鄭太輝,冉勇,陳來國(guó)
東江流域農(nóng)村土壤中多環(huán)芳烴的分布特征及其健康風(fēng)險(xiǎn)評(píng)估
鄭太輝1,2,冉勇1*,陳來國(guó)3
1. 中國(guó)科學(xué)院廣州地球化學(xué)研究所, 廣東 廣州510640;2. 中國(guó)科學(xué)院大學(xué), 北京100049;3. 環(huán)境保護(hù)部華南環(huán)境科學(xué)研究所,廣東 廣州510655
為了解東江流域農(nóng)村土壤多環(huán)芳烴的分布特征與人類健康風(fēng)險(xiǎn),采集了30個(gè)不同土地利用類型農(nóng)村表層土壤樣品,進(jìn)行采用索氏抽提法,硅膠/氧化鋁(2:1)層析柱分離純化,最后加內(nèi)標(biāo)經(jīng)氣相色譜-質(zhì)譜儀定量解析的方法測(cè)定16種多環(huán)芳烴的含量。同時(shí),測(cè)定了土壤中不同形態(tài)有機(jī)質(zhì)包括總有機(jī)碳(TOC)、非水解性有機(jī)碳(NHC)、黑碳(BC)以及無定形有機(jī)碳(AOC)的含量。結(jié)果表明,土壤多環(huán)芳烴質(zhì)量分?jǐn)?shù)在24~238 μg·kg-1之間,平均質(zhì)量分?jǐn)?shù)為107±60 μg·kg-1。在16種多環(huán)芳烴中,萘、菲、熒蒽和苯并(b)熒蒽的含量最高,占總多環(huán)芳烴含量的比重依次為16%、20%、10%和10%。土壤中多環(huán)芳烴含量與TOC、NHC以及BC均具有極顯著的線性關(guān)系(p<0.01),三者斜率的大小順序?yàn)锽C>NHC>TOC(p<0.01),表明土壤有機(jī)碳中的非水解性有機(jī)碳和黑碳在控制土壤中多環(huán)芳烴的分布、積累中發(fā)揮著重要的作用。土壤中多環(huán)芳烴含量與AOC的相關(guān)性不顯著(p=0.29)。另外,健康風(fēng)險(xiǎn)評(píng)價(jià)表明兒童暴露的增量終身致癌風(fēng)險(xiǎn)(ILCRs)在可接受的安全范圍內(nèi)(ILCRs <10-6),而成人暴露的增量終身致癌風(fēng)險(xiǎn)則相對(duì)較高(10-6<ILCRs<10-5)。兒童通過3種途徑暴露的增量終身致癌風(fēng)險(xiǎn)大小順序依此為:誤食土壤>皮膚接觸>呼吸;而成人則為:皮膚接觸>誤食土壤>呼吸。
東江流域;土壤;多環(huán)芳烴;分布;健康風(fēng)險(xiǎn)評(píng)價(jià)
多環(huán)芳烴(PAHs)是“三致”(致癌性、致畸性、致突變性)化合物,受到國(guó)內(nèi)外環(huán)境科學(xué)界的普遍關(guān)注。大量文獻(xiàn)魏指出表層土壤中持久性有機(jī)污染物的濃度與土壤有機(jī)質(zhì)(SOM)含量呈顯著正相關(guān)關(guān)系(Meijer等,2003;TAO等,2004;YANG等,2010)。Meijer等(2003)進(jìn)行的一項(xiàng)全球調(diào)查顯示表層土壤中的多氯聯(lián)苯(PCBs)含量與土壤有機(jī)質(zhì)含量呈顯著的正相關(guān)關(guān)系。非水解性有機(jī)碳主要包括干酪根(KC)、黑碳(BC)等,而水解性有機(jī)質(zhì)主要包括一些年輕的有機(jī)質(zhì)如水解性糖和氨基酸(Ran等,2007a;Ran等,2007b)。
目前,終生癌癥風(fēng)險(xiǎn)增量(ILCRs)模型被普遍運(yùn)用于環(huán)境中多環(huán)芳烴的健康風(fēng)險(xiǎn)評(píng)估(Chen和Liao,2006;劉新等,2011;Peng等,2011)。根據(jù)美國(guó)環(huán)境保護(hù)總署(USEPA)規(guī)定的ILCRs風(fēng)險(xiǎn)范圍,ILCRs<10-6表示可以接受的安全范圍;10-6<ILCRs<10-5表示存在潛在的風(fēng)險(xiǎn);而10-5<ILCRs<10-4意味著有較大的潛在風(fēng)險(xiǎn)。終生癌癥風(fēng)險(xiǎn)增量模型被廣泛用于評(píng)估土壤(Peng等,2011)、沉積物(Hussain等,1998)等環(huán)境介質(zhì)中的多環(huán)芳烴的健康風(fēng)險(xiǎn)。人類暴露于土壤多環(huán)芳烴的途徑主要有3種:誤食土壤、皮膚接觸和呼吸土壤塵。
