李雅楠,邢邯英,郝玉賓
乳腺癌是女性最常見的惡性腫瘤之一。2012年,乳腺癌占美國女性新確診腫瘤的首位,占女性腫瘤相關(guān)病死率的第二位[1]。乳腺癌的發(fā)生發(fā)展是涉及多因素的復(fù)雜過程,2005年,Iorio等[2]首次提出人乳腺癌組織中存在微小RNA(microRNAs,miRNAs)的表達改變。隨著對miRNAs研究的深入,人們發(fā)現(xiàn)miRNAs廣泛而穩(wěn)定地存在于血清、血漿、組織液及各類體液等細胞外液中,即循環(huán)miRNAs[3]。在疾病狀態(tài)如腫瘤、免疫性疾病、循環(huán)系統(tǒng)疾病等情況下,miRNAs的表達譜發(fā)生異常改變?,F(xiàn)就循環(huán)miRNAs與乳腺癌的相關(guān)研究進展做一綜述。
1.1 簡介 miRNAs是一類廣泛存在于動植物體內(nèi)的長度為18~25個核苷酸的內(nèi)源性非編碼單鏈微小RNA,具有高度的遺傳穩(wěn)定性。miRNAs主要通過與靶mRNA 3′非翻譯區(qū)(3′-UTR)特異性結(jié)合,引起靶mRNA降解或翻譯抑制,發(fā)揮對基因表達的轉(zhuǎn)錄后調(diào)節(jié)作用。1993年,Lee等[4]在秀麗隱桿線蟲體內(nèi)發(fā)現(xiàn)了miRNAs家族的第一個成員lin-4,其能在翻譯水平抑制核蛋白表達,從而調(diào)控幼蟲的發(fā)育進程。隨后,科學(xué)家們通過隨機克隆和高通量測序、微陣列芯片、生物信息學(xué)預(yù)測等方法在動植物中發(fā)現(xiàn)了多種miRNAs。據(jù)miRBase數(shù)據(jù)庫(http://www.mirbase.org/)統(tǒng)計,至2012年8月已發(fā)現(xiàn)miRNAs 21 264個。據(jù)預(yù)測,50%以上的mRNA是miRNAs的靶點,并且每個miRNA可調(diào)控高達數(shù)百個靶基因[5]。2008年,Lawrie等[6]首次報道在B細胞淋巴瘤患者血清中發(fā)現(xiàn)miR-155、miR-210及miR-21表達水平升高。之后大量實驗證實miRNAs可以廣泛而穩(wěn)定地存在于細胞外液,如血清、血漿、組織液及唾液、鼻腔分泌物、尿液等各種體液[7-9],統(tǒng)稱為循環(huán)miRNAs。循環(huán)miRNAs對核糖核酸酶(RNase)、極端pH、溫度不敏感,不受反復(fù)凍融、長期保存、酸堿處理等影響[10]。良好的穩(wěn)定性及腫瘤相關(guān)性使得循環(huán)miRNAs成為腫瘤等疾病的非創(chuàng)傷性新型生物標(biāo)志物,是腫瘤診斷與防治的研究熱點。
1.2 來源 研究發(fā)現(xiàn),循環(huán)miRNAs或存在于外體(exosomes)、外來體樣囊泡(exosome-like vesicles)、微粒體(microparticles)和凋亡小體(apoptotic bodies)等微囊結(jié)構(gòu)中[11],或包裹于高密度脂蛋白和RNA結(jié)合蛋白(如Ago2、核仁磷酸蛋白1)之中[12-13]。Turchinovich等[14]發(fā)現(xiàn),血漿或細胞培養(yǎng)基中的miRNAs能完全通過0.22 μm的濾器,在110 000×g超速離心后miRNAs仍存在于上清液中,這提示循環(huán)miRNAs并非來自于微囊。免疫印跡分析顯示,超濾液中的細胞外miRNAs與RNA沉默復(fù)合體中的96 kD的Ago2相結(jié)合,血漿與培養(yǎng)基中的miRNAs在無清潔劑條件下能與抗Ago2抗體發(fā)生免疫共沉淀反應(yīng)。這首次證明細胞外miRNAs并非來自外體或微泡,而是與Ago2相關(guān)。故Turchinovich等推測循環(huán)miRNAs大部分來源于死細胞,由于Ago2和Ago2-miRNA復(fù)合體的高度穩(wěn)定性,使得miRNAs能穩(wěn)定存在于細胞外液,但并不排除有些循環(huán)miRNAs與外體相關(guān)的可能性。
