成 殷,崔全才
中國醫(yī)學(xué)科學(xué)院 北京協(xié)和醫(yī)學(xué)院 北京協(xié)和醫(yī)院病理科,北京 100730
上皮間質(zhì)轉(zhuǎn)化在甲狀腺腫瘤中的研究進(jìn)展
成 殷,崔全才
中國醫(yī)學(xué)科學(xué)院 北京協(xié)和醫(yī)學(xué)院 北京協(xié)和醫(yī)院病理科,北京 100730
上皮間質(zhì)轉(zhuǎn)化過程與腫瘤的侵襲轉(zhuǎn)移等特性密切相關(guān),在腫瘤發(fā)生發(fā)展中的研究日益深入。甲狀腺乳頭狀癌中有侵襲性區(qū)域,這部分組織黏附分子表達(dá)缺失,甲狀腺未分化癌中有較多腫瘤相關(guān)干細(xì)胞特征的細(xì)胞。上皮間質(zhì)轉(zhuǎn)化可能在甲狀腺腫瘤進(jìn)展中發(fā)揮重要作用,這也是研究甲狀腺未分化腫瘤靶向藥物的新方向。
腫瘤;上皮間質(zhì)轉(zhuǎn)化;侵襲性區(qū)域;腫瘤干細(xì)胞
Acta Acad Med Sin,2014,36(2):218-222
上皮間質(zhì)轉(zhuǎn)化 (epithelial-mesenchymal transition,EMT)是指在生物體生長發(fā)育過程中特定細(xì)胞在嚴(yán)格的調(diào)控下由上皮到間質(zhì)的轉(zhuǎn)變。研究顯示腫瘤細(xì)胞黏附性降低,運(yùn)動(dòng)及侵襲能力升高與EMT現(xiàn)象有明確關(guān)系[1]。另有報(bào)道在乳腺癌、肺鱗癌等多種腫瘤中,間質(zhì)標(biāo)志物的升高對(duì)淋巴結(jié)轉(zhuǎn)移、腫瘤的分期均有提示[2]。甲狀腺未分化癌 (anaplastic thyroid carcinoma,ATC) 中 EMT 標(biāo)志物 Twist[3]、slug[4]等較在分化好的甲狀腺乳頭狀癌中升高。而上皮向間質(zhì)轉(zhuǎn)化以及腫瘤間質(zhì)微環(huán)境的具體機(jī)制,這種現(xiàn)象是否可逆,以及藥物抑制這些誘導(dǎo)因素是否對(duì)甲狀腺癌的治療有所幫助,都是亟待解決的問題。本文主要綜述甲狀腺腫瘤中上皮間質(zhì)轉(zhuǎn)化的研究進(jìn)展。
EMT是指在生物體生長發(fā)育過程中特定細(xì)胞在嚴(yán)格的調(diào)控下由上皮到間質(zhì)的轉(zhuǎn)變。在形態(tài)上的改變主要為上皮細(xì)胞具有極性,有黏附分子介導(dǎo)細(xì)胞間相互聚集,維持細(xì)胞結(jié)構(gòu)完整及細(xì)胞分化,亦可使細(xì)胞難以脫離原發(fā)瘤進(jìn)入周圍組織和血管,而在EMT過程中,細(xì)胞黏附性丟失、運(yùn)動(dòng)性增強(qiáng),從而獲得更強(qiáng)遷移和侵襲的能力。而腫瘤細(xì)胞在轉(zhuǎn)移到遠(yuǎn)處器官后,能再次轉(zhuǎn)變?yōu)樯掀ば螒B(tài),在器官中定植,這就是所謂的間質(zhì)上皮轉(zhuǎn)化。
EMT在生理及病理情況下均發(fā)揮作用。在病理過程中,EMT表現(xiàn)為器官的纖維化如肺、腎的纖維化等,其次則是在腫瘤的進(jìn)展過程中,表現(xiàn)為突破基底膜及血管淋巴管轉(zhuǎn)移。
E-鈣黏蛋白作為經(jīng)典的EMT標(biāo)志物,亦作為一種黏附分子,其表達(dá)缺失可作為衡量EMT發(fā)生的重要標(biāo)志[5]。CDH1基因突變或基因啟動(dòng)子區(qū)高度甲基化可使上皮獲得去分化,腫瘤具有高侵襲性[6]。
