余娜,鐘志勇,唐小江,#,劉圣蘭, 劉培慶,蔣建敏,*
1. 中山大學(xué)藥學(xué)院藥理與毒理學(xué)實(shí)驗(yàn)室,廣州510006 2. 廣東省醫(yī)學(xué)實(shí)驗(yàn)動物中心,廣州528248
鎘是人體一種非必需的二價(jià)金屬離子,鎘可以通過呼吸道、消化道進(jìn)入人體,并且在體內(nèi)多種器官(例如腎臟、肝臟及肺)長期蓄積引起嚴(yán)重的毒性作用。職業(yè)接觸和環(huán)境污染引起的鎘超標(biāo)、中毒已經(jīng)被廣泛報(bào)道[1]。由于鎘具有較長的生物半衰期(10-30年),長期暴露于低濃度的鎘污染環(huán)境會導(dǎo)致機(jī)體特別是腎臟嚴(yán)重的鎘蓄積[2]。腎近端小管的S1及S2段是鎘毒性的作用靶點(diǎn),并會引起腎衰[3]。傳統(tǒng)的觀點(diǎn)認(rèn)為,鎘在腎小管細(xì)胞蓄積后,由于金屬硫蛋白(MT)的耗竭,引起鎘自由基作用,對線粒體等導(dǎo)致?lián)p傷從而引起腎小管細(xì)胞的凋亡或壞死。然而,鎘引起腎毒性的細(xì)胞凋亡機(jī)制的決定因素仍然是不詳。
壞死和凋亡是細(xì)胞死亡的兩種主要形式,多種毒性化合物能根據(jù)細(xì)胞類型的不同來誘導(dǎo)不同細(xì)胞的凋亡。凋亡是由基因控制的細(xì)胞自主的有序的死亡,它在調(diào)節(jié)細(xì)胞生長、免疫反應(yīng)及清除廢棄物和異常細(xì)胞過程中發(fā)揮著至關(guān)重要的作用[4]。凋亡紊亂可破壞組織內(nèi)穩(wěn)態(tài)及其功能,凋亡紊亂也和多種疾病例如癌癥、神經(jīng)退行性病變以及毒素誘導(dǎo)疾病相關(guān)。鎘能夠引起多種組織及細(xì)胞的凋亡,包括大鼠肝臟、腎臟及睪丸[5,6],人T細(xì)胞系CEM-C12,淋巴瘤細(xì)胞U937,正常肝細(xì)胞,肝細(xì)胞L-02,人胚肺成纖維細(xì)胞MRC-5,前列腺上皮細(xì)胞,大鼠間質(zhì)細(xì)胞,鼠肺上皮細(xì)胞,皮質(zhì)神經(jīng)元及腎小管上皮細(xì)胞和豬腎細(xì)胞LLC-PK1[7-10]。這些研究表明通過凋亡通路引起腎近端小管上皮細(xì)胞的死亡是鎘致腎毒性的關(guān)鍵環(huán)節(jié)之一。本文將概述以往鎘引起腎細(xì)胞凋亡的研究進(jìn)展及其發(fā)現(xiàn)來討論鎘通過細(xì)胞凋亡通路引起腎臟毒性的作用機(jī)制。
Caspase在促發(fā)及執(zhí)行凋亡過程中發(fā)揮著關(guān)鍵作用,而caspase 可通過線粒體通路以及死亡受體通路來激活。內(nèi)在的線粒體通路可被多種刺激因素包括活性氧(reactive oxygen species, ROS)以及細(xì)胞內(nèi)鈣而激活,而線粒體釋放的凋亡前因子細(xì)胞色素C(Cyt c),它能夠激活caspase-9和caspase-3 從而誘導(dǎo)凋亡。在腎近端小管上皮細(xì)胞,鎘能誘導(dǎo)激活caspase-9和caspase-3,這提示了鎘致腎毒性可能與線粒體及caspase介導(dǎo)的凋亡通路有關(guān)[10]。
而在大鼠腎近端小管細(xì)胞WKPT-0293 Cl.2和鼠腎系膜細(xì)胞中,鎘能促進(jìn)凋亡前因子的釋放,例如線粒體內(nèi)核酸內(nèi)切酶凋亡誘導(dǎo)因子(apoptosis-inducing factor, AIF),這表明鎘除了能激活caspase依賴性的凋亡通路外,也能夠誘導(dǎo)caspase非依賴性的通路來破壞線粒體功能[10,11]。而且,在人胚腎細(xì)胞HEK-293的實(shí)驗(yàn)中,將線粒體從腎細(xì)胞分離后處理發(fā)現(xiàn)鎘能夠通過增加線粒體膜的通透性及降低線粒體膜電位來誘導(dǎo)細(xì)胞的凋亡[12]。