目前,人們對循環(huán)miRNAs的來源和功能還不十分明確,但大量研究證明在某些病理過程中其表達譜發(fā)生改變(見表1)。自2005年Iorio等[2]首次發(fā)現(xiàn)乳腺癌組織中存在miRNAs改變,人們發(fā)現(xiàn)多種miRNAs以癌基因或抑癌基因的角色參與了乳腺癌的發(fā)生發(fā)展過程,大量實驗證實乳腺癌組織與正常組織相比,miRNAs表達譜不同(見表2)。有人提出是循環(huán)miRNAs表達譜而非腫瘤組織中的miRNAs表達譜反映乳腺癌的存在情況[55]。循環(huán)miRNAs涉及乳腺癌診斷、病理分級、藥物抵抗、轉(zhuǎn)移等多方面(見表3)。
2.1 循環(huán)miRNAs與乳腺癌的早期診斷 Cuk等[59]利用TaqMan低密度芯片檢測10例早期乳腺癌患者與10例健康人血漿miRNAs表達譜,篩選出7個miRNAs;并利用實時熒光定量聚合酶鏈?zhǔn)椒磻?yīng)(RT-qPCR)在127例乳腺癌患者與80例健康人血漿中進行驗證,發(fā)現(xiàn)前者miR-148b、miR-409-3p、miR-801表達上調(diào),可能有助于乳腺癌的早期診斷。Schrauder等[62]發(fā)現(xiàn)早期乳腺癌患者全血中miR-202表達上調(diào),miR-718表達下調(diào)。Si等[63]對比乳腺癌組織、原發(fā)性乳腺癌患者血清及健康對照者血清,發(fā)現(xiàn)乳腺癌患者血清miR-92a表達下調(diào),且與腫瘤大小、淋巴結(jié)轉(zhuǎn)移相關(guān),提示血清miR-92b對乳腺癌具有潛在的預(yù)測價值。
有研究發(fā)現(xiàn)血漿miR-145和miR-451聯(lián)合檢測乳腺癌的陽性預(yù)測值為88%,陰性預(yù)測值為92%;在乳腺癌早期血漿中已存在miR-145和miR-451改變,在乳腺導(dǎo)管原位癌中其陽性預(yù)測值高達96%[64]。乳腺癌患者血清miR-181a水平下調(diào),受試者工作特征(ROC)曲線分析顯示,在早期乳腺癌診斷中,miR-181a的敏感度為55.28%,而糖類抗原15-3(CA15-3)和癌胚抗原(CEA)的敏感度分別為8.13%和7.32%。相比之下,miR-181a用于乳腺癌早期診斷有更高的敏感度[65]。
2.2 循環(huán)miRNAs與乳腺癌的組織病理分級 Wang等[66]發(fā)現(xiàn)乳腺癌患者癌組織與血清中miR-21、miR-106a、miR-126、miR-155、miR-199a、miR-335的表達變化趨勢一致,血清miR-155在良性疾病乳腺組織表達水平升高1.7倍,Ⅱ級乳腺癌組織升高2.7倍,而Ⅲ級乳腺癌組織中升高4.0倍。血清miR-21、miR-106a、miR-155水平隨腫瘤惡性程度的增加也相應(yīng)升高,且在雌激素、孕激素陰性的患者中其表達也增高,證明循環(huán)miRNAs與乳腺癌組織病理分級及激素受體表達相關(guān),可能成為乳腺癌診斷、組織病理分級和判斷預(yù)后的分子標(biāo)志物[66]。
2.3 循環(huán)miRNAs與乳腺癌的藥物抵抗 癌癥的化療藥物抵抗常導(dǎo)致癌癥的復(fù)發(fā)和轉(zhuǎn)移,因此迫切希望找到能夠預(yù)測輔助化療治療效果的分子標(biāo)志物來指導(dǎo)臨床工作。在浸潤性導(dǎo)管癌患者血清中,miR-125b表達水平上調(diào),MCF-7、MDA-MB-231等乳腺癌細胞系中,其過表達能顯著抑制5-氟尿嘧啶誘導(dǎo)的細胞毒作用,敲低之后細胞毒作用增強。這提示循環(huán)miR-125b與乳腺癌化療抵抗相關(guān)[67]。
Schwarzenbach等[60]發(fā)現(xiàn)乳腺癌患者血清miR-214表達上調(diào),術(shù)后則顯著下降,且與局部淋巴結(jié)轉(zhuǎn)移相關(guān)。Razis等[68]發(fā)現(xiàn)磷酸酶基因(PTEN)的缺失與曲妥珠單抗治療人表皮生長因子受體2(HER2)陽性乳腺癌患者的低生存率有關(guān),而PTEN是miR-214的重要靶點,是否miR-214的上調(diào)導(dǎo)致靶基因PTEN降低或缺失,從而間接導(dǎo)致曲妥珠單抗耐藥,尚需實驗證明。
