亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Leibniz 2-cocycles of the Central Extension of Lie algebra W(0,1)*

        2014-03-09 07:13:14GAOShoulanYAOChenhui

        GAO Shoulan,YAO Chenhui

        (School of Science,Huzhou University,Huzhou 313000)

        0 Introduction

        In[1],Jean-Louis Loday firstly introduced the concept of Leibniz algebra in his study of the socalled Leibniz homology as a noncommutative analog of Lie algebra homology.A vector space L equipped with a C-bilinear map[-,-]:L×L→L is called a Leibniz algebra if the following Leibniz identity satisfies

        Obviously,Lie algebras are Leibniz algebras.A Leibniz algebra L is a Lie algebra if and only if[x,x]=0 for all x∈L.

        Jean-Louis Loday and Teimuraz Pirashvili established the concept of universal enveloping algebras of Leibniz algebras and interpreted the Leibniz(co)homology HL*(resp.HL*)as a Tor-functor(resp.Ext-functor)in[1].A bilinear C-valued formφon L is called a Leibniz 2-cocycle if

        Similar to the 2-cocycle on Lie algebras,a linear function f on L can induce a Leibniz 2-cocycleφf,that is,

        Such a Leibniz 2-cocycle is called trival.The one-dimensional Leibniz central extension corresponding to a trivial Leibniz 2-cocycle is also trivial.

        View a Lie algebra as a Leibniz algebra,it is a natural question to compare its Leibniz and Lie central extensions.For many well-known Lie algebras such as the Witt algebra,Kac-Moody algebras,and the Lie algebras of differential operators,this question has already been answered(see for[1,2,3,4]).In this spaper,we determine the second Leibniz cohomology group HL2(L,C)of L(see defini-tion 1 for detail)in the category of Leibniz algebras.

        Throughout the paper,we denote by Z the set of integers and all the vector spaces are assumed over the complex field C.

        1 The Leibniz Central Extensions of L

        Definition 1[4]The Lie algebra L is a vector space spanned by a basis{Lm,Im,C|m ∈Z}with the following brackets:for all m,n∈Z.

        L is one-dimensional central extension of W(0,1)Lie algebra(see[4]for detail).And it is not perfect because I0can not be generated by others elements in L.

        Letφbe a Leibniz 2-cocycle on L.Define a linear function f on L by

        [1]Loday J L,Pirashvili T.Universal enveloping algebras of Leibniz algebras and (co)-h(huán)omology[J].Math Ann,1993(296):138-158.

        [2]Gao S,Jiang C,Pei Y.Structure of the extended Schrodinger-Virasoro Lie alg ~ebra e sv[J].Algebra Colloq,2009,16(4):549-566.

        [3]Hu N,Pei Y,Liu D.A cohomological characterization of Leibniz central extensions of Lie algebras[J].Proc Amer Math Soc,2008(136):437-447.

        [4]Gao S,Jiang C,Pei Y.Low-dimensional cohomology groups of the Lie algebras W(a,b)[J].Communication in Algebra,2011,39(2):397-423.

        MSC 2000:17B40

        免费日本一区二区三区视频| 亚洲AV无码日韩综合欧亚| 亚洲国产精品色婷婷久久| 亚洲av少妇高潮喷水在线| 国产69精品久久久久777| 亚洲av无码资源在线观看| 国产视频不卡在线| 日韩一本之道一区中文字幕| 亚洲成av人在线观看网址| 欧美黑人粗暴多交高潮水最多| 国产视频在线一区二区三区四区 | 淫妇日韩中文字幕在线| 国产一区二区av在线免费观看| 浪货趴办公桌~h揉秘书电影 | 日产精品久久久久久久蜜臀 | 久久国产人妻一区二区| 国产专区国产av| 欧美日韩一区二区三区视频在线观看 | 国产午夜亚洲精品不卡福利| 国产亚洲精品高清视频| 99视频在线精品免费观看6| 男女一边摸一边做爽爽的免费阅读| 国产精品久久久久…| 三个黑人插一个女的视频| 综合五月激情二区视频| 久久人人爽人人爽人人av东京热| 538亚洲欧美国产日韩在线精品| 国产精品国产三级国产专区50| 日日拍夜夜嗷嗷叫国产| 亚洲不卡av不卡一区二区| 日本人妻av在线观看| av熟妇一区二区三区| av无码天堂一区二区三区| 揄拍成人国产精品视频肥熟女| 日韩亚洲在线观看视频| 国产精品a免费一区久久电影| 精品免费在线| 蜜桃av噜噜噜一区二区三区| 久久aaaa片一区二区| 亚洲一区二区三区国产精华液| 日韩精品中文字幕人妻系列|