參與EMT過程的轉(zhuǎn)錄因子有snail1、SNAI2(Slug)、Twist1、GLUT-1、ZEB1以及金屬基質(zhì)蛋白酶等;這些轉(zhuǎn)錄因子主要通過對(duì)轉(zhuǎn)化生長因子 (transforming growth factor,TGF)-β-smad通路進(jìn)行調(diào)節(jié),參與EMT。它們亦可作為促癌基因,在腫瘤的發(fā)生發(fā)展及預(yù)后中發(fā)揮作用。如ZEB1在胃癌中mRNA水平及蛋白質(zhì)水平較鄰近正常黏膜的高表達(dá)及其與腹腔播散的相關(guān)性均提示ZEB1可作為胃癌獨(dú)立的預(yù)后指標(biāo)之一[7]。
TGF-βTGF-β為EMT最主要最強(qiáng)的誘導(dǎo)因子,其家族有兩大成員,TGF-β1和TGF-β2,其中β1亞型在上皮間質(zhì)轉(zhuǎn)化中發(fā)揮主要作用。TGF-β在腫瘤早期能發(fā)揮抑制腫瘤的作用,在腫瘤晚期能促進(jìn)腫瘤轉(zhuǎn)移及侵襲[8]。通過中和抗體、siRNA干擾技術(shù)、阻斷與TGF-β結(jié)合受體的方法以及TGF-β1下游信號(hào)分子調(diào)控均能阻斷 TGF-β1誘導(dǎo)的EMT進(jìn)程[9]。
缺氧誘導(dǎo)因子-1α缺氧誘導(dǎo)因子-1α在甲狀腺腫瘤中受缺氧、BRAFV600E突變及磷脂酰肌醇3激酶(phosphatidyl inositol 3-kinase,PI3K)信號(hào)通路調(diào)控[10],在正常甲狀腺組織中不表達(dá),隨著分化程度的減低,在甲狀腺未分化癌中表達(dá)最高。Lan等[11]將無EMT標(biāo)志物表達(dá)的濾泡癌FTC133細(xì)胞系中轉(zhuǎn)染了缺氧誘導(dǎo)因子-1α,這株濾泡癌細(xì)胞就發(fā)生了EMT。缺氧誘導(dǎo)因子-1α信號(hào)一旦被激活,可調(diào)控下游因子LDH-A、GLUT-1等,使腫瘤細(xì)胞侵襲性升高。
DNA結(jié)合抑制因子-1DNA結(jié)合抑制因子-1(inhibitor of DNA binding-1,ID1)是一種抑制細(xì)胞分化的因子,研究顯示ID1在正常甲狀腺組織中不表達(dá),在分化好的甲狀腺癌中表達(dá)率62.5%,在未分化癌中表達(dá)率40%(4/10)[12]。但在腫瘤侵犯包膜處高表達(dá)。體外實(shí)驗(yàn)中TGF-β能誘導(dǎo)正常甲狀腺細(xì)胞系發(fā)生EMT,在此過程中ID1表達(dá)升高[13]。僅ID1過表達(dá)也能促進(jìn)甲狀腺癌細(xì)胞發(fā)生EMT,提示ID1參與并作為TGF-β的下游調(diào)節(jié)EMT。在非小細(xì)胞肺癌細(xì)胞系中,通過轉(zhuǎn)染K-ras和表皮生長因子受體能上調(diào)ID1表達(dá)[14],提示ID1是EMT發(fā)生的中間分子。
RUNT相關(guān)轉(zhuǎn)錄因子2RUNT相關(guān)轉(zhuǎn)錄因子2(runt-related transcription factor 2,RUNX2)是一種骨分化轉(zhuǎn)錄因子,受絲裂原激活的蛋白激酶 (mitogenactivated protein kinase,MAPK)通路調(diào)控,在甲狀腺癌中較正常組織及良性病變高表達(dá),MEK抑制劑僅能部分抑制RUNX2的表達(dá),提示RUNX2表達(dá)還受其他信號(hào)通路調(diào)控。在垂體瘤中,RUNX2可以結(jié)合在β-半乳糖結(jié)合蛋白-3的啟動(dòng)子區(qū),調(diào)節(jié)β-半乳糖結(jié)合蛋白-3 的表達(dá)[15]。Vasko等[16]研究顯示 RUNX2 在甲狀腺癌周邊區(qū)高表達(dá),在甲狀腺癌細(xì)胞系研究中,RUNX2敲除可以降低癌細(xì)胞的侵襲性,并且抑制EMT相關(guān)標(biāo)志物的表達(dá)。Sancisi等[17]研究顯示RUNX2表達(dá)與基底膜降解及侵襲有關(guān),還受ID1的調(diào)節(jié)與甲狀腺腫瘤轉(zhuǎn)移相關(guān)。
