柏杖勇 李清華
(桂林醫(yī)學(xué)院,廣西 桂林 541000)
帕金森病(PD)是最常見(jiàn)的運(yùn)動(dòng)失調(diào)性疾病和第二常見(jiàn)的神經(jīng)變性疾病,位列阿爾茨海默病之后。年齡的增長(zhǎng)是散發(fā)性PD發(fā)病的最重要影響因素。許多基因的突變相關(guān)于家族性PD,這些基因包括SNCA〔1〕、parkin〔2〕、 UCHL1〔3〕、PINK1〔4〕、DJ-1〔5〕、LRRK2〔6,7〕、 ATP13A2〔8〕、 GIGYF2〔9〕、Omi/HTRA2〔10〕、 PLA2G6〔11〕和 FBXO7〔12〕。在病理上,PD以投射到紋狀體的黑質(zhì)致密部 (SNc)的多巴胺能神經(jīng)元選擇性丟失為特征。黑質(zhì)紋狀體的退行性改變和紋狀體多巴胺能遞質(zhì)的耗竭是PD患者包括運(yùn)動(dòng)遲緩、運(yùn)動(dòng)功能減退、僵化、靜止性震顫和姿勢(shì)不穩(wěn)定等運(yùn)動(dòng)癥狀的最主要原因。然而,神經(jīng)變性的進(jìn)程是不會(huì)局限于多巴胺神經(jīng)元的,也能影響去甲腎上腺素(藍(lán)斑)、羥色胺(中縫背核)、膽堿(Meynert的下橄欖核)系統(tǒng)、大腦皮層、腦干、脊髓和周?chē)窠?jīng)系統(tǒng)〔13~15〕,這也能夠解釋PD的非運(yùn)動(dòng)方面的臨床表現(xiàn),例如自主神經(jīng)功能紊亂、睡眠障礙、抑郁和認(rèn)知障礙。PD的另一種明顯的病理表現(xiàn)是包含有聚集的a-synuclein〔16〕在內(nèi)的許多蛋白在神經(jīng)細(xì)胞核周的堆積。許多來(lái)自于不同的動(dòng)物等模型的證據(jù)表明,低聚的中間體而不是最終的蛋白聚集體是影響著神經(jīng)系統(tǒng)的毒性過(guò)程〔17,18〕。然而,致病作用和Lewy體的意義仍不清楚〔19,20〕。一方面,Lewy體可能是通過(guò)隔離毒性的沒(méi)有折疊a-synuclein而被賦予保護(hù)神經(jīng)作用;另一方面,他們也許作為儲(chǔ)存器和毒性蛋白的源頭,這是由于蛋白質(zhì)的包含物是動(dòng)態(tài)改變的〔21,22〕,最終,這些儲(chǔ)存的蛋白聚集體通過(guò)蛋白酶體通路和自噬-溶酶體通路得以降解。Lewy體不是出現(xiàn)在所有的PD而是出現(xiàn)在許多家族史患者;然而,在MPTP誘導(dǎo)的人類(lèi)PD中沒(méi)有報(bào)道,可能PD可能沒(méi)有統(tǒng)一的疾病實(shí)體〔23,24〕。散發(fā)性PD的發(fā)病機(jī)制,最主要來(lái)自于PD,可能與基因易感性的可變性以及環(huán)境因素有關(guān)。近年來(lái)越來(lái)越多的證據(jù)表明,線(xiàn)粒體自噬功能障礙在PD的發(fā)病機(jī)制中扮演者重要的角色。
線(xiàn)粒體功能障礙和PD的直接關(guān)系來(lái)自于死于PD的患者黑質(zhì)的復(fù)合體1描述〔25,26〕,其次是骨骼肌、血小板、淋巴母細(xì)胞線(xiàn)粒體缺陷的個(gè)案報(bào)告〔27〕。大腦內(nèi)的線(xiàn)粒體缺陷僅限于黑質(zhì),被病理檢查證實(shí)為偶發(fā)的PD〔28〕。在PD的發(fā)病機(jī)制中,線(xiàn)粒體參與的證據(jù)來(lái)自于一個(gè)家族性PD的遺傳原因的發(fā)現(xiàn)。所有的這些都具有黑質(zhì)中的多巴胺能神經(jīng)元的丟失和PD的特征。通常,這些具有明顯肌張力障礙和認(rèn)知功能障礙的遺傳性病例的發(fā)病平均年齡早于散發(fā)型PD。然而,許多PINK1或者LRRK2突變的病例,從臨床上不能和散發(fā)性PD相鑒別。許多突變表達(dá)或敲除的模型已被發(fā)現(xiàn)有線(xiàn)粒體功能障礙〔29〕。