本文的主要目的是:1)確定東江流域農(nóng)村土壤中多環(huán)芳烴的含量分布;2)分析多環(huán)芳烴濃度與土壤不同有機(jī)碳成分的相關(guān)性;3)運(yùn)用終生癌癥風(fēng)險(xiǎn)增量模型評(píng)估土壤中的多環(huán)芳烴對(duì)人類暴露的潛在致癌風(fēng)險(xiǎn)。
1.1 研究區(qū)域
東江流域位于珠江三角洲的東北方向,毗鄰香港和廣州。東江流域?qū)賮啛釒Ъ撅L(fēng)氣候,比較潮濕,
以下方式計(jì)算:
(2)經(jīng)過呼吸攝入多環(huán)芳烴污染土壤。通過土壤塵而攝入污染物ILCR呼吸(無單位)可按以下方式計(jì)算:
(3) 經(jīng)皮膚接觸而攝入多環(huán)芳烴污染土壤。通過皮膚直接接觸土壤,因皮膚呼吸而攝入土壤多環(huán)芳烴污染物ILCR皮膚接觸可按以下方式計(jì)算:
式(1)、(2)、(3)中CS指土壤多環(huán)芳烴濃度(μg·kg-1),CSF為致癌斜率因子(mg·kg-1·day-1),BW指平均體重(kg),AT為人均壽命(year),EF指暴露頻率(day·year-1),ED指暴露年數(shù)(year),IR呼吸指呼吸速率(m3·day-1),IR誤食土壤指土壤攝取速率(mg·day-1),SA為接觸土壤的皮膚面積(cm2·day-1),AF為土壤附著因子(mg·cm-2),ABS為皮膚吸附系數(shù),PEF指土壤塵形成系數(shù)(m3·kg-1)。
致癌斜率因子的確定基于苯并(a)芘的致癌能力,CSF誤食土壤、CSF呼吸和CSF皮膚接觸分別為7.3 mg·kg-1·d-1、3.85 mg·kg-1·d-1和25mg·kg-1·d-1(Peng等,2011;Knafla等,2006)。CS是根據(jù)USEPA(1993)計(jì)算得到的土壤多環(huán)芳烴的苯并[a]芘等效毒性當(dāng)量值。其它終生癌癥風(fēng)險(xiǎn)增量模型各變量取值數(shù)據(jù)來源于北京市環(huán)境保護(hù)局(北京市環(huán)境保護(hù)局,2007)。
1.7 數(shù)據(jù)分析
采用Excel對(duì)數(shù)據(jù)進(jìn)行基本處理,采用SPSS進(jìn)行線性回歸分析。
2.1 東江流域農(nóng)村土壤多環(huán)芳烴含量和分布特征
土壤多環(huán)芳烴質(zhì)量分?jǐn)?shù)在24~238 μg·kg-1之間,平均質(zhì)量分?jǐn)?shù)為107±60 μg·kg-1(表1)。多環(huán)芳烴質(zhì)量分?jǐn)?shù)最高的兩個(gè)樣點(diǎn)分別位于惠州安墩鎮(zhèn)(S28)和廣州增城廟潭村(S16),分別為238 μg·kg-1和230 μg·kg-1。在16種多環(huán)芳烴中,萘、菲、熒蒽和苯并(b)熒蒽的質(zhì)量分?jǐn)?shù)最高,依次為17±9.3 μg·kg-1、21±10 μg·kg-1、11±8.6 μg·kg-1和11±11 μg·kg-1,占總多環(huán)芳烴含量的比重依次為16%、20%、10%和10%。
表1 關(guān)于東江流域偏遠(yuǎn)地區(qū)土壤多環(huán)芳烴的描述性統(tǒng)計(jì)Table 1 Descriptive Statistics of PAHs in the Rural Soil of Dongjing River Basin μg·kg-1
2.2 土壤多環(huán)芳烴含量與總有機(jī)碳,非水解性有機(jī)碳、黑碳和無定形有機(jī)碳的相關(guān)性分析
各土壤樣總有機(jī)碳(TOC)含量以及非水解性有機(jī)碳(NHC)、黑碳(BC)、無定形有機(jī)碳(AOC)占總有機(jī)碳的百分比見附表1。從該表中可知,東江流域農(nóng)村土壤總有機(jī)碳質(zhì)量分?jǐn)?shù)變化范圍為1.4~20.3 mg·g-1,平均質(zhì)量分?jǐn)?shù)為9.81±5.21 mg·g-1。16個(gè)土壤樣中NHC含量占總有機(jī)碳含量的比例為12.82%~89.91%,而BC含量占總有機(jī)碳含量的比例為1.40%~14.14%。單位重干土中NHC、BC和AOC質(zhì)量分?jǐn)?shù)分別為1.22~12.75 mg·g-1、0.12~0.75 mg·g-1和1.05~12.20 mg·g-1。東江流域農(nóng)村非水解性有機(jī)碳占總有機(jī)碳的比例接近于文獻(xiàn)報(bào)道的沉積物和土壤中酸(6 M HCl)不溶性碳占總有機(jī)碳的比例(25.6%~73.8%)(Ran等,2007b)。