EMT相關(guān)的微小RNAmiR-200家族是一類具有明確抑癌作用的微小RNA,是參與上皮間質(zhì)轉(zhuǎn)化的重要調(diào)節(jié)分子,在諸多腫瘤中低表達(dá),miR-200可通過直接作用于多種靶基因,如 β-連環(huán)蛋白[18]、SLUG[19]、ZEB1/2[20]等,最終調(diào)節(jié)E-鈣黏蛋白的表達(dá),p53亦能通過調(diào)節(jié)miR-200的表達(dá)[21],抑制EMT。ZEB1可通過結(jié)合在miR-200上游的啟動(dòng)子區(qū),影響miR-200的表達(dá)。miR-200和ZEB1還可相互抑制形成反饋環(huán)路,發(fā)揮生物學(xué)功能。
miR-21是研究較多的具有促進(jìn)腫瘤侵襲轉(zhuǎn)移作用的微小RNA,轉(zhuǎn)化生長因子β受體I型抑制劑能抑制miR-21的促EMT作用。miR-21還可以下調(diào)PTEN[22]及PDCD4[23]等多種抑癌基因及促進(jìn)缺氧誘導(dǎo)因子-1a及血管內(nèi)皮細(xì)胞生長因子等促腫瘤形成基因的表達(dá)。
TGF-β-smad通路主要機(jī)制是TGF-β通過細(xì)胞內(nèi)信號(hào)通路Smad誘導(dǎo)EMT,表現(xiàn)為TGF-β1與其受體結(jié)合后,激活Smad1及Smad3,進(jìn)而通過共同通路Smad4形成三聚體轉(zhuǎn)移至核內(nèi),smad6及smad7則介導(dǎo)抑制信號(hào),阻斷信號(hào)進(jìn)程。
TGF-β可通過自分泌和旁分泌的方式調(diào)控腫瘤細(xì)胞的浸潤和轉(zhuǎn)移,Yasui等[24]用 TGF-β處理導(dǎo)入了BRAFV600E慢病毒的人源甲狀腺未分化癌細(xì)胞系A(chǔ)CT-BRAFV600E,E-鈣黏蛋白表達(dá)未發(fā)生明顯下降,僅波形蛋白表達(dá)升高,但Smad2/3表達(dá)由胞漿轉(zhuǎn)移到細(xì)胞核,證實(shí)TGF-β在誘發(fā)EMT過程中TGF-β-smad通路激活。
Notch信號(hào)Timmerman等[25]在研究胚胎發(fā)育EMT現(xiàn)象中,檢測(cè)到notch信號(hào)激活。后續(xù)Chen等[26]在notch信號(hào)激活的過程中,發(fā)現(xiàn)EMT相關(guān)因子Slug、snail表達(dá)上調(diào)。Zhang等[27]用 γ-分泌酶抑制劑抑制notch信號(hào)后,細(xì)胞穿越小室的能力下降。這些研究均提示notch信號(hào)通路的激活與腫瘤侵襲轉(zhuǎn)移相關(guān),也可能與EMT信號(hào)通路可能有交聯(lián)。有報(bào)道notch抑制劑在體外能治療一部分的未分化癌細(xì)胞系,使甲狀腺特異標(biāo)志物如甲狀腺轉(zhuǎn)錄因子、鈉碘轉(zhuǎn)運(yùn)體的表達(dá)恢復(fù),提示notch信號(hào)在甲狀腺癌EMT中可能發(fā)揮部分作用[28]。
