發(fā)現(xiàn)在分解前10d荇菜和菹草腐爛分解均有較高的干重損失率和N、P含量的快速下降過程, 這在一定程度上表明淋溶使荇菜和菹草喪失了大部分養(yǎng)分。有研究表明, 植物在腐爛分解過程中其N剩余率的變化與微生物固定N的趨勢有密切關系[25], 微生物對N的固定將導致分解材料N含量的升高。分解材料中N含量越低微生物固定N的趨勢越強[26],反之亦然。在本實驗中, 荇菜N剩余率呈持續(xù)下降趨勢, 僅在分期后期(第90天時)略有增加。這說明由于荇菜初始N含量較高, 其自身N源能夠滿足微生物活動的需求, 以至于在分解后的很長一段時間內微生物沒有發(fā)生對外源N元素的固定, 僅在分解后期外源N素被微生物所固定, 使植物殘余物中的氮素濃度有所上升。另外據(jù)Brady和Weil[27]的研究發(fā)現(xiàn), 當植物殘余物的C/N比超過30, N元素的固定就已經開始, 相反, 如果小于 30, N元素將被礦化。荇菜初始C/N比小于30, 在分解第10、第20、第30、第40和第60天時, 殘余物中的C/N比也小于30, 這說明荇菜N的釋放動態(tài)與Brady和Weil[27]的研究結論是一致的。與荇菜N剩余率變化趨勢比較, 菹草N剩余率表現(xiàn)出不規(guī)律的變化, 如在第20、第 60天略有增加, 而在其他時間呈下降趨勢。這與菹草初始N含量較荇菜低, 但初始C/N較荇菜高, 在分解的不同階段微生物對外源N元素產生固定有關。
與分解過程N動態(tài)相比較, 荇菜和菹草的P剩余量在分解過程中總體上均呈平緩下降趨勢, 且一直表現(xiàn)為釋放。盡管荇菜的初始P含量較菹草低, 但相對較低的初始P含量并不導致微生物對P固定。有研究發(fā)現(xiàn), 當初始 C/P<100時, P元素發(fā)生礦化,相反, 如果大于100, P元素將被固定[28,29]。荇菜和菹草初始 C/P比分別為 110.32±1.90和 82.03±0.59,但本研究中荇菜的初始C/P比似乎并不能解釋荇菜分解過程中的P元素的釋放動態(tài)。對荇菜和菹草來說, 微生物在分解過程中的營養(yǎng)需求沒有受到 P供給的限制, 或者說沒有發(fā)生微生物對P元素的固定。
3.2 物種混合對分解速率和養(yǎng)分釋放的影響
不同物種混合對分解的響應可表現(xiàn)為非加和效應或加和效應[4,5]。據(jù)Gartner和Cardon[4]統(tǒng)計, 在物種混合分解中出現(xiàn)非加和效應的比例約占 70%,其中協(xié)同效應占 50%, 拮抗效應占 20%, 而出現(xiàn)加和效應的比例占30%。同時, 76%的物種混合在分解過程中表現(xiàn)出非加和的養(yǎng)分動態(tài)。在本研究中, 荇菜和菹草混合僅在分解初期對分解速率和N釋放具有顯著的拮抗效應, 在隨后的分解階段對分解速率和N釋放均不產生混合效應; 但分解過程中卻在一定程度上都促進了 P釋放或積累。有研究表明, 當不同質量的物種混合時, 由于營養(yǎng)物質(如 N)通過被動擴散和微生物的主動運輸?shù)葟母哔|量材料中向低質量材料發(fā)生轉移, 改善了質量較差材料的營養(yǎng)狀況, 從而促進混合物的分解速率[30]; 但也有一些研究發(fā)現(xiàn)酚類物質可以控制可溶性有機氮和無機氮的釋放比例[31], 酚類物質的釋放會抑制微生物豐度和活性從而降低混合物種的分解速率[32]。在本研究中, 荇菜和菹草的初始N和總酚含量存在顯著差異,但N含量的差異對分解初期的混合效應作用似乎并不明顯, 而總酚釋放動態(tài)則與混合后的分解速率和N釋放有相同的趨勢。具有一面葉氣生的荇菜比完全沉水生長的菹草具有更高的總酚含量, 在混合分解初期總酚也出現(xiàn)一個快速釋放過程, 之后出現(xiàn)緩慢釋放趨勢。此外, Bonanomi等[5]在研究地中海物種混合分解時發(fā)現(xiàn), 相對于對 N動態(tài)的影響而言,混合效應對分解速率的影響更具有分解時間上的依賴性, 非加和效應的產生更多發(fā)生在分解初期階段,并認為物種質量特征對物種混合是否產生混合效應起到了決定性的作用。也有研究發(fā)現(xiàn)物種混合并不影響分解速率, 但顯著加快N元素的釋放[33]。在本結果中, 在分解初期荇菜和菹草混合抑制了干重的損失, 但在隨后的分解階段分解沒有發(fā)現(xiàn)顯著的混合效應, 混合效應表現(xiàn)出明顯的時間依賴性。N釋放動態(tài)在混合分解初期之后表現(xiàn)出加和性, 而 P元素的釋放動態(tài)在分解初期、后期均表現(xiàn)出顯著的非加和性, 這說明P元素對混合的響應比N元素更為敏感。
水生植物腐爛分解對湖泊生態(tài)系統(tǒng)將產生影響,由于受環(huán)境擾動如風浪、人類活動的(捕撈魚蝦和打撈水草等)影響, 植物的莖葉殘體經常混合堆積在湖泊沿岸帶。盡管水生植物在人工濕地或極端環(huán)境的水體中也存在單種群落的情況, 但淡水湖泊中由多種水生植物組成群落的情況普遍存在, 水生植物殘體的混合分解是必然的。本研究初步表明, 荇菜和菹草混合的分解效應在干重損失率和營養(yǎng)元素的釋放動態(tài)方面不同于兩單種的分解規(guī)律。在分解的初始階段物種混合對分解速率具有拮抗效應, 但在隨后的分解時間里無顯著的混合效應; 同時物種混合對N、P元素釋放具有拮抗效應, 在隨后的分解過程中對N元素無顯著的混合效應, 但在分解后期對 P釋放具有協(xié)同效應。由于在野外自然狀態(tài)下, 環(huán)境因子的影響作用復雜, 另外也不涉及環(huán)境容量對分解過程的影響, 以及實驗過程中材料的減少對容量影響產生的作用。因此, 很有必要加強野外條件下的相關研究。
[1] Webster J R, Benfield E F. Vascular plant breakdown in freshwater ecosystems [J]. Annual Review of Ecology and Systematics, 1986, 17: 567—594
[2] Battle J M, Mihuc T B. Decomposition dynamics of aquatic macrophytes in the lower Atchafalaya, a large floodplain river [J]. Hydrobiologia, 2000, 418(1): 123—136
[3] Shilla D, Asaeda T, Fujino T, et al. Decomposition of dominant submerged macrophytes: implications for nutrient release in Myall Lake, NSW, Australia [J]. Wetlands Ecology and Management, 2006, 14(5): 427—433
[4] Gartner T B, Cardon Z G. Decomposition dynamics in mixed-species leaf litter [J]. Oikos, 2004, 104(2): 230—246
