高建波
(天津市藥品檢驗(yàn)所,天津300070)
線粒體在心肌保護(hù)中作用的研究進(jìn)展*
高建波
(天津市藥品檢驗(yàn)所,天津300070)
線粒體是細(xì)胞內(nèi)重要的細(xì)胞器,三羧酸循環(huán)、電子傳遞和氧化磷酸化均在線粒體中進(jìn)行,是細(xì)胞中心代謝途徑的核心。在生理情況下,其是細(xì)胞的能量加工器,維持細(xì)胞的正常能量代謝和存活;在缺血再灌注情況下線粒體功能發(fā)生紊亂,轉(zhuǎn)而促進(jìn)細(xì)胞的壞死和凋亡。對(duì)心肌損傷機(jī)制的研究表明,線粒體的功能損害是導(dǎo)致缺血再灌注心肌不可逆損傷的重要原因之一。所以,線粒體保護(hù)成為解決心肌損傷的重要途徑之一。大量研究表明,線粒體ATP敏感性鉀通道、線粒體通透性轉(zhuǎn)換孔、線粒體型硫氧還蛋白、線粒體鈣激活鉀通道、縫隙連接蛋白43在線粒體的心肌保護(hù)中發(fā)揮著重要作用。本文就近年來(lái)線粒體在心肌保護(hù)中的作用研究進(jìn)展做一綜述。
線粒體,心肌保護(hù),通道,蛋白質(zhì)
對(duì)于缺血心肌保護(hù)的研究一直是心血管領(lǐng)域的重點(diǎn),而線粒體作為細(xì)胞中的能量代謝中心,在心肌保護(hù)中的作用日益受到重視。對(duì)心肌的保護(hù)研究逐漸趨向于線粒體功能保護(hù),大量研究表明,線粒體保護(hù)在心肌保護(hù)中具有非常重要的意義。其中,線粒體ATP敏感性鉀通道(mitochondrial ATP-sensitive potassium channels,mitoKATP)、線粒體通透性轉(zhuǎn)換孔(mitochondrial permeability transition pore,MPTP)、線粒體型硫氧還蛋白(thioredoxin 2,Trx2)、線粒體鈣激活鉀通道(mitochondrial Ca2+-activated K+channels,mitoKCa)、線粒體縫隙連接蛋白43(connexin 43,Cx 43)在線粒體的心肌保護(hù)中發(fā)揮至關(guān)重要的作用。本文對(duì)其近年來(lái)的研究情況進(jìn)行了綜述。
mitoKATP是由內(nèi)向整流鉀通道(inwardly rectified potassium channel,Kir)和ATP結(jié)合組件(ATP-binding cassette,ABC)組成。前者形成離子通道,后者決定KATP功能。mitoKATP主要的生理功能:一是通過(guò)維持線粒體內(nèi)K+平衡狀態(tài)調(diào)節(jié)線粒體容積,進(jìn)而保護(hù)細(xì)胞;二是在線粒體氧化磷酸化過(guò)程中攝取K+可以部分彌補(bǔ)因質(zhì)子泵轉(zhuǎn)運(yùn)H+引起的電荷變化,從而維持一定的線粒體跨膜電位和pH梯度的穩(wěn)態(tài)[1,2]。mitoKATP的開放在心肌保護(hù)中起重要作用。多項(xiàng)研究結(jié)果表明,其特異開放劑二氮嗪預(yù)處理縮小了缺血再灌注(ischemia reperfusion,I/R)心肌的梗死面積,缺血預(yù)適應(yīng)(ischemic preconditioning,IPC)減少心肌細(xì)胞凋亡,減輕再灌注后心律失常及心肌梗死等作用都是通過(guò)開放mitoKATP才得以實(shí)現(xiàn),而用通道特異性阻斷劑5-HD抑制其開放則可以完全取消IPC的心肌保護(hù)作用[3,4]。
目前認(rèn)為,mitoKATP通道主要通過(guò)以下機(jī)制發(fā)揮心肌保護(hù)作用:①減輕I/R心肌的鈣超載。mitoKATP開放后從兩方面降低了線粒體內(nèi)的鈣超載,一是線粒體內(nèi)膜電位下降,而線粒體膜電位的降低有助于抑制Ca2+內(nèi)流,導(dǎo)致鈣攝入減少,從而有效防止線粒體內(nèi)鈣超載;二是mitoKATP開放后部分Ca2+從線粒體內(nèi)進(jìn)入胞漿,從而降低了線粒體內(nèi)Ca2+的濃度[5,6]。②增加了線粒體的基質(zhì)容積。mitoKATP的開放促進(jìn)了K+內(nèi)流,同時(shí)伴隨有其他陰、陽(yáng)離子的進(jìn)入,最后達(dá)到滲透壓和電位平衡,此過(guò)程伴有水分的進(jìn)入,其結(jié)果是線粒體基質(zhì)腫脹、容積增加,激活電子傳遞鏈,對(duì)抗了基質(zhì)減少及其所引起的呼吸抑制,促進(jìn)能量代謝,促進(jìn)線粒體呼吸和增加凈氧化,減少ATP的水解及提高了多種酶的活性。同時(shí),mitoKATP的開放,也導(dǎo)致線粒體部分脫耦聯(lián),使氧化磷酸化達(dá)到最佳效率,增加ATP合成,提高線粒體功能。在線粒體K+內(nèi)流的同時(shí),伴有陰離子的外流,以平衡K+的內(nèi)流,這種平衡使線粒體基質(zhì)容積達(dá)到最佳狀態(tài),在缺血、缺氧狀態(tài)下利于線粒體功能的保存[7,8]。③改變細(xì)胞內(nèi)活性氧(reactive oxidative specimen,ROS)的生成。線粒體是ROS的主要來(lái)源,電子在呼吸鏈漏出的多少取決于電子傳遞速度,速度越快,漏出越少,生成ROS越少。因此,線粒體膜電位的降低與加速呼吸和阻止ROS釋放有關(guān)。呼吸加強(qiáng)可顯著減少ROS,線粒體膜電位的很小變化(輕度脫耦聯(lián))可明顯改變ROS釋放。mitoKATP的開放促進(jìn)了ROS的生成,ROS通過(guò)激活蛋白激酶C產(chǎn)生序貫性信號(hào)傳導(dǎo),導(dǎo)致熱休克蛋白等保護(hù)性蛋白的產(chǎn)生,提示mitoKATP通道開放通過(guò)在預(yù)處理期線粒體內(nèi)適量生成ROS而啟動(dòng)心肌保護(hù)作用[9-12]。④抑制細(xì)胞凋亡。mitoKATP除了通過(guò)維持線粒體容積,減少ROS的生成抑制細(xì)胞凋亡外,還可以抑制caspase23及bax的活化,從而達(dá)到抗凋亡的目的[13,14]。