圖2 土壤總多環(huán)芳烴與土壤總有機(jī)碳(TOC)(A)、非水解性有機(jī)碳(NHC) (B)、黑碳(BC) (C)和無定形有機(jī)碳(AOC)(D)的關(guān)系Fig.2 The Correlation between the Total PAH Concentrations and NHC (A), BC (B), TOC (C) and AOC (D)
圖2顯示的是土壤中總多環(huán)芳烴含量與TOC、NHC、BC和AOC的相關(guān)性。結(jié)果表明總多環(huán)芳烴含量與TOC(y=9.56x+12.16,r=0.86)、NHC(y=14.34x+30.24,r=0.88)以及BC(y=249.7x+25.45,r=0.93)均具有極顯著的線性關(guān)系(p<0.01),三者斜率依次為9.56,14.34和249.7,說明吸附能力順序依次為黑碳>非水解性有機(jī)碳>總有機(jī)碳。土壤中總多環(huán)芳烴含量與AOC含量的相關(guān)性不顯著(r=0.28,p=0.29)。總多環(huán)芳烴與TOC、NHC和BC的相關(guān)性
2.3 土壤多環(huán)芳烴健康風(fēng)險(xiǎn)評(píng)價(jià)
計(jì)算表明在正常和極端情況下,兒童暴露的累計(jì)概率為90%的ILCRs值分別為4.04×10-8和.05×10-7,均顯著低于10-6。成人則分別為8.15×10-8和1.13×10-6,前者顯著低于10-6而后者介于10-6和10-5之間。另外,從兒童和成人通過誤食土壤、呼吸和皮膚接觸3種暴露途徑的累計(jì)概率為90%的ILCRs可知,正常和極端暴露情況下,兒童和大人通過誤食土壤的暴露途徑的累計(jì)概率為90%的ILCRs值與通過皮膚接觸的累計(jì)概率為90%的ILCRs值在同一個(gè)數(shù)量級(jí)(10-8~10-6),但前者顯著高于后者。兒童和大人通過呼吸的暴露途徑的累計(jì)概率為90%的ILCRs要比其它2種暴露途徑低兩個(gè)數(shù)量級(jí)。
兒童通過3種途徑暴露的致癌風(fēng)險(xiǎn)大小順序依此為:誤食土壤>皮膚接觸>呼吸;而成人則為:皮膚接觸>誤食土壤>呼吸。兒童通過攝食途徑暴露的致癌風(fēng)險(xiǎn)顯著高于成人(p<0.01),而成人通過皮膚接觸途徑暴露的致癌風(fēng)險(xiǎn)顯著高于小孩(p<0.01)。另外,本研究發(fā)現(xiàn),人類暴露的致癌風(fēng)險(xiǎn)最高的幾個(gè)采樣點(diǎn)的土地利用類型均為農(nóng)田。
農(nóng)業(yè)是東江流域農(nóng)村地區(qū)的主要產(chǎn)業(yè),而農(nóng)村的成人人群又是農(nóng)業(yè)的主力軍。成人由于經(jīng)常在農(nóng)田中勞作,必然會(huì)長(zhǎng)時(shí)間、高頻率的暴露于污染中,具有較高的致癌風(fēng)險(xiǎn)。因此,雖然東江流域農(nóng)村土壤多環(huán)芳烴含量總體較低,但其對(duì)人類尤其是成人健康的潛在風(fēng)險(xiǎn)亦不容忽視。
1) 總多環(huán)芳烴含量與總有機(jī)碳、非水解性有機(jī)碳以及黑碳均具有極顯著的線性關(guān)系(p<0.01),三者斜率的大小順序依次為:黑碳>非水解性有機(jī)碳>總有機(jī)碳。但與無定形有機(jī)碳的相關(guān)性不顯著(p=0.29);
2) 兒童通過3種途徑暴露的致癌風(fēng)險(xiǎn)大小順序依次為:誤食土壤>皮膚接觸>呼吸;而成人則為皮膚接觸>誤食土壤>呼吸。
3) 人類暴露的致癌風(fēng)險(xiǎn)最高的幾個(gè)采樣點(diǎn)的土地利用類型均為農(nóng)田。
CHEN L G, RAN Y, XING B S, et al. 2005. Contents and sources of polycyclic hydrocarbons and organochlorine pesticides in vegetable soils of Guangzhou, China[J]. Chemosphere, 60:879-890.