2.4 循環(huán)miRNAs與乳腺癌轉(zhuǎn)移 Chen等[69]發(fā)現(xiàn)淋巴結(jié)轉(zhuǎn)移的乳腺癌患者血漿中miR-10b和miR-373水平升高,兩者聯(lián)合檢測診斷乳腺癌的敏感度為72.0%,特異度達94.3%,是檢測乳腺癌淋巴結(jié)轉(zhuǎn)移情況的潛在標(biāo)志物。Zhao等[70]檢測到血清miR-10b過表達與原發(fā)乳腺癌的骨轉(zhuǎn)移有關(guān),敏感度為64.8%,特異度為69.5%,且其升高水平與臨床階段的惡性程度相一致,提示其可能為新的治療靶點。
Sun等[58]發(fā)現(xiàn)乳腺癌患者血清miR-155的表達水平是正常人的2.94倍,且與乳腺組織中miR-155的表達變化一致;術(shù)后血清miR-155表達水平明顯下降,這提示其可能來源于腫瘤組織。有趣的是,化療之后其水平也降至基礎(chǔ)水平。研究還發(fā)現(xiàn)乳腺癌患者發(fā)生肺轉(zhuǎn)移時,miR-155水平顯著升高,當(dāng)轉(zhuǎn)移灶控制以后,miR-155水平又回到術(shù)前水平,這提示miR-155可能是腫瘤細胞的生長刺激因子。
Wu等[71]研究了26例乳腺癌分級在Ⅱ~Ⅲ級的患者血清,其中包括8例2年后出現(xiàn)轉(zhuǎn)移復(fù)發(fā)的病例,發(fā)現(xiàn)miR-122在復(fù)發(fā)病例中的表達顯著升高,其預(yù)測乳腺癌轉(zhuǎn)移的敏感度為88%,特異度為78%。
3.1 檢測方法 循環(huán)miRNAs的檢測方法主要有高通量測序法、miRNAs微陣列芯片和RT-qPCR法。高通量測序法能在序列未知情況下研究miRNAs表達譜變化,可發(fā)現(xiàn)和鑒定新的miRNAs分子,但檢測費用昂貴,不適合臨床檢測。miRNAs微陣列芯片能進行miRNAs表達譜分析和多種miRNAs同時檢測,鑒于miRNAs微陣列芯片價格較貴,且結(jié)果不穩(wěn)定,只能用于miRNAs初篩。RT-qPCR是最常用的檢測手段,能對miRNAs定性或定量研究,可作為miRNAs微陣列芯片檢測結(jié)果的確證實驗,有較高的敏感度和特異度,但無法發(fā)現(xiàn)新的miRNAs分子,且研究內(nèi)容不如miRNAs微陣列芯片技術(shù)全面[3]。
近幾年,很多新型循環(huán)miRNAs檢測技術(shù)出現(xiàn)。Broyles等[72]設(shè)計用熒光基團/淬滅基團標(biāo)記的寡核苷酸探針同時檢測血清多種miRNAs。目的基因不存在時,熒光基團與淬滅基團互補結(jié)合,導(dǎo)致以熒光共振能量轉(zhuǎn)移為基礎(chǔ)的熒光信號的淬滅;當(dāng)存在目的基因時,其與淬滅探針雜交,隨著淬滅探針被目的基因遮蔽超過福斯特半徑,熒光強度逐漸增強。此方法的優(yōu)點在于可直接檢測而無需進行血清RNA提取,可用于定量分析,檢測限低,能檢測液相DNA或RNA靶基因。非標(biāo)記電化學(xué)基因傳感器技術(shù)可直接檢測miRNAs,無需進行聚合酶鏈?zhǔn)椒磻?yīng)(PCR)和標(biāo)記反應(yīng),可用于血清等生物樣品miRNAs常規(guī)檢測[73]?;讦寥苎氐募{米孔傳感器,利用可編程序的寡核苷酸探針,產(chǎn)生靶點特異性信號,可定量亞皮克水平的腫瘤相關(guān)miRNAs,可辨別miRNAs家族成員之間單核苷酸差異,無需標(biāo)記和擴增[74]。
表1 疾病與循環(huán)miRNAs表達譜變化
注:PBMCs=外周血單個核細胞,CA19-9=糖類抗原19-9,ALT=丙氨酸氨基轉(zhuǎn)移酶
表2 乳腺癌組織miRNAs表達譜的改變及作用
注:NRF2=核因子紅系2相關(guān)因子,F(xiàn)FPE=甲醛固定石蠟包埋,HOXA10=同源盒基因A10,MIM=轉(zhuǎn)移消失蛋白,RhoA=大鼠肉瘤同系物家族成員A,TGF-β=轉(zhuǎn)化生長因子β,VHL=希佩爾林道抑癌基因,KLF4=Kruppel樣因子4,PTGS2=前列腺素合酶2,PKCε=蛋白激酶Cε,BCL2=B細胞淋巴瘤/白血病-2,NF-κB=核因子κB,ERK=胞外信號調(diào)節(jié)激酶,F(xiàn)AK=局部黏著斑激酶
