陳麗君,李 遠(yuǎn)(綜述),李 磊(審校)
(南京醫(yī)科大學(xué)公共衛(wèi)生學(xué)院 1衛(wèi)生檢驗(yàn)學(xué)系 2營(yíng)養(yǎng)與食品衛(wèi)生學(xué)系, 南京 211166)
乳腺癌是女性最常見(jiàn)的惡性腫瘤之一[1],常規(guī)治療手段(手術(shù)及化/放療)不能取得較為滿意的效果;目前許多新型乳腺癌化療藥物問(wèn)世,但存在較大的毒性反應(yīng),患者的生存率亦不理想。人們希望從天然食品原料中尋找生物活性物質(zhì)以干預(yù)細(xì)胞的癌變進(jìn)程,進(jìn)而達(dá)到防治癌癥的目的。
肉桂酸(cinnamic acid,CiA)及其衍生物(cinnamic acid derivatives,CADs)是一類(lèi)廣泛分布于食品中的多酚類(lèi)化合物[2-3],具有多種生物活性,可抑制多種腫瘤細(xì)胞的生長(zhǎng)、分化,降低抗癌藥物不良反應(yīng)[4-6]。目前,關(guān)于CADs對(duì)乳腺癌的作用及機(jī)制的研究尚未見(jiàn)較為系統(tǒng)的報(bào)道,現(xiàn)就CADs調(diào)控乳腺癌細(xì)胞增殖、凋亡等作用及分子機(jī)制方面的研究進(jìn)展予以綜述,為進(jìn)一步認(rèn)識(shí)、評(píng)估膳食植物化學(xué)物的生物學(xué)效應(yīng)提供依據(jù)。
1.1CADs抑制乳腺癌細(xì)胞增殖 腫瘤是機(jī)體細(xì)胞異常增殖所形成的新生物,其主要特征就是無(wú)限增殖[7-8]。CADs對(duì)包括乳腺癌在內(nèi)的多種腫瘤細(xì)胞都具有抑制增殖的作用。Bailly等[7]用牛蒡根提取物作用于人乳腺癌MCF-7細(xì)胞后發(fā)現(xiàn),牛蒡根提取物可抑制MCF-7細(xì)胞的增殖,進(jìn)一步通過(guò)高分辨率電噴霧質(zhì)譜檢測(cè)發(fā)現(xiàn),牛蒡根提取物中的咖啡酸、綠原酸等是抗腫瘤細(xì)胞增殖的主要成分。Sun等[9]用20.0~60.0 μmol/L的白楊提取物[含有咖啡酸苯乙酯(caffeic acid phenethyl ester,CAPE)等活性成分]處理人乳腺癌MDA-MB-231細(xì)胞,同時(shí)口服白楊提取物90 mg/(kg·d)處理MDA-MB-231細(xì)胞裸鼠移植瘤模型發(fā)現(xiàn),白楊提取物在體內(nèi)外均可抑制MDA-MB-231細(xì)胞的增殖。
除了細(xì)胞異常增殖外,細(xì)胞凋亡受抑制在腫瘤發(fā)生、發(fā)展過(guò)程中也發(fā)揮著重要作用[12]。因此,對(duì)腫瘤的治療不應(yīng)僅局限在抑制腫瘤細(xì)胞增殖方面,亦應(yīng)重視腫瘤細(xì)胞凋亡。研究表明,CADs可作用于一系列的凋亡相關(guān)基因,并通信號(hào)轉(zhuǎn)導(dǎo)系統(tǒng)誘導(dǎo)腫瘤細(xì)胞凋亡[11-13]。Serafim等[11]分別用0、25、50及75 μmol/L的咖啡酸、CiA和CAHE處理MCF-7、MDA-MB-231和HS578T細(xì)胞1、3及7 d發(fā)現(xiàn),3種CADs均可通過(guò)激活p53信號(hào)通路促進(jìn)乳腺癌細(xì)胞凋亡。Mileo等[12]用富含綠原酸的朝鮮薊提取物處理MDA-MB-231細(xì)胞發(fā)現(xiàn),綠原酸可通過(guò)線粒體途徑和死亡受體途徑誘導(dǎo)細(xì)胞凋亡。Bailly等[7]用0.05~10 μmol/L MC提取物(富含CADs)處理MCF-7和MDA-MB-231細(xì)胞發(fā)現(xiàn),提取物可通過(guò)抑制核因子κB(nuclear factor-κB,NF-κB)的活性促進(jìn)MCF-7和MDA-MB-231細(xì)胞凋亡。Wu等[4]用CAPE處理MCF-7和MDA-231細(xì)胞也發(fā)現(xiàn),CAPE通過(guò)抑制NF-κB的活性而誘導(dǎo)細(xì)胞凋亡。Moon等[13]研究發(fā)現(xiàn),用迷迭香酸處理MCF-7細(xì)胞可阻斷NF-κB抑制因子的磷酸化而阻止NF-κB的激活,進(jìn)而下調(diào)其下游靶分子——細(xì)胞凋亡蛋白抑制因子1(inhibitor of apoptosis protein-1,IAP-1)、IAP-2 和X連鎖凋亡抑制蛋白的表達(dá)水平,進(jìn)而增強(qiáng)腫瘤壞死因子α(tumor necrosis factor-α,TNF-α)介導(dǎo)的細(xì)胞凋亡??梢?jiàn),NF-κB信號(hào)通路在CADs誘導(dǎo)乳腺癌細(xì)胞凋亡中發(fā)揮了重要作用。