早在2003年Danial實(shí)驗(yàn)結(jié)果就已證明,線粒體通透性轉(zhuǎn)運(yùn)孔(permeability transition pore, PTP)開放是導(dǎo)致Cyt c釋放的直接原因。PTP與線粒體膜電位的穩(wěn)定密切相關(guān)。PTP的周期性開放能夠維持線粒體內(nèi)電化學(xué)平衡及穩(wěn)定狀態(tài)。當(dāng)PTP持續(xù)性開放時(shí)就會導(dǎo)致線粒體膜電位降低甚至是完全崩解,而線粒體膜電位的崩解是細(xì)胞凋亡的特異性早期指標(biāo)之一。而一旦線粒體膜電位耗散,細(xì)胞就會進(jìn)入不可逆的凋亡過程。
鈣離子是細(xì)胞內(nèi)第二信使,調(diào)控多種細(xì)胞生理過程,包括細(xì)胞的增殖、分化及死亡和生長。鎘能使腎小管細(xì)胞中的鈣離子濃度升高[13]。盡管鎘誘導(dǎo)細(xì)胞內(nèi)鈣離子濃度升高的機(jī)制尚不十分清楚,此機(jī)制可能與細(xì)胞內(nèi)鈣庫內(nèi)質(zhì)網(wǎng)(endoplasmic reticulum, ER)釋放鈣離子以及鈣吸收有關(guān)。而細(xì)胞內(nèi)鈣增高會通過calpain-caspase 通路來促發(fā)腎小管細(xì)胞的凋亡[14,15]。
磷脂酶C(phospholipase C, PLC)可將磷脂酰肌醇4,5-二磷酸變成肌醇-1,4,5,-三磷酸(inositol-1,4,5-triphosphate, IP3),并通過與IP3受體相作用來誘導(dǎo)鈣離子從ER中釋放[16]。最近,在人胚腎細(xì)胞HEK-293的實(shí)驗(yàn)中闡述了PLC-鈣依賴性通路在鎘誘導(dǎo)凋亡過程中的可能作用,該實(shí)驗(yàn)發(fā)現(xiàn)用PLC特異性抑制劑U73122能夠抑制鎘引起的細(xì)胞內(nèi)鈣離子濃度的增高以及鎘誘導(dǎo)鈣蛋白酶calpain 和 caspase-3的激活[17]。而且,在腎遠(yuǎn)端上皮細(xì)胞A6中,發(fā)現(xiàn)鎘能激活細(xì)胞膜上的G蛋白偶聯(lián)受體(G-protein coupled receptor, GPCR),而GPCR又能夠激活PLC,并且通過激活PLC來增加細(xì)胞內(nèi)鈣離子濃度[18]。這些研究表明GPCR介導(dǎo)的PLC激活可能是鎘誘導(dǎo)腎近端小管細(xì)胞中的ER釋放鈣離子的通路之一。然而,鎘誘導(dǎo)的凋亡并不完全能被U73122所抑制[17],這提示鎘也可能通過PLC非依賴性通路來誘導(dǎo)凋亡。
鞘脂類神經(jīng)酰胺(ceramide)在多種細(xì)胞生理過程(包括多種組織的細(xì)胞死亡及生存)發(fā)揮著重要的作用[19]。神經(jīng)酰胺在鎘通過calpain-caspase 通路來誘導(dǎo)腎小管上皮細(xì)胞凋亡過程中發(fā)揮著一種第二信使的作用[14,20-22]。在大鼠腎近端小管細(xì)胞WKPT-0293 C1.2中,用外源性C6-神經(jīng)酰胺作用后可增加細(xì)胞內(nèi)鈣離子濃度以及激活calpain 和 caspase-3[21]。而且,使用神經(jīng)酰胺合成酶抑制劑來阻斷神經(jīng)酰胺的重新合成,從而可抑制由急性鎘中毒所引起的calpain的激活以及細(xì)胞的凋亡[20,21]。這些研究發(fā)現(xiàn)說明了鎘能夠引起細(xì)胞內(nèi)鈣離子升高,而鈣離子水平的增高可通過增加神經(jīng)酰胺的合成來激活calpain 和caspase。而且,由于ER的鈣耗竭可能與ER應(yīng)激相關(guān),故有可能是鎘誘導(dǎo)ER的鈣離子釋放,從而不僅誘導(dǎo)了calpain-caspase 通路而且也激活了ER應(yīng)激的未折疊蛋白反應(yīng)(unfolded protein response, UPR)[23]介導(dǎo)的凋亡通路。體外的研究結(jié)果需要進(jìn)一步通過體內(nèi)的實(shí)驗(yàn)得到證實(shí),從而更好地了解鎘致腎毒性的機(jī)制。然而,當(dāng)前不存在有關(guān)腎近端小管細(xì)胞通過神經(jīng)酰胺-calpain通路介導(dǎo)凋亡的體內(nèi)實(shí)驗(yàn)研究證據(jù)。