表3 循環(huán)miRNAs在乳腺癌診斷、病理分級、藥物抵抗、轉(zhuǎn)移等中的作用
注:RT-qPCR=實時熒光定量聚合酶鏈?zhǔn)椒磻?yīng),TLDA=TaqMan低密度芯片,CEA=癌胚抗原,CA15-3=糖類抗原15-3,microarray=微陣列芯片
3.2 循環(huán)miRNAs檢測面臨的問題 目前,找到像U6一樣恒定表達的內(nèi)源性miRNAs作為內(nèi)參,仍是臨床檢測循環(huán)miRNAs標(biāo)志物和實驗室之間進行結(jié)果對比的主要障礙。Hu等[75]采用Solexa測序和TaqMan低密度芯片兩種技術(shù)在10例患者血清中系統(tǒng)篩查miRNAs,并用RT-qPCR在50例血清中進行驗證,通過兩級病例對照分析篩選出2個候選miRNAs,即miR-191和miR-484,敏感度和特異度均為91.9%。還可以通過以下兩種方法來減少實驗變異:使用相同體積的血清;使用人工合成的非內(nèi)源性miRNAs,如在提取RNA開始即加入秀麗隱桿線蟲的miRNAs。
盡管循環(huán)miRNAs能用于預(yù)測乳腺癌轉(zhuǎn)移,但其檢測并未考慮到以下兩點:第一,并不是腫瘤組織中的所有細胞都具有轉(zhuǎn)移能力,具有轉(zhuǎn)移能力的腫瘤細胞在遺傳組成上也可能不同;第二,在發(fā)生轉(zhuǎn)移時,殘留的或復(fù)發(fā)的腫瘤細胞的遺傳特征與原發(fā)腫瘤可能不同,因為腫瘤出現(xiàn)轉(zhuǎn)移灶可能發(fā)生在很多年后,且已接受過多種抗腫瘤療法。這些因素都可能導(dǎo)致原發(fā)腫瘤與轉(zhuǎn)移灶之間的基因和表觀遺傳組成的差異[76]。
傳統(tǒng)的腫瘤標(biāo)志物,如CEA、CA15-3對乳腺癌的預(yù)測有診斷價值,但血液蛋白質(zhì)組成復(fù)雜、水平低、穩(wěn)定性相對差、敏感度低等缺點,在檢測早期癌癥方面意義不大[77]。循環(huán)miRNAs具有高度保守性、高度穩(wěn)定性、疾病特異性、無創(chuàng)或微創(chuàng)、檢測敏感度高等特點,彌補了蛋白質(zhì)標(biāo)志物的不足,有替代傳統(tǒng)腫瘤標(biāo)志物成為新型生物標(biāo)志物的潛能。目前,循環(huán)miRNAs研究結(jié)果有一定的局限性:第一,研究樣本量小,不能兼顧到所有乳腺癌類型,得不出確切的結(jié)果;第二,研究發(fā)現(xiàn)有些循環(huán)miRNAs在手術(shù)前后并未明顯變化,可能是由于取樣時間與手術(shù)的時間間隔較短;第三,大部分研究為橫向觀察,缺乏對疾病復(fù)發(fā)、無病生存期等預(yù)后效果的長期隨訪,缺乏對這期間循環(huán)miRNAs表達變化的研究。因此,對大規(guī)模不同類型的乳腺癌樣本和術(shù)后不同時間點的樣本中循環(huán)miRNAs的觀測來證實前人得出的結(jié)果,是今后研究的重點。
1 Singer A,Tresley J,Velazquez-Vega J,et al.Unusual aggressive breast cancer:metastatic malignant phyllodes tumor[J].J Radiol Case Rep,2013,7(3):24-37.
2 Iorio MV,F(xiàn)erracin M,Liu CG,et al.MicroRNA gene expression deregulation in human breast cancer[J].Cancer Res,2005,65(16):7065-7070.
3 Reid G,Kirschner MB,van Zandwijk N.Circulating microRNAs:association with disease and potential use as biomarkers[J].Crit Rev Oncol Hematol,2011,80(2):193-208.
4 Lee RC,F(xiàn)einbaum RL,Ambros V.The C.elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J].Cell,1993,75(5):843-854.