MPTP是橫跨線粒體內(nèi)外膜之間的非選擇性高導(dǎo)電性通道,由多種蛋白質(zhì)復(fù)合組成,通常MPTP在生理狀態(tài)下呈間斷性開放,且具有可逆性,這便于Ca2+從線粒體基質(zhì)中釋放,從而維持胞漿Ca2+的平衡。在缺血期MPTP少量開放,再灌注期初期,MPTP大量開放,允許相對(duì)分子質(zhì)量<1.5 KD的分子通過(guò),使膜間隙的正離子不斷進(jìn)入基質(zhì),導(dǎo)致線粒體內(nèi)膜兩側(cè)離子梯度消失,使線粒體膜電位逐漸下降直至消失,呼吸鏈與氧化磷酸化失耦聯(lián),ATP合成停止,僅依賴糖酵解產(chǎn)生的ATP很快耗竭,線粒體基質(zhì)Ca2+外流,穩(wěn)定的細(xì)胞代謝內(nèi)環(huán)境被破壞,還原型煙酰胺腺嘌呤二核苷酸磷酸(reduced form of nicotinamide-adenine dinucleotide phosphate,NADPH)減少,磷脂酶、核酸酶、蛋白酶等降解酶活性增強(qiáng),ROS生成增加,凋亡誘導(dǎo)因子(apoptosis inducing factor,AIF)釋放等,導(dǎo)致細(xì)胞凋亡;而且,線粒體膜內(nèi)相對(duì)高滲,MPTP開放后導(dǎo)致線粒體基質(zhì)腫脹,腫脹的線粒體基質(zhì)使內(nèi)膜膨脹,內(nèi)膜的皺褶被展開,并進(jìn)而使彈性較差的外膜發(fā)生破裂,細(xì)胞色素C及其他凋亡蛋白隨之釋放入胞漿,最終引起細(xì)胞凋亡和壞死[15,16]。
目前認(rèn)為ROS是心肌I/R損傷中導(dǎo)致MPTP大量開放的主要原因,I/R導(dǎo)致呼吸鏈復(fù)合物的活性下降,氧化磷酸化受阻,ROS生成大量增加,進(jìn)而使MPTP廣泛開放,導(dǎo)致線粒體功能紊亂。并且,ROS攻擊線粒體內(nèi)外膜蛋白,導(dǎo)致線粒體膜損傷,使線粒體對(duì)Ca2+的敏感性增加而引發(fā)MPTP開放[17,18]。
隨著對(duì)心肌I/R損傷的機(jī)制研究逐漸深入,人們發(fā)現(xiàn)MPTP大量開放是I/R后細(xì)胞壞死和凋亡的共同通路,幾乎任何減少再灌注損傷的過(guò)程都與降低MPTP的開放或者提高M(jìn)PTP的關(guān)閉有關(guān),抑制MPTP的過(guò)度開放被認(rèn)為是心肌保護(hù)中最有前途的靶位之一,其可能是線粒體心肌保護(hù)的終末效應(yīng)器。研究表明,MPTP的抑制劑可以有效防止心肌的I/R損傷,保護(hù)心功能,而IPC和缺血后適應(yīng)可通過(guò)減少M(fèi)PTP的開放,保持線粒體結(jié)構(gòu)完整,防止線粒體的腫脹,推遲心律失常的發(fā)生時(shí)間和持續(xù)時(shí)間,改善心功能,IPC的心肌保護(hù)作用可以被MPTP開放劑蒼術(shù)苷所抑制[19,20]。
線粒體型硫氧還蛋白即硫氧還蛋白2,特異性定位于線粒體,與其還原酶(thioredoxin,reductase2,TrxR2)和NADPH共同構(gòu)成硫氧還蛋白系統(tǒng)廣泛參與體內(nèi)細(xì)胞氧化應(yīng)激、核酸代謝、細(xì)胞生長(zhǎng)及凋亡,尤其在體內(nèi)細(xì)胞氧化還原反應(yīng)中發(fā)揮重要作用,是線粒體乃至整個(gè)細(xì)胞維持穩(wěn)態(tài)的關(guān)鍵因素[21,22]。
研究證實(shí)了Trx2過(guò)表達(dá)可以降低高脂血癥對(duì)心肌造成的氧化損害[23],并且發(fā)現(xiàn)糖尿病大鼠患病時(shí)間越長(zhǎng),Trx2和TrxR2在心肌中的含量越低,心肌的損傷也越嚴(yán)重,說(shuō)明兩者含量與心肌病變的嚴(yán)重程度呈明顯的負(fù)相關(guān)性,提示其在防治糖尿病造成的心肌氧化損傷中具有重要作用[24]。深入研究發(fā)現(xiàn),花莖甘藍(lán)因富含硫元素,以其長(zhǎng)期喂養(yǎng)大鼠可顯著增加心肌組織Trx2的含量,有效防止心肌I/R損傷[25]。Rohrbach[26]發(fā)現(xiàn),成年大鼠熱應(yīng)激后,心肌組織Trx2和TrxR2的表達(dá)明顯上調(diào),顯著減輕了熱應(yīng)激造成的心肌損傷,而老年大鼠熱應(yīng)激后Trx2和TrxR2未見(jiàn)明顯改變,心肌損傷嚴(yán)重,說(shuō)明Trx2和TrxR2在應(yīng)激反應(yīng)中同樣具有重要保護(hù)作用。