腫瘤的生長(zhǎng)離不開(kāi)新生血管的形成,血管生成在多種腫瘤(包括乳腺癌)的生長(zhǎng)、增殖、轉(zhuǎn)移和侵襲過(guò)程中都發(fā)揮著重要作用[14-15]。腫瘤血管形成包括腫瘤細(xì)胞分泌、誘導(dǎo)多種血管生成因子,激活基質(zhì)蛋白酶系統(tǒng),促進(jìn)內(nèi)皮細(xì)胞增殖等[15-17]??刂颇[瘤血管生成可阻滯腫瘤的發(fā)展,因此抗腫瘤血管生成藥物可用于腫瘤治療,控制腫瘤的生長(zhǎng)和轉(zhuǎn)移是重要的抗癌策略。
近年來(lái)有少量研究發(fā)現(xiàn),CADs可抑制乳腺癌細(xì)胞的血管形成[18-19]。Messerli等[18]用新西蘭蜂膠、巴西綠蜂膠和巴西紅蜂膠作用于包括乳腺癌細(xì)胞在內(nèi)的多種人類(lèi)腫瘤細(xì)胞發(fā)現(xiàn),蜂膠中含有的CADs(主要為CAPE)可顯著抑制腫瘤細(xì)胞的血管形成能力。Wu等[4]用CAPE處理MDA-MB-231細(xì)胞發(fā)現(xiàn),CAPE可劑量依賴性地抑制MDA-MB-231細(xì)胞血管內(nèi)皮生長(zhǎng)因子的表達(dá)水平;共培養(yǎng)小管形成實(shí)驗(yàn)發(fā)現(xiàn),CAPE處理可顯著抑制臍靜脈內(nèi)皮細(xì)胞形成毛細(xì)血管樣小管。唐泓波[19]在肝特異性胰島素樣生長(zhǎng)因子1(insulin-like growth factor-1,IGF-1)基因缺失小鼠體內(nèi)建立穩(wěn)定的原發(fā)性乳腺癌模型發(fā)現(xiàn),IGF-1可通過(guò)促進(jìn)缺氧誘導(dǎo)因子的表達(dá),刺激內(nèi)皮細(xì)胞的遷移和形態(tài)分化,誘導(dǎo)腫瘤細(xì)胞生成新生血管。以上研究表明,CADs對(duì)乳腺癌細(xì)胞的新生血管能力有抑制作用,但其具體的分子作用機(jī)制仍需進(jìn)一步研究。
腫瘤生長(zhǎng)的特殊微環(huán)境對(duì)腫瘤細(xì)胞的生物學(xué)行為有影響[13, 20]。腫瘤微環(huán)境中常存在慢性炎癥,這種炎癥能持久誘導(dǎo)細(xì)胞增殖、趨化炎性細(xì)胞聚集,并通過(guò)釋放細(xì)胞及趨化因子,如白細(xì)胞介素6(interleukin-6,IL-6)、IL-8、TNF-α、表皮生長(zhǎng)因子、轉(zhuǎn)化生長(zhǎng)因子β、轉(zhuǎn)錄激活因子3及花生酸類(lèi)物質(zhì)等一起組成新的腫瘤炎性微環(huán)境,其在腫瘤增殖、侵襲、黏附、血管生成及腫瘤在放、化療抵抗過(guò)程中發(fā)揮重要作用[16, 21-24]。近年來(lái),關(guān)于腫瘤炎性微環(huán)境的研究已成為熱點(diǎn),并越來(lái)越的受到重視。
CADs能夠調(diào)控乳腺癌的炎性反應(yīng)[23]。Gierach等[5]對(duì)咖啡攝入量與乳腺癌患病風(fēng)險(xiǎn)進(jìn)行大型人群健康隊(duì)列研究發(fā)現(xiàn),含有咖啡因、咖啡酸等活性物質(zhì)的咖啡可下調(diào)乳腺腫瘤的炎性反應(yīng)。Chen等[25]用CAPE處理MDA-MB-231細(xì)胞發(fā)現(xiàn),CAPE可通過(guò)抑制NF-κB的活性,下調(diào)IL-6、IL-8及單核細(xì)胞趨化蛋白1的表達(dá)水平,抑制MDA-MB-231細(xì)胞的炎性反應(yīng)。