內(nèi)質(zhì)網(wǎng)(ER)應(yīng)激參與了細(xì)胞凋亡,主要表現(xiàn)為未折疊蛋白反應(yīng)(UPR)[23]。在多種病理生理?xiàng)l件下,例如缺氧、局部缺血、病毒感染及神經(jīng)退行性病變都可能造成內(nèi)質(zhì)網(wǎng)上未折疊或錯(cuò)誤折疊蛋白的蓄積并引起內(nèi)質(zhì)網(wǎng)應(yīng)激反應(yīng),而內(nèi)質(zhì)網(wǎng)應(yīng)激又會誘導(dǎo)稱為UPR的協(xié)調(diào)自適應(yīng)程序反應(yīng)[23,24]。UPR可通過上調(diào)伴侶蛋白的表達(dá),抑制總蛋白的翻譯來增強(qiáng)蛋白折疊能力從而來減輕內(nèi)質(zhì)網(wǎng)的應(yīng)激反應(yīng),而通過泛素化蛋白酶體系來激活ER相關(guān)的降解反應(yīng)可促進(jìn)未折疊或錯(cuò)誤折疊蛋白的降解。然而,當(dāng)UPR不能夠拯救細(xì)胞的時(shí)候,ER應(yīng)激就會誘導(dǎo)凋亡。
在豬腎近曲小管上皮細(xì)胞LLC-PK1中已表明鎘能通過ER應(yīng)激來誘導(dǎo)細(xì)胞凋亡[25,26]。ER中感應(yīng)ER應(yīng)激的最主要感受器是:RNA依賴性蛋白激酶樣ER激酶(protein kinase-like ER kinase, PERK),活性轉(zhuǎn)錄因子6(activating transcription factor 6, ATF6)和需肌醇的ER-to-nucleus 信號激酶1(inositol-requiring ER-to-nucleus signal kinase 1, IRE1)。在三個(gè)通路中,ATF6及IRE1可分別通過誘導(dǎo)CCAAT/增強(qiáng)子結(jié)合蛋白同源蛋白質(zhì)(CCAAT/enhancer binding protein-homologous protein, CHOP)以及通過激活X-box結(jié)合蛋白1(X-box binding protein 1, XBP1)和磷酸化碳末端激酶(c-jun N-terminal kinase, JNK)來誘導(dǎo)細(xì)胞凋亡[25,26]。有體外的研究表明鎘能通過ER應(yīng)激介導(dǎo)的凋亡通路來引起腎毒性。然而,在小鼠體內(nèi),長期低劑量的鎘處理后是否會通過ER應(yīng)激來引起腎上皮細(xì)胞的凋亡,對于該問題仍是不詳。由于鎘慢性毒性的主要靶器官是腎臟,我們需要做進(jìn)一步的體內(nèi)研究來確定ER應(yīng)激通路在鎘誘導(dǎo)腎上皮細(xì)胞凋亡及腎毒性過程中的重要性。
在豬腎細(xì)胞LLC-PK1中,鎘誘導(dǎo)產(chǎn)生活性氧(ROS);在人胚腎細(xì)胞HEK-293實(shí)驗(yàn)中發(fā)現(xiàn),鎘能夠抑制乳酸脫氫酶(lactic dehydrogenase, LDH)、超氧化物歧化酶(superoxide dismutase, SOD)以及谷胱甘肽過氧化物酶(glutathione peroxidase, GSH-Px)的活性,并增強(qiáng)活性氧(ROS)及脂質(zhì)過氧化反應(yīng)[12]。這表明氧化應(yīng)激有可能是慢性鎘中毒后引起腎毒性的機(jī)制之一,但是鎘誘導(dǎo)腎臟的氧化應(yīng)激機(jī)制尚未清楚[27]??寡趸瘎┖统趸锲缁傅倪^表達(dá)都可緩解由鎘引起的可激活凋亡的UPR信號級聯(lián)反應(yīng)和細(xì)胞凋亡的ER應(yīng)激反應(yīng)[26]。雖然我們不知道ROS在腎臟中是如何誘導(dǎo)ER應(yīng)激的,但鎘誘導(dǎo)產(chǎn)生的ROS可能與鎘通過ER應(yīng)激而引起的腎細(xì)胞凋亡有關(guān)。