[5] Bonanomi G, Incerti G, Antignani V, et al. Decomposition and nutrient dynamics in mixed litter of Mediterranean species [J]. Plant Soil, 2010, 331(1-2): 481—496
[6] Gustafsson C, Bostr?m C. Biodiversity influences ecosystem functioning in aquatic angiosperm communities [J]. Oikos, 2011, 120(7): 1037—1046
[7] Godshalk G L, Wetzel R G. Decomposition of aquatic Angiosperms. . Ⅲ Zostera marina L. and a conceptual model of decomposition [J]. Aquatic Botany, 1978, 5(4): 329—354
[8] Li W C, Chen K N, Wu Q L, et al. Experimental studies on decomposition process of aquatic plant material from East Taihu Lake [J]. Journal of Lakes Sciences, 2001, 13(3): 331—336 [李文朝, 陳開寧, 吳慶龍, 等. 東太湖水生植物生物質腐爛分解實驗. 湖泊科學, 2001, 13(3): 331—336]
[9] Xie Y H, Yu D, Ren B. Effects of nitrogen and phosphorus availability on the decomposition of aquatic plants [J]. Aquatic Botany, 2004, 80(1): 29—37
[10] Li E H, Liu G H, Li W, et al. Decomposition rate and nitrogen and phosphorus dynamics of three kinds of hydrophyte in Lake Honghu [J]. China Environmental Science, 2006, 26(6): 667—671 [厲恩華, 劉貴華, 李偉, 等.洪湖三種水生植物的分解速率及NP動態(tài). 中國環(huán)境科學, 2006, 26(6): 667—671]
[11] Wu A P, Wu S K, Ni L Y. Study of Macrophytes nitrogen and phosphorus contents of the shallow lakes in the middle reaches of Changjiang River [J] Acta Hydrobiologica Sinica, 2005, 29(4): 406—412 [吳愛平, 吳世凱, 倪樂意. 長江中游淺水湖泊水生植物氮磷含量與水柱營養(yǎng)的關系. 水生生物學報, 2005, 29(4): 406—412]
[12] Dong M, Wang Y F, Kong F Z, et al. Survey, Observation and Analysis of Terrestrial Biocommunities [M]. Beijing: China Standards Press. 1996, 152—155 [董鳴, 王義鳳, 孔繁志, 等. 陸生生物群落調查觀測與分析. 北京: 中國標準出版社. 1996, 152—155]
[13] Van Soest P J. Use of detergents in analysis of fibrous feeds: a rapid method for the determination of fiber and lignin [J]. Journal of the Association of Official Analytical Chemists, 1963, 46(5): 829—835
[14] Box J D. Investigation of the Folin-Ciocalteau phenol reagent for the determination of polyphenolic substances in natural waters [J]. Water Research, 1983, 17(5): 511—525
[15] Olson J S. Energy storage and the balance of producers and decomposers in ecological systems [J]. Ecology, 1963, 44(2): 322-331
[16] Salamanca E F, Kaneko N, Katagiri S. Effects of leaf litter mixtures on the decomposition of Quercus serrata and Pinus densiflora using field and laboratory microcosm methods [J]. Ecological Engineering, 1998, 10(1): 53—73
[17] Aerts R, Caluwe H D. Nutritional and plant-mediated controls on leaf litter decomposition of Carex species [J]. Ecology, 1997, 78(1): 244—260
[18] Berg B, Staaf H. Decomposition rate and chemical changes of Scots pine needle litter. II. Influence of chemical composition [J]. Ecological Bulletins, 1980, 32: 373—390
[19] Freeman C, Ostle N J, Fenner N, et al. A regulatory role for phenol oxidase during decomposition in peatlands [J]. Soil Biology and Biochemistry, 2004, 36(10): 1663—1667
[20] Harrison A F. The inhibitory effect of oak leaf litter tannins on the growth of fungi, in relation to litter decomposition [J]. Soil Biology and Biochemistry, 1971, 3(3): 167—172
[21] H?ttenschwiler S, Vitousek P M. The role of polyphenols in terrestrial ecosystem nutrient cycling [J]. Trends in Ecology and Evolution, 2000, 15(6): 238—243