受損的線(xiàn)粒體功能導(dǎo)致了PD的神經(jīng)退變,是基于PD患者大腦的生物化學(xué)和病理解剖學(xué)研究,這個(gè)發(fā)現(xiàn)進(jìn)一步被氧化毒性等所證實(shí)。直接影響線(xiàn)粒體能量代謝的復(fù)合體1的拮抗劑導(dǎo)致了人類(lèi)和各種動(dòng)物模型的PD。最近,發(fā)現(xiàn)了對(duì)于罕見(jiàn)的遺傳性PD的線(xiàn)粒體具有保護(hù)作用的基因功能特征的在線(xiàn)粒體內(nèi)環(huán)境平衡改變的潛在分子信號(hào)通路。在軸突轉(zhuǎn)運(yùn)、突觸的信號(hào)、細(xì)胞器的退變和細(xì)胞內(nèi)能量的供給方面,線(xiàn)粒體是高度動(dòng)態(tài)的細(xì)胞器,被不斷適應(yīng)功能的形態(tài)和結(jié)構(gòu)所嚴(yán)格調(diào)控。這個(gè)通路涉及線(xiàn)粒體質(zhì)量控制,確立了功能障礙的線(xiàn)粒體是通過(guò)PINK1/parkin通路來(lái)自噬清除,提示PD相關(guān)的蛋白在線(xiàn)粒體層面上的復(fù)雜的相互作用。用線(xiàn)粒體保護(hù)信號(hào)網(wǎng)絡(luò)來(lái)解釋也許可以幫助我們理解PD的通過(guò)線(xiàn)粒體和(或)線(xiàn)粒體動(dòng)力學(xué)的改變來(lái)調(diào)節(jié)自身的平衡〔30〕。
PINK1,一種PD相關(guān)蛋白,具有絲/蘇氨酸蛋白激酶活性〔31〕。PINK1包含有線(xiàn)粒體目標(biāo)信號(hào)和公認(rèn)的跨膜序列〔32〕,人們已經(jīng)確認(rèn)了細(xì)胞質(zhì)里與PINK1有關(guān)的蛋白〔33~35〕。在正常線(xiàn)粒體中,PINK1蛋白存在于線(xiàn)粒體外膜,它的激酶的功能區(qū)面向細(xì)胞質(zhì)〔36〕。PINK1能夠作為受損線(xiàn)粒體的分子感受器,當(dāng)用線(xiàn)粒體實(shí)驗(yàn)性去極化去模仿線(xiàn)粒體損傷,使用線(xiàn)粒體解耦聯(lián)劑carbonyl cyanide m-chlorophenylhydrazone (CCCP)減少了整個(gè)線(xiàn)粒體內(nèi)膜的膜電位,需要蛋白質(zhì)的TIM調(diào)節(jié)的線(xiàn)粒體進(jìn)入——PINK1基因不再作為MPP或者PARL和全長(zhǎng)64 kD的形式迅速堆積的進(jìn)程,使用其激酶功能區(qū)跨越線(xiàn)粒體外膜而面向細(xì)胞質(zhì)。
線(xiàn)粒體外膜上的PINK1的穩(wěn)定性是parkin募集到受損的線(xiàn)粒體及激發(fā)線(xiàn)粒體自噬所必需的。到目前為止,已經(jīng)發(fā)現(xiàn)3個(gè)公認(rèn)的PINK1底物。PINK1可以與線(xiàn)粒體分子伴侶TRAP1〔37〕(就像是 Hsp75)相互作用;這個(gè)研究揭示了PINK1能夠磷酸化TRAP1,這對(duì)于調(diào)節(jié)PINK1的蛋白活力來(lái)拮抗氧化是很重要的。PINK1功能上與線(xiàn)粒體絲氨酸蛋白HtrA2/OMI (hightemperature regulation A2)〔38〕相互作用。P38激酶途徑刺激后,HtrA2/OMI 是以PINK1依賴(lài)的方式磷酸化保守的絲氨酸殘基。在果蠅模型中這條通路的研究提示,HtrA2/OMI作為共同通路的下游蛋白,獨(dú)立于parkin〔39~41〕。PINK1還被發(fā)現(xiàn)與Miro 和Milton 一起出現(xiàn)在許多蛋白復(fù)合體中〔42〕。Miro 和 Milton是在線(xiàn)粒體外膜上連接驅(qū)動(dòng)蛋白重鏈到線(xiàn)粒體,沿著微管順行軸索轉(zhuǎn)運(yùn)的蛋白〔43〕。有趣的是,缺乏線(xiàn)粒體導(dǎo)入序列和跨膜轉(zhuǎn)運(yùn)功能區(qū)的細(xì)胞質(zhì)里的PINK1是可以保護(hù)小鼠的MPTP誘導(dǎo)的毒性損傷,提示細(xì)胞質(zhì)里的PINK1可能具有保護(hù)神經(jīng)元存活的功能〔44〕。PINK1可以減少基底節(jié)區(qū)神經(jīng)元促凋亡活性和星形孢菌素誘導(dǎo)的細(xì)胞凋亡。保護(hù)作用的減少可能由于黑質(zhì)多巴胺能神經(jīng)元退變所導(dǎo)致的。PD相關(guān)的突變和PINK1激酶失活突變可以減少PINK1的保護(hù)作用。