為明確鎘致腎毒性的分子機(jī)制及分子靶點(diǎn),最近有研究通過DNA微陣列芯片的方法來檢測鎘刺激后的正常大鼠腎上皮細(xì)胞(normal rat kidney epithelial cells,NRK-52E)的基因表達(dá)類型[28]。發(fā)現(xiàn)鎘在引起細(xì)胞毒性前能夠增加NRK-52E細(xì)胞73基因的表達(dá)以及降低42基因的表達(dá)。在這些基因當(dāng)中,我們關(guān)注與泛素化蛋白酶體系相關(guān)的Ube2d4基因,研究發(fā)現(xiàn)在酵母細(xì)胞中Ubc4(Ube2d的同源家族)的表達(dá)水平會影響細(xì)胞對鎘毒性的敏感性[29]。泛素化蛋白酶體系是一種降解損傷或短壽命蛋白的途徑[30,31]。機(jī)體非必需蛋白質(zhì)通過泛素化激活酶(E1),泛素化結(jié)合酶(E2),泛素化連接酶(E3),以及泛素化鏈延長因子(E4)而被泛素化,而后這些被泛素化的蛋白又可被蛋白酶降解。Ube2d4是Ube2d家族的成員之一,負(fù)責(zé)編碼泛素化結(jié)合酶E2D4(Ube2d)。在NRK-52E細(xì)胞中,發(fā)現(xiàn)鎘不僅能明顯快速地抑制Ube2d4的基因表達(dá),而且能有效地抑制其他的Ube2d基因家族,包括Ube2d1、Ube2d2以及Ube2d3的基因表達(dá)[32]。鎘可通過非選擇性地明顯下調(diào)Ube2d基因來抑制Ube2d家族酶介導(dǎo)的非必需蛋白質(zhì)的降解,從而可導(dǎo)致這些非必需蛋白質(zhì)在細(xì)胞內(nèi)的蓄積。
在人乳腺癌細(xì)胞MCF7中,已證明Ube2d2和Ube2d3與腫瘤抑制蛋白p53的降解和泛素化有關(guān)[30]。p53是一種腫瘤抑制基因,它對細(xì)胞生長、凋亡和DNA修復(fù)起著重要的調(diào)控作用[31,32]。眾所周知,p53可立即被泛素化蛋白酶體系所降解以及被泛素化,而p53的數(shù)量可通過降解率而非合成率來被穩(wěn)定調(diào)控[30-32]。在NRK-52E細(xì)胞中的研究表明鎘能顯著地增加p53在細(xì)胞內(nèi)的蓄積,并伴隨著p53的磷酸化作用,在細(xì)胞出現(xiàn)凋亡前鎘既沒有上調(diào)p53的基因表達(dá)也沒有直接抑制蛋白酶的活性[32]。這些實(shí)驗(yàn)結(jié)果表明鎘可通過下調(diào)Ube2d基因家族來抑制泛素化蛋白酶體系中的p53的降解從而引起p53的過度蓄積,因此鎘就能誘導(dǎo)p53依賴性的細(xì)胞凋亡。
而且,在用鎘長期處理小鼠腎臟12個(gè)月后發(fā)現(xiàn)鎘能抑制所有Ube2d基因(Ube2d1,Ube2d2,Ube2d3)的表達(dá),而這將會導(dǎo)致中度的腎毒性。經(jīng)鎘處理后,在腎臟中可觀察到p53蛋白的表達(dá)水平增高,但是p53的mRNA水平不變。而經(jīng)鎘處理12個(gè)月后的小鼠腎臟中發(fā)現(xiàn)凋亡細(xì)胞會損傷腎小管細(xì)胞,但不會損傷腎小球。這些實(shí)驗(yàn)結(jié)果表明,經(jīng)鎘處理12個(gè)月后,在小鼠的腎小管細(xì)胞以及NRK-52E細(xì)胞中,鎘會通過抑制Ube2d基因家族的表達(dá)來引起p53的過度蓄積,從而鎘能誘導(dǎo)p53依賴性的腎小管細(xì)胞凋亡[32]。