Trx2參與心肌保護(hù)的可能機(jī)制:①TrxR2及時(shí)還原氧化態(tài)的Trx2,在NADPH存在時(shí),還原態(tài)的Trx2作為過(guò)氧化物酶的電子供體,將H2O2還原成H2O,從而達(dá)到清除ROS的作用,進(jìn)而降低脂質(zhì)過(guò)氧化、DNA損傷以及蛋白質(zhì)的失活;②作為細(xì)胞內(nèi)蛋白二硫鍵還原酶,Trx2能還原多種蛋白質(zhì)(如激酶、磷酸酶、轉(zhuǎn)錄因子)的二硫鍵,從而使其恢復(fù)生理功能,防止心肌受損;③Trx2與線粒體呼吸鏈復(fù)合物一起調(diào)節(jié)線粒體呼吸鏈,保持線粒體膜電位,阻止了由于膜電位降低引發(fā)的細(xì)胞凋亡等一系列損傷[27,28];④Trx2能直接結(jié)合到細(xì)胞凋亡信號(hào)調(diào)控激酶(apoptosis signal regulating kinase 1,ASK 1)的N端,形成蛋白質(zhì)-蛋白質(zhì)復(fù)合物,從而抑制ASK1的活性以及ASK1依賴的凋亡;此外,Trx2也可以通過(guò)核因子-kappa B(nuclear factor kappa B,NF-KB)途徑,抑制神經(jīng)遞質(zhì)多巴胺對(duì)細(xì)胞氧化應(yīng)激損傷所介導(dǎo)的凋亡[29]。
Cx 43是由六聚體結(jié)構(gòu)組成的親水性通道,是構(gòu)成心室細(xì)胞縫隙連接通道的主要蛋白質(zhì),通道允許分子量小于1 KD的小分子物質(zhì)及次級(jí)信號(hào)的傳遞,除了結(jié)組織(指竇房結(jié)、房室結(jié)組織)和部分傳導(dǎo)系統(tǒng)外,幾乎遍及整個(gè)心臟,其正常表達(dá)與分布是心臟電活動(dòng)和舒縮的重要保證。
研究表明,心肌缺血后Cx 43的分布發(fā)生顯著的改變,以缺血中心區(qū)Cx 43重排最為嚴(yán)重。此時(shí)Cx 43快速脫磷酸化并且表達(dá)明顯降低,導(dǎo)致心室細(xì)胞間縫隙連接發(fā)生重塑,引起心肌細(xì)胞間傳導(dǎo)減慢和電傳導(dǎo)耦聯(lián)能力的下降,使心肌電沖動(dòng)通過(guò)這些區(qū)域時(shí)出現(xiàn)傳導(dǎo)速度的不均一性增高,促進(jìn)心律失常的發(fā)生。而IPC能通過(guò)激活PKC激酶維持Cx 43磷酸化的水平,維持整個(gè)心肌細(xì)胞Cx 43的表達(dá),從而減少I/R損傷心律失常的發(fā)生[30]。進(jìn)一步研究發(fā)現(xiàn),給予缺失Cx 43基因的雜合小鼠進(jìn)行I/R時(shí)不能誘導(dǎo)出IPC的保護(hù)效應(yīng)[31,32],以上表明,Cx 43在線粒體的心肌保護(hù)中具有重要作用。
mitoKCa位于線粒體內(nèi)膜,至少由形成孔道的A亞基和調(diào)節(jié)性B亞基組成,是電壓依賴和鈣敏感的鉀通道。其開放后可使K+內(nèi)流,降低膜電位,使膜去極化,抑制Ca2+超載,發(fā)揮心肌保護(hù)作用。研究發(fā)現(xiàn)mitoKCa和MPTP存在著密切聯(lián)系,即mitoKCa的開放可關(guān)閉MPTP[33],mitoKCa可能通過(guò)影響MPTP的開放與關(guān)閉而達(dá)到心肌保護(hù)的作用。研究者對(duì)大鼠離體心臟給予MPTP的開放劑能夠降低通道的激動(dòng)劑NS1619的心肌保護(hù)作用,而mitoKCa開放抑制劑卻不能改變MPTP的開放抑制劑環(huán)孢菌素對(duì)心肌的保護(hù),因此mitoKCa可能位于MPTP的上游。進(jìn)一步研究發(fā)現(xiàn)NS1619激發(fā)的鈣激活是被蛋白激酶A(protein kinase A,PKA)介導(dǎo),通過(guò)增強(qiáng)誘導(dǎo)的黃素蛋白氧化,使鈣激活鉀通道活性增加[34],從而取得心肌保護(hù)作用。
線粒體在心肌保護(hù)中的作用越來(lái)越受到研究者的關(guān)注,相信隨著研究的深入,線粒體保護(hù)一定會(huì)為新藥開發(fā)提供一條有效的途徑。
1Ng K E,Schwarzer S,Duchen M R,et al.The intracellular localization and function of the ATP-sensitive K+channel subunit Kir6.1[J].J Membr Biol,2010,234(2):137
2Wojtovich A P,Williams D M,Karcz M K,et al.A novel mitochondrial K(ATP)channel assay[J].Circ Res,2010,106(7):1190
3Das B,Sarkar C.Is preconditioning by oxytocin administration mediated by iNOS and/or mitochondrial K(ATP)channel activation in the in vivo anesthetized rabbit heart[J].Life Sci,2012,90(19-20):763