5 Gurtan AM,Sharp PA.The role of miRNAs in regulating gene expression networks[J].J Mol Biol,2013,425(19):3582-3600.
6 Lawrie CH,Gal S,Dunlop HM,et al.Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma[J].Br J Haematol,2008,141(5):672-675.
7 L?sser C,O′Neil SE,Ekerljung L,et al.RNA-containing exosomes in human nasal secretions[J].Am J Rhinol Allergy,2011,25(2):89-93.
8 Weber JA,Baxter DH,Zhang S,et al.The microRNA spectrum in 12 body fluids[J].Clin Chem,2010,56(11):1733-1741.
9 Wang G,Kwan BC,Lai FM.et al.Expression of microRNAs in the urinary sediment of patients with IgA nephropathy[J].Dis Markers,2010,28(2):79-86.
10 Mitchell PS,Parkin RK,Kroh EM,et al.Circulating microRNAs as stable blood-based markers for cancer detection[J].Proc Natl Acad Sci U S A,2008,105(30):10513-10518.
11 van der Pol E,Boing AN,Harrison P,et al.Classification,functions,and clinical relevance of extracellular vesicles[J].Pharmacol Rev,2012,64(3):676-705.
12 Arroyo JD,Chevillet JR,Kroh EM.et al.Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma[J].Proc Natl Acad Sci U S A,2011,108(12):5003-5008.
13 Vickers KC,Palmisano BT,Shoucri BM,et al.MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins[J].Nat Cell Biol,2011,13(4):423-433.
14 Turchinovich A,Weiz L,Langheinz A,et al.Characterization of extracellular circulating microRNA[J].Nucleic Acids Res,2011,39(16):7223-7233.
15 Glowacki F,Savary G,Gnemmi V,et al.Increased circulating miR-21 levels are associated with kidney fibrosis[J].PLoS One,2013,8(2):e58014.
16 Zhao A,Li G,Peoc′h M,et al.Serum miR-210 as a novel biomarker for molecular diagnosis of clear cell renal cell carcinoma[J].Exp Mol Pathol,2013,94(1):115-120.
17 Luo Y,Wang C,Chen X,et al.Increased serum and urinary microRNAs in children with idiopathic nephrotic syndrome[J].Clin Chem,2013,59(4):658-666.