最近siRNA干擾p53的研究也表明鎘可誘導(dǎo)p53介導(dǎo)的凋亡通路[33],在大鼠上皮細(xì)胞及人前列腺上皮細(xì)胞中[9]將p53進(jìn)行siRNA干擾后可抑制鎘誘導(dǎo)細(xì)胞凋亡。而且,在多種細(xì)胞中,鎘可引起細(xì)胞內(nèi)p53蛋白水平及p53蛋白磷酸化水平的增加[34-36]。這些研究也同樣表明了,經(jīng)鎘長期刺激腎近端小管細(xì)胞后,p53通路是誘導(dǎo)腎細(xì)胞凋亡的關(guān)鍵通路之一。
由于腎臟及腎細(xì)胞是慢性鎘中毒的主要靶器官及靶組織,因此在本綜述中,我們重點(diǎn)闡述了有關(guān)鎘引起腎臟及腎細(xì)胞凋亡的通路,鎘誘導(dǎo)的細(xì)胞凋亡信號通路主要?dú)w納為三個(gè):1)內(nèi)質(zhì)網(wǎng)介導(dǎo)的凋亡通路,可分為由ER應(yīng)激誘導(dǎo)的UPR的細(xì)胞凋亡以及由ER鈣釋放而激活的calpain-caspase凋亡通路;2)直接或間接的激活線粒體介導(dǎo)的caspase依賴性或caspase非依賴性凋亡通路;3)通過抑制Ube2d基因家族的表達(dá)以及促進(jìn)p53的過度蓄積而引起的p53凋亡通路(Fig.1)。雖然也包括其他的通路及因素,但這三條通路在鎘誘導(dǎo)的腎細(xì)胞凋亡過程中發(fā)揮著決定性的作用。然而,與鎘直接作用的靶分子以及每個(gè)通路在鎘誘導(dǎo)腎細(xì)胞凋亡中的重要程度仍然不是十分清楚。而且,有關(guān)鎘在人體腎細(xì)胞中的凋亡效應(yīng)及作用機(jī)制也是知之甚少。但是,最近在人腎近端小管細(xì)胞HK-2的實(shí)驗(yàn)研究中報(bào)道,ER應(yīng)激抑制劑salubrinal可通過阻斷細(xì)胞死亡信號通路來抑制鎘誘導(dǎo)的腎細(xì)胞凋亡[37]。
圖1 鎘引起腎毒性的3個(gè)主要凋亡通路。 1) 線粒體介導(dǎo)的caspase依賴性/caspase非依賴性的凋亡通路;2) 內(nèi)質(zhì)網(wǎng)介導(dǎo)的凋亡通路,包括URP依賴性和calpain-caspase依賴性的凋亡通路;3) p53依賴性凋亡通路,通過抑制Ube2d基因的表達(dá)從而導(dǎo)致p53的蓄積而引起細(xì)胞凋亡。Cd:鎘;Apoptosis:細(xì)胞凋亡。Fig. 1 Model for three cadmium-induced apoptosis pathways in the kidney cadmium induces three major apoptotic pathways in the kidney cells as follows: 1) the mitochondria-mediated pathway via direct and indirect activation of mitochondria by cadmium, followed by caspase-dependent and/or-independent pathways; 2) the ER-mediated pathway via ER stress and calcium release that is followed by the activation of UPR-dependent and calpain-caspase-dependent apoptotic pathways, respectively; 3) the p53-dependent apoptotic pathway via suppression of the Ube2d gene family expression and p53 overaccumulation.