PI3K及MAPK信號(hào)Ha等[29]在用TACC3誘導(dǎo)腫瘤細(xì)胞發(fā)生EMT過程中發(fā)現(xiàn)PI3K/Akt及ERKs信號(hào)通路激活,PI3K抑制劑GDC-0941在甲狀腺癌細(xì)胞系中可以抑制PI3K下游的缺氧誘導(dǎo)因子-1α及GLUT1等EMT相關(guān)基因的表達(dá)[30],提示PI3K/Akt通路也參與了EMT。BRAF突變的甲狀腺癌原代細(xì)胞較野生型甲狀腺癌細(xì)胞在TGF-β處理后 EMT現(xiàn)象更明顯[31],提示Raf/ERK/MAPK通路可能也是TGF-β的下游。
E-鈣黏蛋白作為經(jīng)典的EMT標(biāo)志物,其表達(dá)缺失可作為衡量EMT發(fā)生的重要標(biāo)志。有臨床病理研究證實(shí),在分化差的甲狀腺腫瘤中,E-鈣黏蛋白表達(dá)減低。在乳腺癌、甲狀腺癌等多種腫瘤中,E-鈣黏蛋白的表達(dá)下調(diào)或缺失,與腫瘤的淋巴結(jié)轉(zhuǎn)移及不良預(yù)后相關(guān)[32]。ATC中,EMT相關(guān)轉(zhuǎn)錄因子Twist1、SNAI2(Slug)在ATC(5-8/10)中表達(dá)較在甲狀腺乳頭狀癌高 (0/28)[3],提示甲狀腺未分化癌中存在EMT。
Knauf等[31]通過構(gòu)建BRAF突變小鼠模型,使小鼠自發(fā)發(fā)生甲狀腺乳頭狀癌并進(jìn)展到低分化癌,發(fā)現(xiàn)在此過程中,有EMT現(xiàn)象并且證實(shí)了TGF-β在其中的作用,并且TGFβ-smad通路也有激活,第1次從體內(nèi)試驗(yàn)證實(shí)甲狀腺腫瘤發(fā)生中存在EMT現(xiàn)象。
Vasco等[16]的研究證實(shí),在甲狀腺乳頭狀癌中,侵襲性區(qū)域較腫瘤中心區(qū)域EMT相關(guān)基因表達(dá)升高。Riesco-Eizaguirre等[33]的研究顯示,TGF-β 在甲狀腺乳頭狀癌腫瘤周邊侵襲性區(qū)域較在中心區(qū)域表達(dá)升高,這些區(qū)域的TGF-β高表達(dá)與淋巴結(jié)轉(zhuǎn)移及甲狀腺外浸潤相關(guān)。Liu等[34]也提出了甲狀腺乳頭狀癌中的細(xì)胞極性/黏附性喪失 (loss of cellular polarity/cohesiveness,LOP)概念,在LOP區(qū)域中,E-鈣黏蛋白表達(dá)下調(diào),β-catenin及vimentin呈異常表達(dá)。甲狀腺乳頭狀癌中≥20%的LOP區(qū)域與甲狀腺外浸潤、分期及復(fù)發(fā)有關(guān)。Eloy等[35]的研究顯示甲狀腺乳頭狀癌發(fā)生淋巴結(jié)轉(zhuǎn)移的病例均與腫瘤境界不清、低細(xì)胞核smad7表達(dá)以及周邊具有LOP區(qū)域及浸潤區(qū)TGF-β高表達(dá)相關(guān)。以上研究均證實(shí)甲狀腺乳頭狀癌周邊可能存在EMT的區(qū)域,這些區(qū)域可能與淋巴結(jié)轉(zhuǎn)移及侵襲性升高有關(guān),甲狀腺未分化癌可能來源于分化型甲狀腺癌。在本院已有的甲狀腺切除病例中,有一些病理診斷為乳頭狀癌,部分為未分化癌,提示甲狀腺未分化癌可能由乳頭狀癌進(jìn)展而來。Han等[36]在甲狀腺未分化癌研究中將甲狀腺未分化癌分為3類,分別為未分化癌不伴有分化型甲狀腺癌;未分化癌與甲狀腺癌并存,即兩個(gè)獨(dú)立的癌灶;起源于分化型甲狀腺癌的未分化癌。這些病例的存在提示未分化癌可能是單獨(dú)起源,也可能來源于甲狀腺乳頭狀癌。