在parkin或者PINK1不足的細(xì)胞線(xiàn)粒體膜蛋白減少已經(jīng)影響到線(xiàn)粒體轉(zhuǎn)運(yùn)的效率〔43〕。表明PINK1也許具有線(xiàn)粒體轉(zhuǎn)運(yùn)功能。PINK1的一個(gè)重要的生理功能是增加細(xì)胞內(nèi)應(yīng)激的抵抗力。PINK1蛋白的過(guò)表達(dá)可以保護(hù)各種毒素誘導(dǎo)的細(xì)胞的死亡,當(dāng)PINK1耗竭會(huì)增加應(yīng)激導(dǎo)致的細(xì)胞死亡的易感性〔45〕;這些發(fā)現(xiàn)提示,在細(xì)胞應(yīng)激狀況下,PINK1在維持細(xì)胞內(nèi)環(huán)境的穩(wěn)定性方面具有重要的作用。許多機(jī)制已經(jīng)被解釋PINK1的細(xì)胞保護(hù)作用的活力,包括線(xiàn)粒體的生物能量學(xué)和鈣穩(wěn)態(tài)的維持。
parkin是一種E3泛素連接酶(E3 ubiquitin ligases),通過(guò)介導(dǎo)底物蛋白的泛素化,調(diào)控蛋白降解和信號(hào)通路等〔46〕,其突變導(dǎo)致了常染色體隱性遺傳青少年型PD(AR-JP)〔47〕。 parkin在許多組織中強(qiáng)烈的表達(dá),包括腦、骨骼肌、心臟和肝臟組織中,這提示其廣泛表達(dá)具有廣泛的生理意義。parkin是一個(gè)具有465個(gè)氨基酸的細(xì)胞質(zhì)蛋白,在N端一個(gè)泛素樣(UBL)功能區(qū)和一個(gè)靠近C端RBR(RING-between-RING)功能區(qū)。RBR功能區(qū)調(diào)節(jié)鋅離子,由兩個(gè)RING功能區(qū)組成,夾有RING(ibr)功能區(qū)。一個(gè)RING功能區(qū)已經(jīng)被鑒定是位于UBL和RBR的生物序列之間,具有鋅離子結(jié)合能力〔48〕。依賴(lài)于線(xiàn)粒體膜電位的改變,parkin蛋白可以定位于細(xì)胞質(zhì)和線(xiàn)粒體。
parkin能夠催化共價(jià)結(jié)合的泛素到底物蛋白的賴(lài)氨酸殘基。parkin能夠分辨不同的泛素化模型,延伸單泛素到泛素分子內(nèi)的包含不同賴(lài)氨酸殘基的多聚泛素鏈(例如Lys48-和Lys63-連接的泛素鏈)。由于泛素內(nèi)部的7-賴(lài)氨酸殘基的存在,影響了具有不同結(jié)構(gòu)和功能的多聚泛素鏈形成〔49~51〕。
通常情況下,lys48連接的泛素鏈經(jīng)由蛋白酶體通路降解的目標(biāo)底物結(jié)合。已確認(rèn)的parkin的底物有突觸囊泡相關(guān)蛋白CDCrel-1、parkin相關(guān)內(nèi)皮受體樣受體Pael-R、22 kD的糖基化a-synuclein和synphilin-1等。然而其他泛素的連接在DNA修復(fù)、胞吞作用和自噬的信號(hào)傳導(dǎo)方面具有廣泛的調(diào)節(jié)作用。parkin表達(dá)的增加,能夠保護(hù)細(xì)胞線(xiàn)粒體毒物,細(xì)胞內(nèi)和動(dòng)物模型中的興奮性毒物,內(nèi)質(zhì)網(wǎng)應(yīng)激和蛋白毒性應(yīng)激等誘導(dǎo)的細(xì)胞的死亡〔52~55〕。
parkin可以參與線(xiàn)粒體功能蛋白(亞基復(fù)合物Ⅰ和Ⅳ)表達(dá),parkin KO 小鼠的中腦側(cè)腹部的氧化應(yīng)激反應(yīng)是增加的〔56〕,因此,從parkin缺陷的小鼠紋狀體分離的線(xiàn)粒體的呼吸能力是減少的〔56〕。ATP生產(chǎn)的減少反映了線(xiàn)粒體功能的改變也在攜帶parkin病理性突變患者的皮膚成纖維細(xì)胞中被發(fā)現(xiàn)〔57〕。許多途徑已經(jīng)涉及parkin的神經(jīng)保護(hù)活力,例如核因子(NF)-κB途徑〔58,59〕,JNK信號(hào)〔60,61〕和PI3K 信號(hào)〔62,63〕。