4Andersen A,Povlsen J A,Bφotker H E,et al.Ischemic preconditioning reduces right ventricular infarct size through opening of mitochondrial potassium channels[J].Cardiology,2012,123(3):177
5Jia D.The protective effect of mitochondrial ATP-sensitive K+channel opener,nicorandil,combined with Na+/Ca2+exchange blocker KB-R7943 on myocardial ischemia-reperfusion injury in rat[J].Cell Biochem Biophys,2011,60(3):219
6Sarre A,Gardier S,Maurer F,et al.Modulation of the c-Jun N-terminal kinase activity in the embryonic heart in response to anoxia-reoxygenation:involvement of the Ca2+and mitoKATPchannels[J].Mol Cell Biochem,2008,313(1-2):133
7Liu Q,Yao J Y,Qian C,et al.Effects of propofol on ischemia-induced ventricular arrhythmias and mitochondrial ATP-sensitive potassium channels[J].Acta Pharmacol Sin,2012,33(12):1495
8Pravdic D,Hirata N,Barber L,et al.Complex I and ATP synthase mediate membrane depolarization and matrix acidification by isoflurane in mitochondria[J].Eur J Pharmacol,2012,690(1-3):149
9Jin C,Wu J,Watanabe M,et al.Mitochondrial K+channels are involved in ischemic postconditioning in rat hearts[J].J Physiol Sci,2012,62(4):325
10Zhou L,Cortassa S,Wei A C,et al.Modeling cardiac action potential shortening driven by oxidative stress-induced mitochondrial oscillations in guinea pig cardiomyocytes[J].Biophys J,2009,97(7):1843
11Sepac A,Sedlic F,Si-Tayeb K,et al.Isoflurane preconditioning elicits competent endogenous mechanisms of protection from oxidative stress in cardiomyocytes derived from human embryonic stem cells[J].Anesthesiology,2010,113(4):906
12Daiber A.Redox signaling(cross-talk)from and to mitochondria involves mitochondrial pores and reactive oxygen species[J].Biochim Biophys Acta,2010,1797(6-7):897
13Quindry J C,Miller L,McGinnis G,et al.Ischemia reperfusion injury,KATP channels,and exercise-induced cardioprotection against apoptosis[J].J Appl Physiol,2012,113(3):498
14王華軍,江慧琳,陳曉輝,等.促紅細(xì)胞生成素對(duì)缺氧/復(fù)氧乳鼠心肌細(xì)胞的抗凋亡作用及機(jī)制研究[J].中國(guó)危重病急救醫(yī)學(xué),2010,22 (5):302
15Gross G J,Hsu A,Pfeiffer A W,et al.Roles of endothelial nitric oxide synthase(eNOS)andmitochondrialpermeabilitytransitionpore (MPTP)in epoxyeicosatrienoic acid(EET)-induced cardioprotection against infarction in intact rat hearts[J].J Mol Cell Cardiol,2013,59C:20