甲狀腺乳頭狀癌大部分預(yù)后良好,但有部分病例發(fā)生復(fù)發(fā),發(fā)生甲狀腺外浸潤,如向周圍骨骼肌生長,預(yù)后較差[37]。部分病例在多次復(fù)發(fā)后診斷為低分化癌,提示一部分甲狀腺乳頭狀癌病例侵襲性較高。這些癌周邊的細(xì)胞黏附性下降,RUNX2及纖連蛋白1表達(dá)較腫瘤中心明顯增高[16],值得在診斷和治療中注意。
目前認(rèn)為由于腫瘤干細(xì)胞的存在,才造成了多種腫瘤的化療不敏感,這種細(xì)胞的產(chǎn)生可能是由于EMT的發(fā)生,并且具有腫瘤干細(xì)胞特征的細(xì)胞存在也是未分化癌的一種特征。Liu和Brown[38]用間變型甲狀腺癌和分化型甲狀腺癌并存的2例病例測(cè)定干細(xì)胞相關(guān)因子的表達(dá),結(jié)果顯示E-鈣黏蛋白在間變型甲狀腺癌中不表達(dá),干細(xì)胞相關(guān)因子CD133、CD44及nestin均表達(dá),而在分化型甲狀腺癌中結(jié)果則相反,表明ATC中含有一定數(shù)量的腫瘤干細(xì)胞。
Carina等[39]在8例ATC石蠟標(biāo)本中檢測(cè)干細(xì)胞相關(guān)標(biāo)志物的表達(dá),轉(zhuǎn)錄因子OCT-4、KLF4和SOX2表達(dá)均升高,且未分化癌細(xì)胞系SW1736也有ADLH這種表面標(biāo)志物的表達(dá)升高,體外實(shí)驗(yàn)中將SOX2敲除后,順鉑及阿霉素處理過的細(xì)胞較未處理組細(xì)胞死亡率更高,提示由于腫瘤細(xì)胞獲得了部分干細(xì)胞性,才更容易生存并且抗擊化療藥物的打擊,故甲狀腺腫瘤干細(xì)胞的存在,可成為重要的治療靶點(diǎn)。Yasui等[24]在ATC細(xì)胞系A(chǔ)CT-1中導(dǎo)入snail1基因,細(xì)胞形態(tài)及EMT指標(biāo)顯著升高,但ADLH這種干細(xì)胞標(biāo)志物表達(dá)未升高。
目前在體內(nèi)藥物臨床試驗(yàn)治療ATC中,主要通過BRAF抑制劑[40]以及血管內(nèi)皮生長因子抑制劑抑制腫瘤血管形成[41],已在進(jìn)行Ⅱ期臨床試驗(yàn)。甲狀腺未分化癌是一種高度惡性的甲狀腺腫瘤,主要用手術(shù)治療,對(duì)放化療均不敏感。其主要發(fā)生機(jī)制是CTNNB1和TP53突變,以及EMT。故通過抑制EMT現(xiàn)象治療甲狀腺未分化癌是一種思路。TGF-β抑制劑在體外實(shí)驗(yàn)中可以促進(jìn)間質(zhì)上皮轉(zhuǎn)化,并且提高mir-200的表達(dá),使ZEB1/2表達(dá)下調(diào),提示這種受體抑制劑可用來治療未分化甲狀腺癌[42]。其次,由于 TGFβ-smad通路和其他交匯通路在下游有交匯,如MEK抑制劑MEK U0126及PI3K抑制劑等也能在體外實(shí)驗(yàn)中部分抑制TGFβ-smad信號(hào),故這些藥物也能達(dá)到治療的目的。
[1]Thiery JP,Acloque H,Huang RY,et al.Epithelial-mesenchymal transitions in development and disease [J].Cell,2009,139(5):871-890.
[2]Goetz JG,Minguet S,Navarro-Lérida I,et al.Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis [J].Cell,2011,146(1):148-163.
[3]Salerno P,Garcia-Rostan G,Piccinin S,et al.TWIST1 plays a pleiotropic role in determining the anaplastic thyroid cancer phenotype[J].J Clin Endocrinol Metab,2011,96(5):E772-E781.