18 Rotkrua P,Shimada S,Mogushi K,et al.Circulating microRNAs as biomarkers for early detection of diffuse-type gastric cancer using a mouse model[J].Br J Cancer,2013,108(4):932-940.
19 Wu J,Yang T,Li X,et al.Alteration of serum miR-206 and miR-133b is associated with lung carcinogenesis induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone[J].Toxicol Appl Pharmacol,2013,267(3):238-246.
20 Kaduthanam S,Gade S,Meister M,et al.Serum miR-142-3p is associated with early relapse in operable lung adenocarcinoma patients[J].Lung Cancer,2013,80(2):223-227.
21 Fan KL,Zhang HF,Shen J,et al.Circulating microRNAs levels in Chinese heart failure patients caused by dilated cardiomyopathy[J].Indian Heart J,2013,65(1):12-16.
22 Dickinson BA,Semus HM,Montgomery RL,et al.Plasma microRNAs serve as biomarkers of therapeutic efficacy and disease progression in hypertension-induced heart failure[J].Eur J Heart Fail,2013,15(6):650-659.
23 Gidl?f O,Smith JG,Miyazu K,et al.Circulating cardio-enriched microRNAs are associated with long-term prognosis following myocardial infarction[J].BMC Cardiovasc Disord,2013,13:12.
24 Li YQ,Zhang MF,Wen HY.et al.Comparing the diagnostic values of circulating microRNAs and cardiac troponin T in patients with acute myocardial infarction[J].Clinics(Sao Paulo),2013,68(1):75-80.
25 Kawaguchi T,Komatsu S,Ichikawa D,et al.Clinical impact of circulating miR-221 in plasma of patients with pancreatic cancer[J].Br J Cancer,2013,108(2):361-369.
26 Wang WS,Liu LX,Li GP,et al.Combined serum CA19-9 and miR-27a-3p in peripheral blood mononuclear cells to diagnose pancreatic cancer[J].Cancer Prev Res(Phila),2013,6(4):331-338.
27 van der Meer AJ,F(xiàn)arid WR,Sonneveld MJ,et al.Sensitive detection of hepatocellular injury in chronic hepatitis C patients with circulating hepatocyte-derived microRNA-122[J].J Viral Hepat,2013,20(3):158-166.
28 Zhang Q,Kandic I,F(xiàn)aughnan ME,et al.Elevated circulating microRNA-210 levels in patients with hereditary hemorrhagic telangiectasia and pulmonary arteriovenous malformations:a potential new biomarker[J].Biomarkers,2013,18(1):23-29.
29 Ragusa M,Caltabiano R,Russo A,et al.MicroRNAs in vitreus humor from patients with ocular diseases[J].Mol Vis,2013,19:430-440.
30 Kan CW,Hahn MA,Gard GB,et al.Elevated levels of circulating microRNA-200 family members correlate with serous epithelial ovarian cancer[J].BMC Cancer,2012,12:627.
31 Carlsen AL,Schetter AJ,Nielsen CT,et al.Circulating microRNA expression profiles associated with systemic lupus erythematosus[J].Arthritis Rheum,2013,65(5):1324-1334.
32 Geekiyanage H,Jicha GA,Nelson PT,et al.lood serum miRNA:non-invasive biomarkers for Alzheimer′s disease[J].Exp Neurol,2012,235(2):491-496.
33 Roderburg C,Luedde M,Vargas Cardenas D,et al.Circulating microRNA-150 serum levels predict survival in patients with critical illness and sepsis[J].PLoS One,2013,8(1):e54612.
34 Jia SZ,Yang Y,Lang J,et al.Plasma miR-17-5p,miR-20a and miR-22 are down-regulated in women with endometriosis[J].Hum Reprod,2013,28(2):322-330.
35 Zhang WH,Gui JH,Wang CZ,et al.The identification of miR-375 as a potential biomarker in distal gastric adenocarcinoma[J].Oncol Res,2012,20(4):139-147.
36 Rhodes CJ,Wharton J,Boon RA,et al.Reduced microRNA-150 is associated with poor survival in pulmonary arterial hypertension[J].Am J Respir Crit Care Med,2013,187(3):294-302.
37 Han HS,Yun J,Lim SN,et al.Downregulation of cell-free miR-198 as a diagnostic biomarker for lung adenocarcinoma-associated malignant pleural effusion[J].Int J Cancer,2013,133(3):645-652.