[22] Puriveth P. Decomposition of emergent macrophytes in a Wisconsin marsh [J]. Hydrobiologia, 1980, 72(3): 732—739
[23] Polunin N V C. The decomposition of emerged macrophytes in freshwater [J]. Advances in Ecological Research, 1984, 14(1): 115—166
[24] V?h?talo A V, S?ndergaard M. Carbon transfer from detrital leaves of eelgrass (Zostera marina) to bacteria [J]. Aquatic Botany, 2002, 73(3): 265—273
[25] Gessner M O. Mass loss, fungal colonization and nutrient dynamics of (Phragmites australis) leaves during senescence and early aerial decay [J]. Aquatic Botany, 2001, 69(2): 325—339
[26] Baker T T, Lockaby B G, Conner W H, et al. Leaf little decomposition and nutrient dynamics in four southern forested floodplain communities [J]. Soil Science Society of America Journal, 2001, 65(4): 1334—1347
[27] Brady N C, Weil R R. The Nature and Properties of Soils [M]. Vol. 11. Prentice-Hall, Englewood Cliffs, NJ. 1996, 740
[28] Enwezor W O. The mineralization of nitrogen and phosphorus in organic materials of varying C: N and C: P ratios [J]. Plant and Soil, 1976, 44(1): 237—240
[29] Rejmánková E, Houdková K. Wetland plant decomposition under different nutrient conditions: what is more important, litter quality or site quality [J]? Biogeochemistry, 2006, 80(3): 245—262
[30] Wardle D A, Bonner K I, Nicholson K S. Biodiversity and plant litter: experimental evidence which does not support the view that enhanced species richness improves ecosystem function [J]. Oikos, 1997, 79(2): 247—258
[31] Northup R R, Yu Z S, Dahigren R A, et al. Polyphenol control of nitrogen release from pine litter [J]. Nature, 1995, 377(6564): 227—229
[32] Schimel J P, Cates R G, Ruess R. The role of balsam poplar secondary chemicals in controlling soil nutrient dynamics through succession in the Alaskan taiga [J]. Biogeochemistry, 1998, 42(1): 221—34
[33] Blair J M, Parmelee R W, Beare M H. Decay rates, nitrogen fluxes and decomposer communities of single-and mixedspecies foliar litter [J]. Ecology, 1990, 71(5): 1976—1985
EFFECT OF MIXED FLOATING AND SUBMERGED MACROPHYTES ON DECOMPOSITION RATE AND NUTRIENT DYNAMICS
GONG Chong-Xian and WANG Dong
(School of Life Sciences, Central China Normal University, Wuhan 430079, China)
Decomposition of aquatic macrophytes can considerably influence nutrient cycling and energy flow in aquatic ecosystems, and may therefore alter aquatic ecosystem structure and functioning. Most studies of decomposition processes have focused on single species of aquatic macrophytes; however, most aquatic ecosystems consist of a mixture of aquatic plant species and fragments they produce which intermingle during decomposition. To explore the effect of species mixtures of aquatic macrophytes with different life forms, decomposition rate and nutrient dynamics were quantified in mixed-species litterbags (containing Nymphoides peltatum, a floating-leaved plant, and Potamogeton crispus, a submerged plant) and in litterbags containing fragments of a single species in a laboratory experiment. There were 10 g of materials used for each species in the litter bags, and for the mixture experiment, also 10 g of the dried macrophyte fragments were used at a mixtures rate of 5:5, Nymphoides:Potamogeton, w/w