Scheckel等[23]用迷迭香酸處理惡性轉(zhuǎn)化乳腺上皮細(xì)胞株發(fā)現(xiàn),迷迭香酸可以拮抗12-O-十四烷酰佛波醋酸酯-13乙酸鹽對(duì)環(huán)加氧酶2蛋白表達(dá)的刺激作用,降低乳腺腫瘤的炎性反應(yīng)。以上研究表明,CADs可抑制乳腺癌細(xì)胞的炎性反應(yīng),推測(cè)其可通過(guò)調(diào)控乳腺腫瘤的炎性微環(huán)境,進(jìn)而在乳腺癌細(xì)胞增殖、侵襲、黏附及血管生成過(guò)程中發(fā)揮重要作用,這一過(guò)程的具體分子作用機(jī)制仍需進(jìn)一步深入研究。
5CADs在調(diào)節(jié)乳腺癌腫瘤干細(xì)胞特性中的作用及機(jī)制
干細(xì)胞是具有自我更新、無(wú)限增殖及多向分化能力的細(xì)胞群體[26]。近年來(lái)腫瘤干細(xì)胞的概念引起了學(xué)術(shù)界的廣泛關(guān)注,并成為腫瘤研究的熱點(diǎn)[17, 27-29]。研究表明,少量的乳腺癌干細(xì)胞(breast cancer stem cells,BCSCs)就可發(fā)展為乳腺癌,這為乳腺癌的治療靶點(diǎn)提供了新線索[28]。常規(guī)治療乳腺癌的方法(手術(shù)和放、化療)不能清除腫瘤干細(xì)胞,因而增加了腫瘤復(fù)發(fā)風(fēng)險(xiǎn)。因此,尋找靶向作用于BCSCs的膳食植物分子對(duì)乳腺癌的輔助治療具有重要意義。
Choi等[20]從MDA-MB-231細(xì)胞中分離出BCSCs后用CAPE處理發(fā)現(xiàn),CAPE可顯著下調(diào)BCSCs的自我更新能力、軟瓊脂細(xì)胞集落形成數(shù)及CD44+/CD24-細(xì)胞比例,提示CAPE具有抑制BCSCs表型的功能。Dai等[28]用富含CADs的石榴提取物處理小鼠BCSCs細(xì)胞發(fā)現(xiàn),提取物可通過(guò)阻滯細(xì)胞周期于G0/G1、提高胱天蛋白酶3活力等抑制干細(xì)胞增殖,并促進(jìn)其凋亡,最終抑制小鼠乳腺腫瘤細(xì)胞的干細(xì)胞特性。推測(cè)CADs對(duì)BCSCs特性具有抑制作用。結(jié)合腫瘤干細(xì)胞特性在腫瘤發(fā)生、發(fā)展、轉(zhuǎn)移、侵襲及耐藥中的作用,深入探討CADs對(duì)其的影響將為揭示CiA及其衍生物抗腫瘤作用的分子機(jī)制提供新線索。
乳腺癌是女性最常見(jiàn)的惡性腫瘤,其發(fā)病率近年來(lái)呈不斷上升的趨勢(shì)[10, 30]。據(jù)國(guó)家癌癥中心和衛(wèi)生部2012年公布的乳腺癌發(fā)病數(shù)據(jù)顯示:全國(guó)腫瘤登記地區(qū)乳腺癌發(fā)病率位居女性惡性腫瘤首位[30]。雖然近年來(lái)研究發(fā)現(xiàn),CADs在調(diào)控乳腺癌增殖、凋亡、血管生成、腫瘤微環(huán)境和腫瘤干細(xì)胞特性等方面發(fā)揮重要作用[1,7,11,20,28],但其具體的分子機(jī)制尚不十分清楚。隨著分子生物學(xué)技術(shù)、基因組學(xué)、蛋白組學(xué)及表觀遺傳調(diào)控的發(fā)展,必將加速對(duì)CADs抗乳腺癌作用分子機(jī)制的深入研究,進(jìn)一步明確CADs作用于乳腺癌細(xì)胞的信號(hào)通路和相關(guān)靶分子,以便提供有價(jià)值的生物標(biāo)志和治療靶標(biāo),為CADs抗乳腺癌機(jī)制提供新的有價(jià)值的線索。
[1] Armania N,Yazan LS,Ismail IS,etal.Dillenia Suffruticosa Extract Inhibits Proliferation of Human Breast Cancer Cell Lines (MCF-7 and MDA-MB-231) via Induction of G2/M Arrest and Apoptosis[J].Molecules,2013,18(11):13320-13339.