[4]Buehler D,Hardin H,Shan W,et al.Expression of epithelial-mesenchymal transition regulators SNAI2 and TWIST1 in thyroid carcinomas [J].Mod Pathol,2013,26(1):54-61.
[5]Thiery JP.Epithelial-mesenchymal transitions in tumour progression [J].Nat Rev Cancer,2002,2(6):442-454.
[6]Jensen K,Patel A,Hoperia V,et al.Dynamic changes in E-cadherin gene promoter methylation during metastatic progression in papillary thyroid cancer[J].Exp Ther Med,2010,1(3):457-462.
[7]Okugawa Y,Toiyama Y,Tanaka K,et al.Clinical significance of zinc finger E-box binding homeobox 1(ZEB1)in human gastric cancer[J].J Surg Oncol,2012,106(3):280-285.
[8]Miyazono K.Transforming growth factor-beta signaling in epithelial-mesenchymal transition and progression of cancer [J].Proc Jpn Acad Ser B Phys Biol Sci,2009,85(8):314-323.
[9]Massagué J,Wotton D.Transcriptional control by the TGF-beta/Smad signaling system [J].EMBO J,2000,19(8):1745-1754.
[10]Zerilli M,Zito G,Martorana A,et al.BRAF(V600E)mutation influences hypoxia-inducible factor-1alpha expression levels in papillary thyroid cancer[J].Mod Pathol,2010,23(8):1052-1060.
[11]Lan L,Luo Y,Cui D,et al.Epithelial-mesenchymal transition triggers cancer stem cell generation in human thyroid cancer cells [J].Int J Oncol,2013,43(1):113-120.
[12]Tobin NP,Sims AH,Lundgren KL,et al.Cyclin D1,Id1 and EMT in breast cancer[J].BMC Cancer,2011,11:417.
[13]Ciarrocchi A,Piana S,Valcavi R,et al.Inhibitor of DNA binding-1 induces mesenchymal features and promotes invasiveness in thyroid tumour cells [J].Eur J Cancer,2011,47(6):934-945.