basis). The decomposition rates, nitrogen and phosphorus content of the remaining materials were determined after 10, 20, 30, 40, 60, and 90 days. Data from single-species litterbags were used to generate expected decomposition rates, nitrogen and phosphorus dynamics for mixed-species litterbags experiments. The result showed that the decomposition rates of N. peltatum (0.032/d) was pronounced higher than that of P. crispus (0.017/d), 24.74% and 44.91% dry mass remaining after 90 days, respectively. The decomposition rates of both N. peltatum and P. crispus were significantly and positively correlated with initial N content (P < 0.05, r = 0.862). The decomposition rate of the mixture was 0.023/d which was intermediate between N. peltatum and P. crispus. The observed remaining mass of the mixture at the early stages of decomposition in ten days was 6.63% (P < 0.05) higher than the expected, indicating the occurrence of negative, non-addtivie effects of mixed species early on. In contrast, there was no significant mixing effect after ten days in subsequent samplings. After 90 days, the remaining dry mass of the mixture was 30.39%. The N and P contents of both N. peltatum and P. crispus released rapidly at the early stages and then slowed down. The remaining percentage of N and P of N. peltatum were lower than that of P. crispus. During the early stages of decomposition of mixed material in ten days, the observed N and P remaining were 14.36% and 12.88% (P < 0.05) higher than the expected, indicating the occurrence of antagonistic effects on N and P release in the mixture. However, there were no significant antagonistic mixing effects in subsequent times for N. After 90 days, the observed P remaining was 4.26% (P < 0.05) lower than expected, indicating a synergistic effect on P release occurred. The remaining percentage of N and P were 43.60% and 15.88%, respectively. Nutrients and polyphenol concentrations in the mixture decreased rapidly at the early stages and then decreased slowly through the end of the study, in a manner similar to that of the single species. Our results indicated that there were negative, non-additive effects on decomposition rate, N and P releases when two species were mixed together at the early stages, while there was a synergistic effect on P release in the final stage of the decomposition. This suggests that neither decomposition nor nutrient release patterns can be assessed on basis of single species dynamics. In addition, there was a significant time-independent non-additive effect of species interactions. We further suggest that different aquatic macrophytes of contrasting life forms such as floating-leaved plants and submerged plants may differ in initial chemical quality and may exhibit major determinants for decomposition of mixed aquatic macrophytes.
Aquatic macrophyte; Mixed-species; Decomposition rate; Nitrogen and phosphorus dynamics; Non-additive effect
Q948.8
A
1000-3207(2014)06-1098-09
10.7541/2014.161
2014-01-14;
2014-04-23
國家自然科學基金項目(31270378); 中央高?;究蒲袠I(yè)務費專項(CCNU12A02006)資助
鞏崇賢(1987—), 男, 山東棗莊人; 碩士研究生; 研究方向為濕地生態(tài)學。E-mail: 1933759109@qq.com
王東, E-mail: dongwang.cn@gmail.com