[2] Omene CO,Wu J,Frenkel K.Caffeic Acid Phenethyl Ester(CAPE)derived from propolis,a honeybee product,inhibits growth of breast cancer stem cells[J].Invest New Drugs,2012,30(4):1279-1288.
[3] Jung BI,Kim MS,Kim HA,etal.Caffeic acid phenethyl ester,a component of beehive propolis,is a novel selective estrogen receptor modulator[J].Phytother Res,2010,24(2):295-300.
[4] Wu J,Omene C,Karkoszka J,etal.Caffeic acid phenethyl ester (CAPE),derived from a honeybee product propolis,exhibits a diversity of anti-tumor effects in pre-clinical models of human breast cancer[J].Cancer Lett,2011,308(1):43-53.
[5] Gierach GL,Freedman ND,Andaya A,etal.Coffee intake and breast cancer risk in the NIH-AARP diet and health study cohort[J].Int J Cancer,2012,131(2):452-460.
[6] Oleaga C,Ciudad CJ,Noé V,etal.Coffee polyphenols change the expression of STAT5B and ATF-2 modifying cyclin D1 levels in cancer cells[J].Oxid Med Cell Longev,2012,2012:390385.
[7] Bailly F,Toillon RA,Tomavo O,etal.Antiproliferative and apoptotic effects of the oxidative dimerization product of methyl caffeate on human breast cancer cells[J].Bioorg Med Chem Lett,2013,23(2):574-578.
[8] Becchetti A,Munaron L,Arcangeli A.The role of ion channels and transporters in cell proliferation and cancer[J].Front Physiol,2013,4:312.
[9] Sun LP,Chen AL,Hung HC,etal.Chrysin:a histone deacetylase 8 inhibitor with anticancer activity and a suitable candidate for the standardization of Chinese propolis[J].J Agric Food Chem,2012,60(47):11748-11758.
[11] Serafim TL,Carvalho FS,Marques MP,etal.Lipophilic caffeic and ferulic acid derivatives presenting cytotoxicity against human breast cancer cells[J].Chem Res Toxicol,2011,24(5):763-774.
[12] Mileo AM,Di Venere D,Linsalata V,etal.Artichoke polyphenols induce apoptosis and decrease the invasive potential of the human breast cancer cell line MDA-MB231[J].J Cell Physiol,2012,227(9):3301-3309.