綜上所述,可知細(xì)胞凋亡可能在鎘致腎毒性的過程中發(fā)揮著重要的作用。鎘致腎毒性的細(xì)胞凋亡機(jī)制闡明對研究鎘腎毒性的發(fā)生發(fā)展提供了一個(gè)新視覺。今后,我們也需要做進(jìn)一步的實(shí)驗(yàn)研究去確定每個(gè)凋亡通路的影響程度以及治療鎘致腎毒性的關(guān)鍵靶分子。
參考文獻(xiàn):
[1] Nordberg G F. Historical perspectives on cadmium toxicology [J]. Toxicology and Applied Pharmacology, 2009, 2399(3): 192-200
[2] Sabath E, Robles-Osorio M L. Renal health and the environment: heavy metal nephrotoxicity [J]. Nefrologia, 2012, 32(3): 279-286
[3] Fujishiro H, Yano Y, Tanihara M, et al. Roles of ZIP8, ZIP14, and DMT1 in transport of cadmium and manganese in mouse kidney proximal tubule cells [J]. Metallomics, 2012, 4(7): 700-708
[4] Hambach R, Lison D, D'Haese P C, et al. Co-exposure to lead increases the renal response to low levels of cadmium in metallurgy workers [J]. Toxicology Letters, 2013, 222(2): 233-238
[5] Garrett S H, Clarke K, Sens D A, et al. Short and long term gene expression variation and networking in human proximal tubule cells when exposed to cadmium [J]. BMC Medical Genomics, 2013, 6(Suppl. 1): S2
[6] Prozialeck W C, Edwards J R, Lamar P C, et al. Expression of kidney injury molecule-1(Kim-1) in relation to necrosis and apoptosis during the early stages of Cd-induced proximal tubule injury [J]. Toxicology and Applied Pharmacology, 2009, 238(3): 306-314
[7] Lasfer M, Vadrot N, Aoudjehane L, et al. Cadmium induces mitochondria-dependent apoptosis of normal human hepatocytes [J]. Cell Biology and Toxicology, 2008, 24(1): 55-62
[8] Ye J L, Mao W P, Wu A L, et al. Cadmium-induced apoptosis in human normal liver L-02 cells by acting on mitochondria and regulating Ca2+signals [J]. Environmental Toxicology and Pharmacology, 2007, 24(1): 45-54
[9] Aimola P, Carmignani M, Volpe A R, et al. Cadmium induces p53-dependent apoptosis in human prostate epithelial cells [J]. PLoS one, 2012, 7(3): e33647
[10] Liu Y, Templeton D M. Initiation of caspase-independent death in mouse mesangial cells by Cd2+: Involvement of p38 kinase and CaMK-II [J]. Journal of Cellular Physiology, 2008, 217(2): 307-318
[11] Lee W K, Abouhamed M, Thevenod F. Caspase-dependent and caspase-independent pathways for cadmium-induced apoptosis in cultured kidney proximal tubule cells [J]. American Journal of Physiology Renal Physiology, 2006, 291(4): 823-832
[12] Mao W P, Zhang N N, Zhou F Y, et al. Cadmium directly induced mitochondrial dysfunction of human embryonic kidney cells [J]. Human & Experimental Toxicology, 2011, 30(8): 920-929
[13] Kim E K, Choi E J. Pathological roles of MAPK signaling pathways in human diseases [J]. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 2010, 1802(4): 396-405
[14] Thevenod F. Cadmium and cellular signaling cascades: To be or not to be? [J]. Toxicology and Applied Pharmacology, 2009, 238(3): 221-239
[15] Yeh J H, Huang C C, Yeh M Y, et al. Cadmium-induced cytosolic Ca2+elevation and subsequent apoptosis in renal tubular cells [J]. Basic & Clinical Pharmacology & Toxicology, 2009, 104(5): 345-351
[16] Foskett J K, White C, Cheung K H, et al. Inositol trisphosphate receptor Ca2+release channels [J]. Physiology Reviews, 2007, 87(2): 593-658
[17] Lawal A O, Ellis E M. Phospholipase C mediates cadmium-dependent apoptosis in HEK-293 cells [J]. Basic & Clinical Pharmacology & Toxicology, 2012, 110(6): 510-517
[18] Edwards J R, Kolman K, Lamar P C, et al. Effects of cadmium on the sub-cellular localization of β-catenin and β-catenin-regulated gene expression in NRK-52E cells [J]. Biometals, 2013, 26(1): 33-42
[19] Saddoughi S A, Song P, Ogretmen B. Roles of bioactive sphingolipids in cancer biology and therapeutics [J]. Sub-cellular Biochemistry, 2008, 49(16): 413-440