當(dāng)在培養(yǎng)的細(xì)胞中PINK1和parkin的過(guò)表達(dá),parkin能夠被PINK1純化,反之亦然〔64〕。Kim等〔65〕研究表明PINK1和 Parkin通過(guò)調(diào)節(jié)線(xiàn)粒體功能的不同方面維持線(xiàn)粒體的完整性,包括膜電位,內(nèi)環(huán)境的穩(wěn)定性,線(xiàn)粒體嵴結(jié)構(gòu),線(xiàn)粒體呼吸活性以及mtDNA完整性。PINK1募集parkin到線(xiàn)粒體是通過(guò)磷酸化parkin的一個(gè)RING0功能區(qū)蘇氨酸殘基。在其他實(shí)驗(yàn)中也同樣被發(fā)現(xiàn),PINK1可以磷酸化parkin,表明parkin的催化lsy-63連接的多聚泛素化作用的泛素鏈E3泛素連接酶活性是在PINK1誘導(dǎo)的parkin的磷酸化以后加強(qiáng)的〔66〕。是RING-finger 1功能,而不是E3泛素連接酶的活力,需要parkin和PINK1的相互作用。PINK1磷酸化parkin,這種磷酸化能夠被PD連接的突變消除。在與UbcH13/Uev1a E2酶合作以后,PINK1相關(guān)的磷酸化能加強(qiáng)parkin的E3連接酶催化k63連接的多聚泛素鏈的活力〔67〕。當(dāng)線(xiàn)粒體因氧化應(yīng)激等某些因素受損而致線(xiàn)粒體膜電位(ΔΨm)去極化后,可以促使線(xiàn)粒體上的PINK1 激活parkin,并使parkin從細(xì)胞質(zhì)特異性地轉(zhuǎn)移到受損的線(xiàn)粒體外膜上〔68〕,繼而催化線(xiàn)粒體外膜上相關(guān)的蛋白被多聚泛素鏈泛素化,泛素化后的線(xiàn)粒體在VDAC1、p62/SQSTM1等自噬調(diào)節(jié)蛋白的協(xié)助下,沿著微管轉(zhuǎn)運(yùn)到核周并形成線(xiàn)粒體聚集體〔69,70〕,然后被自噬-溶酶體通路(ALP)降解,這樣,PINK1和parkin聯(lián)合作用使受損的線(xiàn)粒體以完整細(xì)胞器的形式選擇性地被自噬清除,這一過(guò)程被稱(chēng)為PINK1/Parkin介導(dǎo)的線(xiàn)粒體自噬(PINK1/Parkin-mediated mitophagy)〔71,72〕,而當(dāng)PINK1或parkin突變后,自噬對(duì)受損線(xiàn)粒體的清除則明顯被抑制,導(dǎo)致受損的線(xiàn)粒體在細(xì)胞內(nèi)的堆積,進(jìn)一步損害了細(xì)胞正常生理功能〔73〕。
Ambra1(activating molecule in Beclin1-regulated autophagy,Beclin1)通過(guò)刺激對(duì)于新的phagophores的形成class Ⅲ phosphatidylinositol 3-kinase (PI3K)復(fù)合體的活力來(lái)激活自噬。Ambra1不需要parkin轉(zhuǎn)位到去極化的線(xiàn)粒體,而是對(duì)于繼發(fā)的線(xiàn)粒體清除非常重要的作用。特別是,Ambra1被募集到去極化的線(xiàn)粒體的核周聚集體,激活附近的class Ⅲ PI3K。有數(shù)據(jù)確定,parkin和Ambra1的相互作用是parkin介導(dǎo)的線(xiàn)粒體自噬的最終清除步驟的誘導(dǎo)的關(guān)鍵機(jī)制〔74〕。
PINK1-parkin依賴(lài)的線(xiàn)粒體自噬表明,mitofusins 1 和mitofusins 2的泛素化是一個(gè)早期階段。mitofusins的泛素化可能促進(jìn)線(xiàn)粒體的降解,潛在的活性線(xiàn)粒體自噬可以作為影響大腦和肌肉疾病的一種治療方法〔75〕。
無(wú)論parkin或者PINK1去功能化所導(dǎo)致的線(xiàn)粒體形態(tài)學(xué)和ATP產(chǎn)生的改變都可以被線(xiàn)粒體融合蛋白Mfn2和OPA1或者Drp1所解救。Parkin和PINK1是可以抑制Drp1導(dǎo)致的線(xiàn)粒體分裂。此外,在Drp1不足的細(xì)胞中,敲除parkin/PINK的表型是不會(huì)出現(xiàn)的,這表明,在parkin或者 PINK1不足的細(xì)胞中,線(xiàn)粒體改變與線(xiàn)粒體增長(zhǎng)的分裂有關(guān)〔76〕。ATF4,一個(gè)未折疊蛋白應(yīng)答的轉(zhuǎn)錄因子,介導(dǎo)了parkin對(duì)線(xiàn)粒體的轉(zhuǎn)錄上調(diào),內(nèi)質(zhì)網(wǎng)應(yīng)激,然而,c-Jun抑制了parkin的表達(dá)〔77〕。