[14]Pillai S,Rizwani W,Li X,et al.ID1 facilitates the growth and metastasis of non-small cell lung cancer in response to nicotinic acetylcholine receptor and epidermal growth factor receptor signaling [J].Mol Cell Biol,2011,31(14):3052-3067.
[15]Zhang HY,Jin L,Stilling GA,et al.RUNX1 and RUNX2 upregulate galectin-3 expression in human pituitary tumors[J].Endocrine,2009,35(1):101-111.
[16]Vasko V,Espinosa AV,Scouten W,et al.Gene expression and functional evidence of epithelial-to-mesenchymal transition in papillary thyroid carcinoma invasion [J].Proc Natl Acad Sci U S A,2007,104(8):2803-2808.
[17]Sancisi V,Borettini G,Maramotti S,et al.Runx2 isoform I controls a panel of proinvasive genes driving aggressiveness of papillary thyroid carcinomas [J].J Clin Endocrinol Metab,2012,97(10):E2006-E2015.
[18]Su J,Zhang A,Shi Z,et al.MicroRNA-200a suppresses the Wnt/β-catenin signaling pathway by interacting with βcatenin [J].Int J Oncol,2012,40(4):1162-1170.
[19]Liu YN,Yin JJ,Abou-Kheir W,et al.MiR-1 and miR-200 inhibit EMT via Slug-dependent and tumorigenesis via Slugindependent mechanisms [J].Oncogene,2013,32(3):296-306.
[20]Burk U,Schubert J,Wellner U,et al.A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells [J].EMBO Rep,2008,9(6):582-589.
[21]Kim T,Veronese A,Pichiorri F,et al.p53 regulates epithelial-mesenchymal transition through microRNAs targeting ZEB1 and ZEB2 [J].J Exp Med,2011,208(5):875-883.
[22]Meng F,Henson R,Wehbe-Janek H,et al.MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer[J].Gastroenterology,2007,133(2):647-658.
[23]Asangani IA,Rasheed SA,Nikolova DA,et al.MicroRNA-21(miR-21)post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion,intravasation and metastasis in colorectal cancer[J].Oncogene,2008,27(15):2128-2136.
[24]Yasui K,Shimamura M,Mitsutake N,et al.SNAIL induces epithelial-to-mesenchymal transition and cancer stem cell-like properties in aldehyde dehydroghenase-negative thyroid cancer cells [J].Thyroid,2013,23(8):989-996.
[25]Timmerman LA,Grego-Bessa J,Raya A,et al.Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation [J].Genes Dev,2004,18(1):99-115.
[26]Chen J,Imanaka N,Chen J,et al.Hypoxia potentiates notch signaling in breast cancer leading to decreased E-cadherin expression and increased cell migration and invasion[J].Br J Cancer,2010,102(2):351-360.
[27]Zhang PY,Yang YW,Patrick A.Retraction:critical role of notch signaling in osteosarcoma invasion and metastasis [J].Clin Cancer Res,2013,19(18):5256-5257.
[28]Yu XM,Jaskula-Sztul R,Kamal A,et al.Resveratrol induces differentiation markers expression in anaplastic thyroid carcinoma via activation of Notch1 signaling and suppresses cell growth [J].Mol Cancer Ther,2013,12(7):1276-1287.
[29]Ha GH,Park JS,Breuer EK.TACC3 promotes epithelialmesenchymal transition(EMT) through the activation of PI3K/Akt and ERK signaling pathways [J].Cancer Lett,2013,332(1):63-73.
[30]Burrows N,Babur M,Resch J,et al.GDC-0941 inhibits metastatic characteristics of thyroid carcinomas by targeting both the phosphoinositide-3 kinase(PI3K)and hypoxia-inducible factor-1α (HIF-1α)pathways[J].J Clin Endocrinol Metab,2011,96(12):E1934-E1943.