16Stumpner J,Lange M,Beck A,et al.Desflurane-induced post-conditioning against myocardial infarction is mediated by calcium-activated potassium channels:role of the mitochondrial permeability transition pore[J].Br J Anaesth,2012,108(4):594
17Gharib A,De Paulis D,Li B,et al.Opposite and tissue-specific effects of coenzyme Q2 on mPTP opening and ROS production between heart and liver mitochondria:role of complex I[J].J Mol Cell Cardiol,2012,52(5):1091
18Saotome M,Katoh H,Yaguchi Y,et al.Transient opening of mitochondrial permeability transition pore by reactive oxygen species protects myocardium from ischemia-reperfusion injury[J].Am J Physiol Heart Circ Physiol,2009,296(4):H1125
19Sánchez G,F(xiàn)ernández C,Montecinos L,et al.Preconditioning tachycardia decreases the activity of the mitochondrial permeability transition pore in the dog heart[J].Biochem Biophys Res Commun,2011,410 (4):916
20Hausenloy D J,Ong S B,Yellon D M.The mitochondrial permeability transition pore as a target for preconditioning and postconditioning[J].Basic Res Cardiol,2009,104(2):189
21Watanabe R,Nakamura H,Masutani H.Anti-oxidative,anti-cancer and-inflammatory actions by thioredoxin 1 and thioredoxin-binding protein-2[J].Pharmacol Ther,2010,127(3):261
22Nagahara N.Intermolecular disulfide bond to modulate protein function as a redox-sensing switch[J].Amino Acids,2011,41(1):59
23McCommis K S,McGee A M,Laughlin M H,et al.Hypercholesterolemia increases mitochondrial oxidative stress and enhances the MPT response in the porcine myocardium:beneficial effects of chronic exercise[J].Am J Physiol Regul Integr Comp Physiol,2011,301(5):R1250
24趙曉琴,趙俊杰,李曉宇,等.2型糖尿病大鼠心肌損傷時(shí)心肌組織中硫氧還蛋白系統(tǒng)的變化[J].生理學(xué)報(bào),2010,62(3):261
25Mukherjee S,Lekli I,Ray D,et al.Comparison of the protective effects of steamed and cooked broccolis on ischaemia-reperfusion-induced cardiac injury[J].Br J Nutr,2010,103(6):815
26Rohrbach S,Gruenler S,Teschner M,et al.The thioredoxin system in aging muscle:key role of mitochondrial thioredoxin reductase in the protective effects of caloric restriction?[J].Am J Physiol Regul Integr Comp Physiol,2006,291(4):R927
27Zhang H,Limphong P,Pieper J,et al.Glutathione-dependent reductive stress triggers mitochondrial oxidation and cytotoxicity[J].FASEB J,2012,26(4):1442
28Aon M A,Stanley B A,Sivakumaran V,et al.Glutathione/thioredoxin systems modulate mitochondrial H2O2emission:an experimental-computational study[J].J Gen Physiol,2012,139(6):479