CHEN S C, LIAO C M. 2006. Health risk assessment on human exposed to environmental polycyclic aromatic hydrocarbons pollution sources[J]. Science of the Total Environment, 366(1):112-123.
GéLINASY, PRENTICE K M, BALDOCK J A, et al. 2001. An improved thermal oxidation method for the quantification of soot/graphitic black carbon in sediments and soils[J]. Environmental Science & Technology, 35(17):3519-3525.
HUSSAIN M, RAE J, GILMAN A, et al. 1998. Lifetime health risk assessment from exposure of recreational users to polycyclic aromatic hydrocarbons[J]. Archives of Environmental Contamination and Toxicology, 35(3):527-531.
KNAFLA A, PHILLIPPS K A, BRECHER R W, et al. 2006. Development of a dermal cancer slope factor for benzo[a]pyrene[J]. Regulatory Toxicology and Pharmacology, 45(2):159-168
MEIJER S N, OCKENDEN W A, SWEETMAN A, et al. 2003. Global distribution and budget of PCBs and HCB in background surface soils: implications for sources and environmental processes[J]. Environmental Science & Technology, 37(4):667-672.
PENG C, CHEN W P, LIAO X L, et al. 2011. Polycyclic aromatic hydrocarbons in urban soils of Beijing: Status, sources, distribution and potential risk[J]. Environmental Pollution, 159:802-808.
RAN Y, SUN K, MA X X, et al. 2007. Effects of condensed organic matters on solvent extraction and aqueous leaching of PAHs in soils and sediments[J]. Environmental Pollution, 148(2):529-538.
RAN Y, SUN K, YANG Y, et al. 2007. Strong sorption of phenanthrene by condensed organic matter in soils and sediments[J]. Environmental Science & Technology, 41(11): 3952-3958.
TAO S, CUI Y H, XU F L, et al. 2004. Polycyclic aromatic hydrocarbons (PAHs) in agricultural soil and vegetables from Tianjin[J]. Science of the Total Environment, 320(1):11-24.
U.S. EPA. “Benzo[a]pyrene (BaP) (CASRN 50-32-8)” from http://www.epa.gov/ncea/iris/subst/0136.html[R], 1993.
U.S. EPA. Risk assessment guidance for superfund, Volume 1, Human health evaluation manual (Part B, Development of risk-based preliminary remediation goals) [R]. OSWER; 1991. [9285.7-01B. EPA/540/R-92/003].