在PINK1沉默的MN9D細(xì)胞中,C2-神經(jīng)酰胺(PP2A激動(dòng)劑)治療可以減少自噬水平,提示,PP2A在PINK1敲除誘導(dǎo)的自噬途徑中,具有重要的作用。PP2A的失活參與PINK1沉默的自噬蛋白保護(hù)作用。PINK1沉默的細(xì)胞中,PP2A活力的下調(diào)通過(guò)促進(jìn)Bcl-2在S87磷酸化的神經(jīng)保護(hù)作用和凋亡通路來(lái)阻止〔78〕。
在線(xiàn)粒體自噬這一過(guò)程中,PINK1是怎么發(fā)現(xiàn)線(xiàn)粒體受損,并且對(duì)解耦聯(lián)做出反應(yīng)并募集parkin?PINK1是怎樣在個(gè)體細(xì)胞中,區(qū)別受損和健康的線(xiàn)粒體,并介導(dǎo)了parkin的募集,僅僅是解耦聯(lián)細(xì)胞器?盡管有報(bào)道,PINK1結(jié)合和磷酸化parkin,關(guān)于PINK1募集parkin到線(xiàn)粒體仍未闡明。
盡管,有許多PD相關(guān)的基因陸續(xù)被克隆出來(lái),但是,這些基因所表達(dá)的蛋白的功能改變僅是從一方面闡釋了PD的發(fā)病機(jī)制,到目前為止還沒(méi)有一種理論能夠完全闡釋PD的發(fā)病機(jī)制。但是,有一點(diǎn)是可以肯定的,那就是涉及線(xiàn)粒體自噬的線(xiàn)粒體損傷與修復(fù)。新的基因或者功能蛋白的發(fā)現(xiàn),必然會(huì)為人們揭示PD的發(fā)病機(jī)制提供更加有力的證據(jù)。有一點(diǎn)是可能的——線(xiàn)粒體自噬可能成為PD治療的靶點(diǎn)。對(duì)于有機(jī)體來(lái)說(shuō),輕度自噬可能有助于蛋白聚集體的清除,然而,過(guò)度自噬可能誘發(fā)集體細(xì)胞的不可逆的功能改變,甚至死亡。所以,如何控制線(xiàn)粒體自噬在一個(gè)溫和而有效的范圍和程度,對(duì)于PD將是一個(gè)新的挑戰(zhàn)性的治療策略。
6 參考文獻(xiàn)
1Polymeropoulos MH,Lavedan C,Leroy E,etal.Mutation in the alpha-synuclein gene identified in families with Parkinson′s disease〔J〕.Science,1997;276:2045-7.
2Kitada T,Asakawa S,Hattori N,etal.Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism〔J〕. Nature,1998;392:605-8.
3Leroy E,Boyer R,Auburger G,etal.The ubiquitin pathway in Parkinson′s disease〔J〕. Nature,1998;395:451-2.
4Valente EM,Abou-Sleiman PM,Caputo V,etal.Hereditary early-onset Parkinson′s disease caused by mutations in PINK1〔J〕. Science,2004;304:1158-60.
5Bonifati V,Rizzu P,van Baren MJ,etal.Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism〔J〕.Science,2003;299:256-9.
6Paisan-Ruiz C,Jain S,Evans EW,etal.Cloning of the gene containing mutations that cause PARK8-linked Parkinson′s disease〔J〕. Neuron,2004;44:595-600.
7Zimprich A,Biskup S,Leitner P,etal.Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology〔J〕. Neuron,2004;44:601-7.