38 de Boer HC,van Solingen C,Prins J,et al.Aspirin treatment hampers the use of plasma microRNA-126 as a biomarker for the progression of vascular disease[J].Eur Heart J,2013,[Epub ahead of print].
39 Zhi F,Cao X,Xie X,et al.Identification of circulating microRNAs as potential biomarkers for detecting acute myeloid leukemia[J].PLoS One,2013,8(2):e56718.
40 Fayyad-Kazan H,Bitar N,Najar M.et al.Circulating miR-150 and miR-342 in plasma are novel potential biomarkers for acute myeloid leukemia[J].J Transl Med,2013,11:31.
41 Nguyen HC,Xie W,Yang M,et al.Expression differences of circulating microRNAs in metastatic castration resistant prostate cancer and low-risk,localized prostate cancer[J].Prostate,2013,73(4):346-354.
42 Singh B,Ronghe AM,Chatterjee A,et al.MicroRNA-93 regulates NRF2 expression and is associated with breast carcinogenesis[J].Carcinogenesis,2013,34(5):1165-1172.
43 Ozgun A,Karagoz B,Bilgi O,et al.MicroRNA-21 as an indicator of aggressive phenotype in breast cancer[J].Onkologie,2013,36(3):115-118.
44 Goldberger N,Walker RC,Kim CH,et al.Inherited variation in miR-290 expression suppresses breast cancer progression by targeting the metastasis susceptibility gene Arid4b[J].Cancer Res,2013,73(8):2671-2681.
45 Le Quesne J.UTRly malignant:mRNA stability and the invasive phenotype in breast cancer[J].J Pathol,2013,230(2):129-131.
46 Chen Y,Zhang J,Wang H.et al.miRNA-135a promotes breast cancer cell migration and invasion by targeting HOXA10[J].BMC Cancer,2012,12:111.
47 Lei R,Tang J,Zhuang X,et al.Suppression of MIM by microRNA-182 activates RhoA and promotes breast cancer metastasis[J].Oncogene,2013,[Epub ahead of print].
48 Plummer PN,F(xiàn)reeman R,Taft RJ,et al.MicroRNAs regulate tumor angiogenesis modulated by endothelial progenitor cells[J].Cancer Res,2013,73(1):341-352.
49 Mulrane L,Madden SF,Brennan DJ,et al.miR-187 is an independent prognostic factor in breast cancer and confers increased invasive potential in vitro[J].Clin Cancer Res,2012,18(24):6702-6713.
50 Kong W,He L,Richards EJ,et al.Upregulation of miRNA-155 promotes tumour angiogenesis by targeting VHL and is associated with poor prognosis and triple-negative breast cancer[J].Oncogene,2013,[Epub ahead of print].
51 Okuda H,Xing F,Pandey PR,et al.miR-7 suppresses brain metastasis of breast cancer stem-like cells by modulating KLF4[J].Cancer Res,2013,73(4):1434-1444.
52 Li J,Kong X,Zhang J,et al.Correction:miRNA-26b inhibits proliferation by targeting PTGS2 in breast cancer[J].Cancer Cell Int,2013,13(1):7.
53 Korner C,Keklikoglou I,Bender C,et al.MicroRNA-31 sensitizes human breast cells to apoptosis by direct targeting of protein kinase C epsilon (PKCepsilon)[J].J Biol Chem,2013,288(12):8750-8761.
54 Ryu S,McDonnell K,Choi H,et al.Suppression of miRNA-708 by polycomb group promotes metastases by calcium-induced cell migration[J].Cancer Cell,2013,23(1):63-76.
55 Cookson VJ,Bentley MA,Hogan BV,et al.Circulating microRNA profiles reflect the presence of breast tumours but not the profiles of microRNAs within the tumours[J].Cell Oncol(Dordr),2012,35(4):301-308.
56 Mar-Aguilar F,Mendoza-Ramírez JA,Malagón-Santiago I,et al.Serum circulating microRNA profiling for identification of potential breast cancer biomarkers[J].Dis Markers,2013,34(3):163-169.