[20] Lee W K, Thevenod F. Novel roles for ceramides, calpains and caspases in kidney proximal tubular cell apoptosis: Lessons from in vitro cadmium toxicity studies [J]. Biochemical. Pharmacology, 2008, 76(11): 1323-1332
[21] Lee W K, Torchalski B, Thevenod F. Cadmium-induced ceramide formation triggers calpain-dependent apoptosis in cultured kidney proximal tubular cells [J]. American Journal of Physiology Cell Physiology, 2007, 293(3): C839-C847
[22] Lee W K, Torchalski B, Kohistani N, et al. ABCB1 protects kidney proximal tubular cells against cadmium-induced apoptosis: roles of cadmium and ceramide transport [J]. Toxicological Sciences, 2011, 121(2): 343-356
[23] Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response [J]. Nature Reviews Molecular Cell Biology, 2007, 8(7): 519-529
[24] Kitamura M. Endoplasmic reticulum stress and unfolded protein response in renal pathophysiology: Janus faces [J]. American Journal of Physiology Renal Physiology, 2008, 295(2): F323-F334
[25] Yokouchi M, Hiramatsu N, Hayakawa K, et al. Atypical, bidirectional regulation of cadmium-induced apoptosis via distinct signaling of unfolded protein response [J]. Cell Death & Differentiation, 2007, 14(8): 1467-1474
[26] Yokouchi M, Hiramatsu N, Hayakawa K, et al. Involvement of selective reactive oxygen species upstream of proapoptosis branches of unfolded protein response [J]. The Journal of Biological Chemistry, 2008, 283(7): 4252-4260
[27] Gobe G, Crane D. Mitochondria, reactive oxygen species and cadmium toxicity in the kidney [J]. Toxicology Letters, 2010, 198(1): 49-55
[28] Tokumoto M, Ohtsu T, Honda A, et al. DNA microarray analysis of normal rat kidney epithelial cells treated with cadmium [J]. The Journal of Toxicological Sciences, 2011, 36(1): 127-129
[29] Hwang G W, Furuchi T, Naganuma A. The ubiquitin-conjugating enzymes, Ubc4 and Cdc34, mediate cadmium resistance in budding yeast through different mechanisms [J]. Life Sciences, 2008, 82(23-24): 1182-1185
[30] Templeton D M, Liu Y. Effects of cadmium on the actin cytoskeleton in renal mesangial cells [J]. Canadian Journal of Physiology Pharmacology. 2013, 91(1): 1-7
[31] Vucic D, Dixit V M, Wertz I E. Ubiquitylation in apoptosis: A post-translational modification at the edge of life and death [J]. Nature Reviews Molecular Cell Biology, 2011, 12(7): 439-452
[32] Tokumoto M, Fujiwara Y, Shimada A, et al. Cadmium toxicity is caused by accumulation of p53 through the down-regulation of Ube2d family genes in vitro and in vivo [J]. The Journal of Toxicological Sciences, 2011, 36(2): 191-200
[33] Son Y O, Lee J C, Hitron J A, et al. Cadmium JNK- and p53-mediated pathways in skin epidermal cell line [J]. Toxicological Sciences, 2010, 113(1): 127-137
[34] Yu X, Hong S, Faustman E M. Cadmium-induced activation of stress signaling pathways, disruption of ubiquintin-dependent protein degradation and apoptosis in primary rat Sertoli cell-gonocyte co-cultures [J]. Toxicological Sciences, 2008, 104(2): 385-396
[35] Yu X, Robinson J F, Sidhu J S, et al. A system-based comparison of gene expression reveals alterations in oxidative stress, disruption of ubiquintin-proteasome system and altered cell cycle regulation after exposure to cadmium and methylmercury in mouse embryonic fibroblast [J]. Toxicological Sciences, 2010, 114(2): 356-377
[36] Dai W, Chen H, Yu R, et al. Effects of cadmium on telomerase activity, expressions of TERT, c-myc and p53, and apoptosis of rat hepatocytes [J]. Journal of Huazhong University of Science and Technology (Medical Sciences), 2010, 30(6): 709-713
[37] Komoike Y, Inamura H, Matsuoka M. Effects of salubrinal on cadmium-induced apoptosis in HK-2 human renal proximal tubular cells [J]. Archives of Toxicology, 2012, 86(1): 37-44