8Ramirez A,Heimbach A,Grundemann J,etal.Hereditary parkinsonism with dementia is caused by mutations in ATP13A2,encoding a lysosomal type 5 P-type ATPase〔J〕. Nat Genet,2006;38:1184-91.
9Lautier C,Goldwurm S,Durr A,etal.Mutations in the GIGYF2 (TNRC15) gene at the PARK11 locus in familial Parkinson disease〔J〕. Am J Hum Genet,2008;82:822-33.
10Strauss KM,Martins LM,Plun-Favreau H,etal.Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson′s disease〔J〕. Hum Mol Genet,2005;14:2099-111.
11Paisan-Ruiz C,Bhatia KP,Li A,etal.Characterization of PLA2G6 as a locus for dystonia-parkinsonism〔J〕. Ann Neurol,2009;65:19-23.
12Di Fonzo A,Dekker MC,Montagna P,etal.FBXO7 mutations cause autosomal recessive,early-onset parkinsonian-pyramidal syndrome〔J〕. Neurology,2009;72:240-5.
13Braak H,Del Tredici K,Rub U,etal.Staging of brain pathology related to sporadic Parkinson′s disease〔J〕.Neurobiol Aging,2003;24:197-211.
14Forno LS.Neuropathology of Parkinson′s disease〔J〕.Neuropathol Exp Neurol,1996;55:259-72.
15Lang AE,Obeso JA.Challenges in Parkinson′s disease:restoration of the nigrostriatal dopamine system is not enough〔J〕.Lancet Neurol,2004;3:309-16.
16Spillantini MG,Schmidt ML,Lee VM,etal. Alpha-synuclein in Lewy bodies〔J〕.Nature,1997;388:839-40.
17Caughey B,Lansbury PT.Protobrils,pores,fibrils,and neurodegeneration:separating the responsible protein aggregates from the innocent bystanders〔J〕.Annu Rev Neurosci,2003;26:267-98.
18Winklhofer KF,Tatzelt J,Haass C.The two faces of protein misfolding:gain-and loss-of-function in neurodegenerative diseases〔J〕.EMBO,2008;27:336-49.
19Burke RE,Dauer WT,Vonsattel JP.A critical evaluation of the Braak staging scheme for Parkinson′s disease〔J〕.Ann Neurol,2008;64:485-91.
20Obeso JA,Rodriguez-Oroz MC,Goetz CG,etal. Missing pieces in the Parkinson′s disease puzzle〔J〕.Nat Med,2010;16:653-61.
21Li JY,Englund E,Holton JL,etal. Lewy bodies in grafted neurons in subjects with Parkinson′s disease suggest host-to-graft disease propagation〔J〕.Nat Med,2008;14:501-3.
22Kordower JH,Chu Y,Hauser RA,etal.Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson′s disease〔J〕. Nat Med,2008;14:504-6.
23Langston JW,F(xiàn)orno LS,Tetrud J,etal.Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure〔J〕.Ann Neurol,1999;46:598-605.
24Nuytemans K,Theuns J,Cruts M,etal. Genetic etiology of Parkinson disease associated with mutations in the SNCA,PARK2,PINK1,PARK7,and LRRK2 genes:a mutation update〔J〕.Hum Mutat,2010;31:763-80.
25Schapira AH,Cooper JM,Dexter D,etal.Mitochondrial complex Ⅰ deficiency in Parkinson′s disease〔J〕.Lancet,1989;1:1269.
26Schapira AH,Cooper JM,Dexter D,etal.Mitochondrial complex Ⅰ deficiency in Parkinson′s disease〔J〕.Neurochemistry,1990;54:823-7.
27Schapira AH.Evidence for mitochondrial dysfunction in Parkinson′s disease-a critical appraisal〔J〕.Mov Disord,1994;9:125-38.
28Schapira AH,Mann VM,Cooper JM,etal.Anatomic and disease specificity of NADH CoQ1 reductase (complex Ⅰ) deficiency in Parkinson′s disease〔J〕.Neurochemistry,1990;55:2142-5.
29Schapira AH.Mitochondrial dysfunction in Parkinson′s disease〔J〕.Cell Death Differ,2007;14:1261-6.
30Schapira AH.Etiology of Parkinson′s disease〔J〕.Neurology,2006;66 (10 suppl 4):S10-23.
31Burbulla LF,Krebiehl G,Krüger R,etal. Balance is the challenge-the impact of mitochondrial dynamics in Parkinson′s disease〔J〕.Eur J Clin Invest,2010;40(11):1048-60.
32Valente EM,Abou-Sleiman PM,Caputo V,etal. Hereditary early-onset Parkinson′s disease caused by mutations in PINK1〔J〕.Science,2004;304:1158-60.