WU Y P, CHEN J. 2009. Simulation of nitrogen and phosphorus loads in the Dongjiang River basin in South China using SWAT[J]. Frontiers of Earth Science in China, 3(3):273-278.
YANG Y, ZHANG N, XUE M, et al. 2010. Impact of soil organic matter on the distribution of polycyclic aromatic hydrocarbons (PAHs) in soils[J]. Environmental Pollution, 158(6):2170-2174.
ZHENG T H, RAN Y, CHEN L G. 2014. Polycyclic aromatic hydrocarbons (PAHs) in rural soils of Dongjiang River Basin: occurrence, source apportionment, and potential human health risk[J]. Journal of Soils and Sediments, 14(1):110-120.
北京市環(huán)境保護(hù)局, 2007. 場(chǎng)地環(huán)境評(píng)價(jià)導(dǎo)則[R]. 市環(huán)境保護(hù)局, 北京.
劉新,王東紅,馬梅,等. 2011. 中國(guó)飲用水中多環(huán)芳烴的分布和健康風(fēng)險(xiǎn)評(píng)估[J]. 生態(tài)毒理學(xué)報(bào), 6(2):207-214.
Polycyclic aromatic hydrocarbons in the rural soils of Dongjiang River Basin: distribution and human health risks
ZHENG Taihui1,2, RAN Yong1*,CHEN Laiguo3
1. State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640;2. University of Chinese Academy of Sciences, Beijing 100049;3. State Department of Environmental Protection, South China Institute of Environmental Science, Guangzhou 510655, China
In order to investigate the distribution and human health risks of the polycyclic aromatic hydrocarbons (PAHs) in the Dongjiang River Basin (DRB), thirty rural surface soil samples with different land use types were collected. 16 USEPA priority PAHs were measured. PAHs were Soxhlet extracted, purified by silica/alumina (2:1) column, and finally determined by GC-MS with the addition of the internal standards. In addition, different organic matter including total organinc carbon (TOC), nonhydrolyzable organic carbon (NHC), black carbon (BC) and amorphous organic carbon (AOC) in the soils were also quantified. Total PAH concentrations ranged from 24 μg·kg-1to 238 μg·kg-1with an average value of 107±60 μg·kg-1. Naphthalene, phenanthrene, fluoranthene and benzo[b]fluoracene were dominated, accounting for 16%, 20%, 10% and 10%, respectively. PAHs were highly significantly correlated with TOC, NHC, and BC (p<0.01), but not significantly correlated with AOC (p=0.29). Moreover, their slopes differed significantly (p<0.01) with an order: TOC (9.56) < NHC (14.34) < BC (249.7). Therefore, it was indicated that the NHC fractions and the BC fractions played a more important role to the distribution of the PAHs in the soils. In addition, the human health risk assessment suggested that the cancer risk of child for exposure to PAHs in the soils were much lower than the baseline value of acceptable risk. But the cancer risks of adult were close to or slightly higher than the baseline value of acceptable risk (10-6<ILCRs<10-5). The cumulative probability of cancer risks for both child through three exposure pathways were in the order: ingestion>dermal contact>inhalation, but for adult: dermal contact>ingestion>inhalation.
Dongjiang River Basin; soils; polycyclic aromatic hydrocarbons; distribution; human health risk
X131.3;X822.1
A
1674-5906(2014)04-0657-05
鄭太輝,冉勇,陳來國(guó). 東江流域農(nóng)村土壤中多環(huán)芳烴的分布特征及其健康風(fēng)險(xiǎn)評(píng)估[J]. 生態(tài)環(huán)境學(xué)報(bào), 2014, 23(4): 657-661.
ZHENG Taihui, RAN Yong, CHEN Laiguo. Polycyclic aromatic Hydrocarbons in the rural soils of Dongjiang River Basin: distribution and human health risks [J]. Ecology and Environmental Sciences, 2014, 23(4): 657-661.
國(guó)家自然科學(xué)基金-廣東省聯(lián)合基金項(xiàng)目(U1201235);面上項(xiàng)目(41073082)
鄭太輝(1985年生),男,博士研究生,主要研究方向?yàn)榄h(huán)境地球化學(xué)。E-mail: ztaihui@163.com
*通訊作者,E-mail: yran@gig.ac.cn
2013-11-12