57 Heneghan HM,Miller N,Kelly R,et al.Systemic miRNA-195 differentiates breast cancer from other malignancies and is a potential biomarker for detecting noninvasive and early stage disease[J].Oncologist,2010,15(7):673-682.
58 Sun Y,Wang M,Lin G,et al.Serum microRNA-155 as a potential biomarker to track disease in breast cancer[J].PLoS One,2012,7(10):e47003.
59 Cuk K,Zucknick M,Heil J,et al.Circulating microRNAs in plasma as early detection markers for breast cancer[J].Int J Cancer,2013,132(7):1602-1612.
60 Schwarzenbach H,Milde-Langosch K,Steinbach B,et al.Diagnostic potential of PTEN-targeting miR-214 in the blood of breast cancer patients[J].Breast Cancer Res Treat,2012,134(3):933-941.
61 Zeng RC,Zhang W,Yan XQ,et al.Down-regulation of miRNA-30a in human plasma is a novel marker for breast cancer[J].Med Oncol,2013,30(1):477.
62 Schrauder MG,Strick R,Schulz-Wendtland R,et al.Circulating micro-RNAs as potential blood-based markers for early stage breast cancer detection[J].PLoS One,2012,7(1):e29770.
63 Si H,Sun X,Chen Y,et al.Circulating microRNA-92a and microRNA-21 as novel minimally invasive biomarkers for primary breast cancer[J].J Cancer Res Clin Oncol,2013,139(2):223-229.
64 Ng EK,Li R,Shin VY,et al.Circulating microRNAs as specific biomarkers for breast cancer detection[J].PLoS One,2013,8(1):e53141.
65 Guo LJ,Zhang QY.Decreased serum miR-181a is a potential new tool for breast cancer screening[J].Int J Mol Med,2012,30(3):680-686.
66 Wang F,Zheng Z,Guo J,et al.Correlation and quantitation of microRNA aberrant expression in tissues and sera from patients with breast tumor[J].Gynecol Oncol,2010,119(3):586-593.
67 Wang H,Tan G,Dong L,et al.Circulating MiR-125b as a marker predicting chemoresistance in breast cancer[J].PLoS One,2012,7(4):e34210.
68 Razis E,Bobos M,Kotoula V,et al.Evaluation of the association of PIK3CA mutations and PTEN loss with efficacy of trastuzumab therapy in metastatic breast cancer[J].Breast Cancer Res Treat,2011,128(2):447-456.
69 Chen W,Cai F,Zhang B,et al.The level of circulating miRNA-10b and miRNA-373 in detecting lymph node metastasis of breast cancer:potential biomarkers[J].Tumour Biol,2013,34(1):455-462.
70 Zhao FL,Hu GD,Wang XF,et al.Serum overexpression of microRNA-10b in patients with bone metastatic primary breast cancer[J].J Int Med Res,2012,40(3):859-866.
71 Wu X,Somlo G,Yu Y,et al.De novo sequencing of circulating miRNAs identifies novel markers predicting clinical outcome of locally advanced breast cancer[J].J Transl Med,2012,10:42.
72 Broyles D,Cissell K,Kumar M,et al.Solution-phase detection of dual microRNA biomarkers in serum[J].Anal Bioanal Chem,2012,402(1):543-550.
73 Lusi EA,Passamano M,Guarascio P,et al.Innovative electrochemical approach for an early detection of microRNAs[J].Anal Chem,2009,81(7):2819-2822.
74 Wang Y,Zheng D,Tan Q,et al.Nanopore-based detection of circulating microRNAs in lung cancer patients[J].Nat Nanotechnol,2011,6(10):668-674.
75 Hu Z,Dong J,Wang LE,et al.Serum microRNA profiling and breast cancer risk:the use of miR-484/191 as endogenous controls[J].Carcinogenesis,2012,33(4):828-834.
76 Mostert B,Sieuwerts AM,Martens JW,et al.Diagnostic applications of cell-free and circulating tumor cell-associated miRNAs in cancer patients[J].Expert Rev Mol Diagn,2011,11(3):259-275.
77 Uehara M,Kinoshita T,Hojo T,et al.Long-term prognostic study of carcinoembryonic antigen(CEA) and carbohydrate antigen 15-3(CA 15-3) in breast cancer[J].Int J Clin Oncol,2008,13(5):447-451.