33Silvestri L,Caputo V,Bellacchio E,etal. Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive Parkinsonism〔J〕.Hum Mol Genet,2005;14:3477-92.
34Haque ME,Thomas KJ,D′Souza C,etal.Cytoplasmic Pink1 activity protects neurons from dopaminergic neurotoxin MPTP〔J〕.Proc Natl Acad Sci USA,2008;105:1716-21.
35Takatori S,Ito G,Iwatsubo T.Cytoplasmic localization and proteasomal degradation of N-terminally cleaved form of PINK1〔J〕.Neurosci Lett,2008;430:13-7.
36Lin W,Kang UJ.Characterization of PINK1 processing,stability,and subcellular localization〔J〕.Neurochemistry,2008;106:464-74.
37Zhou C,Huang Y,Shao Y,etal.The kinase domain of mitochondrial PINK1 faces the cytoplasm〔J〕.Proc Natl Acad Sci USA,2008;105:12022-7.
38Pridgeon JW,Olzmann JA,Chin LS,etal. PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1〔J〕.PLoS Biol,2007;5:e172.
39Plun-Favreau H,Klupsch K,Moisoi N,etal. The mitochondrial protease HtrA2 is regulated by Parkinson′s disease-associated kinase PINK1〔J〕.Nat Cell Biol,2007;9:1243-52.
40Tain LS,Chowdhury RB,Tao RN,etal.Drosophila HtrA2 is dispensable for apoptosis but acts downstream of PINK1 independently from Parkin〔J〕.Cell Death Differ,2009;16:1118-25.
41Whitworth AJ,Lee JR,Ho VM,etal. Rhomboid-7 and HtrA2/Omi act in a common pathway with the Parkinson′s disease factors Pink1 and Parkin〔J〕.Dis Model Mech,2008;1:168-74.
42Yun J,Cao JH,Dodson MW,etal. Loss-of-function analysis suggests that Omi/HtrA2 is not an essential component of the PINK1/PARKIN pathway in vivo〔J〕.Neuroscience,2008;28:14500-10.
43Weihofen A,Thomas KJ,Ostaszewski BL,etal. Pink1 forms a multiprotein complex with Miro and Milton,linking Pink1 function to mitochondrial trafcking〔J〕.Biochemistry,2009;48:2045-52.
44Miller KE,Sheetz MP. Axonal mitochondrial transport nd potential are correlated〔J〕.Cell Sci,2004;117:2791-804.
45Haque ME,Thomas KJ,D′Souza C,etal. Cytoplasmic Pink1 activity protects neurons from dopaminergic neurotoxin MPTP〔J〕.Proc Natl Acad Sci USA,2008;105:1716-21.
46Deas E,Plun-Favreau H,Wood NW. PINK1 function in health and disease〔J〕.EMBO Mol Med,2009;1:152-65 .
47Safadi SS,Shaw GS.Differential interaction of the E3 ligase parkin with the proteasomal subunit S5a and the endocytic protein Eps15〔J〕.Biol Chem,2010;285(2):1424-34.
48Kitada T,Asakawa S,Hattori N,etal.Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism〔J〕.Nature,1998;392:605-8.
49Hristova VA,Beasley SA,Rylett RJ,etal. Identication of a novel Zn2+-binding-domain in the autosomal recessive juvenile Parkinson-related E3 ligase parkin〔J〕.Biol Chem,2009;284:14978-86.
50Behrends C,Harper JW. Constructing and decoding unconventional ubiquitin chains〔J〕. Nat Struct Mol Biol,2011;18:520-8.
51Ikeda F,Dikic I.Atypical ubiquitin chains:new molecular signals protein modications:beyond the usual suspects′ review series〔J〕.EMBO Rep,2008;9(6):536-42.
52Komander D. The emerging complexity of protein ubiquitination〔J〕.Biochem Soc Trans,2009;37:937-53.
53Bouman L,Schlierf A,Lutz AK,etal.Parkin is transcriptionally regulated by ATF4:evidence for an interconnection between mitochondrial stress and ER stress〔J〕.Cell Death Differ,2011;18:769-82.
54Fett ME,Pilsl A,Paquet D,etal. Parkin is protective against proteotoxic stress in a transgenic zebrash model〔J〕.PLoS One,2010;5(7):e11783.
55Henn IH,Bouman L,Schlehe JS,etal. Parkin mediates neuroprotection through activation of IkappaB kinase/nuclear factor-kappaB signaling〔J〕.Neuroscience,2007;27:1868-78.
56Rosen KM,Veereshwarayya V,Moussa CEetal. Parkinprotects against mitochondrial toxins and beta-amyloid accumulation in skeletal muscle cells〔J〕.Biol Chem,2006;281:12809-16.