29Saxena G,Chen J,Shalev A.Intracellular shuttling and mitochondrial function of thioredoxin-interacting protein[J].J Biol Chem,2010,285(6):3997
30Morel S,F(xiàn)rias MA,Rosker C,et al.The natural cardioprotective particle HDL modulates connexin43 gap junction channels[J].Cardiovasc Res,2012,93(1):41
31Jeyaraman M M,Srisakuldee W,Nickel B E,et al.Connexin43 phosphorylation and cytoprotection in the heart[J].Biochim Biophys Acta,2012,1818(8):2009
32Zhao J,Su Y,Zhang Y,et al.Activation of cardiac muscarinic M3 receptors induces delayed cardioprotection by preserving phosphorylated connexin43 and up-regulating cyclooxygenase-2 expression[J].Br J Pharmacol,2010,159(6):1217
33Stumpner J,Lange M,Beck A,et al.Desflurane-induced post-conditioning against myocardial infarction is mediated by calcium-activated potassium channels:role of the mitochondrial permeability transition pore[J].Br J Anaesth,2012,108(4):594
34Jin C,Wu J,Watanabe M,et al.Mitochondrial K+channels are involved in ischemic postconditioning in rat hearts[J].J Physiol Sci,2012,62(4):325
Research progress on the role of mitochondria in myocardial protection
Gao Jianbo
(Tianjin Institute for Drug Control,Tianjin 300070)
Mitochondria is important intracellular organelle,Krebs cycle,electron transport and oxidative phosphorylation are carried out in mitochondria,which is the center of metabolic pathways.In physiological conditions,mitochondria is the cell's energy processing device,maintaining the energy metabolism and survival of normal cell;In the case of ischemia reperfusion,mitochondrial functions are disorder and promote cell necrosis and apoptosis.Studies on the mechanism of myocardial injury suggest that mitochondrial dysfunction is one of the important reasons leading to irreversible myocardial ischemia reperfusion injury.Therefore,the protection of mitochondria has become an important way to solve myocardial injury.Numerous studies show that mitochondrial ATP-sensitive potassium channels,mitochondrial permeability transition pore,mitochondrial thioredoxin,mitochondrial calcium-activated potassium channels and connexin 43 play an important role in mitochondrial cardioprotection.The review focuses on the research progress of the role of mitochondria in myocardial protection.
mitochondria,myocardial protection,channels,protein
R972
A
1006-5687(2014)01-00-
2013-10-09