[13] Moon DO,Kim MO,Lee JD,etal.Rosmarinic acid sensitizes cell death through suppression of TNF-alpha-induced NF-kappaB activation and ROS generation in human leukemia U937 cells[J].Cancer Lett,2010,288(2):183-191.
[14] Karagiannis GS,Saraon P,Jarvi KA,etal.Proteomic signatures of angiogenesis in androgen-independent prostate cancer[J].Prostate,2014,74(3):260-72.
[15] Lin W,Zheng L,Zhuang Q,etal.Spica prunellae promotes cancer cell apoptosis,inhibits cell proliferation and tumor angiogenesis in a mouse model of colorectal cancer via suppression of stat3 pathway[J].BMC Complement Altern Med,2013,13(1):144.
[16] Wang Z,Si X,Xu A,etal.Activation of STAT3 in Human Gastric Cancer Cells via Interleukin (IL)-6-Type Cytokine Signaling Correlates with Clinical Implications[J].PLoS One,2013,8(10):e75788.
[17] Zhou W,Wang G,Guo S.Regulation of angiogenesis via Notch signaling in breast cancer and cancer stem cells[J].Biochim Biophys Acta,2013,1836(2):304-320.
[18] Messerli SM,Ahn MR,Kunimasa K,etal.Artepillin C (ARC) in Brazilian green propolis selectively blocks oncogenic PAK1 signaling and suppresses the growth of NF tumors in mice[J].Phytother Res,2009,23(3):423-427.
[19] 唐泓波.應(yīng)用肝臟特異性胰島素樣生長(zhǎng)因子-Ⅰ基因缺失小鼠研究乳腺癌的發(fā)病機(jī)制[D].武漢,華中科技大學(xué):2009.
[20] Choi YK,Cho SG,Woo SM,etal.Saussurea lappa Clarke-Derived Costunolide Prevents TNFα-Induced Breast Cancer Cell Migration and Invasion by Inhibiting NF-kappa B Activity[J].Evid Based Complement Alternat Med,2013,2013:936257.
[21] García-Quiroz J,Rivas-Suárez M,García-Becerra R,etal.Calcitriol reduces thrombospondin-1 and increases vascular endothelial growth factor in breast cancer cells:Implications for tumor angiogenesis[J].J Steroid Biochem Mol Biol,2013.
[22] He G,Dhar D,Nakagawa H,etal.Identification of liver cancer progenitors whose malignant progression depends on autocrine IL-6 signaling[J].Cell,2013,155(2):384-396.
[23] Scheckel KA,Degner SC,Romagnolo DF.Rosmarinic acid antagonizes activator protein-1-dependent activation of cyclooxygenase-2 expression in human cancer and nonmalignant cell lines[J].J Nutr,2008,138(11):2098-2105.
[24] Zhang H,Fan J,Wang J,etal.Fluorescence Discrimination of Cancer from Inflammation by Molecular Response to COX-2 Enzymes[J].J Am Chem Soc,2013,135(46):17469-17475.
[25] Chen YC,Sosnoski DM,Gandhi UH,etal.Selenium modifies the osteoblast inflammatory stress response to bone metastatic breast cancer[J].Carcinogenesis,2009,30(11):1941-1948.
[26] Lonardo E,Cioffi M,Sancho P,etal.Metformin targets the metabolic achilles heel of human pancreatic cancer stem cells[J].PLoS One,2013,8(10):e76518.
[27] Guha M,Srinivasan S,Ruthel G,etal.Mitochondrial retrograde signaling induces epithelial-mesenchymal transition and generates breast cancer stem cells[J].Oncogene,2013.
[28] Dai Z,Nair V,Khan M,etal.Pomegranate extract inhibits the proliferation and viability of MMTV-Wnt-1 mouse mammary cancer stem cells in vitro[J].Oncol Rep,2010,24(4):1087-1091.
[29] Singh JK,Sim?es BM,Clarke RB,etal.Targeting IL-8 signalling to inhibit breast cancer stem cell activity[J].Expert Opin Ther Targets,2013,17(11):1235-1241.
[30] Murphy RA,Schairer C,Gierach GL,etal.Beyond breast cancer:mammographic features and mortality risk in a population of healthy women[J].PLoS One,2013,8(10):e78722.