57Palacino JJ,Sagi D,Goldberg MS,etal. Mitochondrial dysfunction and oxidative damage in parkin-decient mice〔J〕.Biol Chem,2004;279:18614-22.
58Grunewald A,Voges L,Rakovic A,etal. Mutant Parkin impairs mitochondrial function and morphology in humanbroblasts〔J〕.PLoS One,2010;5(9):e1296.
59Henn IH,Bouman L,Schlehe JS,etal. Parkin mediates neuroprotection through activation of IkappaB kinase/nuclear factor-kappaB signaling〔J〕 .Neuroscience,2007;27:1868-78.
60Sha D,Chin LS,Li L. Phosphorylation of parkin by Parkinson disease-linked kinase PINK1 activates parkin E3 ligase function and NF-kappaB signaling〔J〕.Hum Mol Genet,2010;19:352-63.
61Hasegawa T,Treis A,Patenge N,etal. Parkin protects against tyrosinase-mediated dopamine neurotoxicity by suppressing stress-activated protein kinase pathways〔J〕.Neurochemistry,2008;105:1700-15.
62Cha GH,Kim S,Park J,etal.Parkin negatively regulates JNK pathway in the dopaminergic neurons of Drosophila〔J〕.Proc Natl Acad Sci USA,2005;102:10345-50.
63Fallon L,Belanger CM,Corera AT,etal.A regulated interaction with the UIM protein Eps15 implicates parkin in EGF receptor trafcking and PI(3)K-Akt signalling〔J〕.Nat Cell Biol,2006;8:834-42.
64Yang Y,Gehrke S,Imai Y,etal. Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin〔J〕.Proc Natl Acad Sci USA,2006;103:10793-8.
65Kim Y,Park J,Kim S,etal. PINK1 controls mitochondrial localization of Parkin through direct phosphorylation〔J〕.Biochem Biophys Res Commun,2008;377:975-80.
66Moore DJ. Parkin:a multifaceted ubiquitin ligase〔J〕.Biochem Soc Trans,2006;34:749-53.
67Sha D,Chin LS,Li L. Phosphorylation of parkin by Parkinson disease-linked kinase PINK1 activates parkin E3 ligase function and NF-kappaB signaling〔J〕.Hum Mol Genet,2010;19:352-63.
68Di Sha,Lih-Shen Chin,Lian Li.Phosphorylation of parkin by Parkinson disease-linked kinase PINK1 activates parkin E3 ligase function and NF-κB signaling〔J〕.Hum Mol Genet,2010;19(2):352-63.
69Vives-Bauza C,Zhou C,Huang Y,etal.PINK1-dependent recruitment of Parkin to mitochondria in mitophagy〔J〕.Proc Natl Acad Sci USA,2010;107(1):378-83.
70Youle RJ,Narendra DP.Mechanisms of mitophagy〔J〕.Nat Rev Mol Cell Biol,2011;12(1):9-14.
71Wild P,Dikic I.Mitochondria get a Parkin′ ticket〔J〕.Nat Cell Biol,2010;12(2):104-6.
72Jones N.PINK1 targets dysfunctional mitochondria for autophagy in Parkinson disease〔J〕.Nat Rev Neurol,2010;6(4):181.
73Abeliovich A.Parkinson′s disease:mitochondrial damage control〔J〕.Nature,2010;463 (7282):744-5.
74Gegg ME,Schapira AH.PINK1-parkin-dependent mitophagy involves ubiquitination of mitofusins 1 and 2:implications for Parkinson disease pathogenesis〔J〕.Autophagy,2011;7(3):266-78.
75Cindy Van Humbeeck,Tom Cornelissen,Hilde Hofkens,etal.Parkin interacts with Ambra1 to induce mitophagy〔J〕.J Neurosci,2011;31:10249-61.
76Gegg ME,Schapira AH.PINK1-parkin-dependent mitophagy involves ubiquitination of mitofusins 1 and 2:implications for Parkinson disease pathogenesis〔J〕.Autophagy,2011;7(2):243-5.
77Lutz AK,Exner N,F(xiàn)ett ME,etal. Loss of Parkin or PINK1 function increases Drp1-dependent mitochondrial fragmentation〔J〕.J Biol Chem,2009;284:22938-51.
78Bouman L,Schlierf A,Lutz AK,etal.Parkin is transcriptionally regulated by ATF4:evidence for an interconnection between mitochondrial stress and ER stress〔J〕.Cell Death Differ,2011;18:769-82.
79Qi ZF,Yang WW,Liu YJ,etal.Loss of PINK1 function decreases PP2A activity and promotes autophagy in dopaminergic cells and a murine model〔J〕.Neurochem Inter,2011;59:572-81.