[31]Knauf JA,Sartor MA,Medvedovic M,et al.Progression of BRAF-induced thyroid cancer is associated with epithelial-mesenchymal transition requiring concomitant MAP kinase and TGFβ signaling [J].Oncogene,2011,30(28):3153-3162.
[32]Parker C,Rampaul RS,Pinder SE,et al.E-cadherin as a prognostic indicator in primary breast cancer [J].Br J Cancer,2001,85(12):1958-1963.
[33]Riesco-Eizaguirre G,Rodríguez I,De la Vieja A,et al.The BRAFV600E oncogene induces transforming growth factor beta secretion leading to sodium iodide symporter repression and increased malignancy in thyroid cancer [J].Cancer Res,2009,69(21):8317-8325.
[34]Liu Z,Kakudo K,Bai Y,et al.Loss of cellular polarity/cohesiveness in the invasive front of papillary thyroid carcinoma,a novel predictor for lymph node metastasis;possible morphological indicator of epithelial mesenchymal transition[J].J Clin Pathol,2011,64(4):325-329.
[35]Eloy C,Santos J,Cameselle-Teijeiro J,et al.TGF-beta/Smad pathway and BRAF mutation play different roles in circumscribed and infiltrative papillary thyroid carcinoma [J].Virchows Arch,2012,460(6):587-600.
[36]Han JM,Bae Kim W,Kim TY,et al.Time trend in tumour size and characteristics of anaplastic thyroid carcinoma [J].Clin Endocrinol(Oxf),2012,77(3):459-464.
[37]Hotomi M,Sugitani I,Toda K,et al.A novel definition of extrathyroidal invasion for patients with papillary thyroid carcinoma for predicting prognosis[J].World J Surg,2012,36(6):1231-1240.
[38]Liu J,Brown RE.Immunohistochemical detection of epithelialmesenchymal transition associated with stemness phenotype in anaplastic thyroid carcinoma [J].Int J Clin Exp Pathol,2010,3(8):755-762.
[39]Carina V,Zito G,Pizzolanti G,et al.Multiple pluripotent stem cell markers in human anaplastic thyroid cancer:the putative upstream role of SOX2 [J].Thyroid,2013,23(7):829-837.
[40]Savvides P,Nagaiah G,Lavertu P,et al.PhaseⅡ trial of sorafenib in patients with advanced anaplastic carcinoma of the thyroid [J].Thyroid,2013,23(5):600-604.
[41]Bible KC,Suman VJ,Menefee ME,et al.A multiinstitutional phase 2 trial of pazopanib monotherapy in advanced anaplastic thyroid cancer[J].J Clin Endocrinol Metab,2012,97(9):3179-3184.
[42]Braun J,Hoang-Vu C,Dralle H,et al.Downregulation of microRNAs directs the EMT and invasive potential of anaplastic thyroid carcinomas [J].Oncogene,2010,29(29):4237-4244.
Research Advances in Epithelial-Mesenchymal Transition in Thyroid Carcinoma
CHENG Yin,CUI Quan-cai
Department of Pathology,PUMC Hospital,CAMS and PUMC,Beijing 100730,China
CUI Quan-caiTel:010-69159364,E-mail:cuiqc@sina.com
Increasing evidences have demonstrated the roles of epithelial-mesenchymal transition in tumor invasion and metastasis.In the invasive front of papillary thyroid carcinoma,the expressions of adhesion molecules are often lost.In anaplastic thyroid carcinoma,tumor cells showing cancer stem cell characteristics have been identified.Epithelial-mesenchymal transition may thus play a key role in the progression of thyroid cancer.Therefore,it provide new insight for the development of targeted drugs for anaplastic thyroid carcinoma.
tumor;epithelial-mesenchymal transition;invasive front;cancer stem cell
崔全才 電話:010-69159364,電子郵件:cuiqc@sina.com
R73
A
1000-503X(2014)02-0218-05
10.3881/j.issn.1000-503X.2014.02.021
2013-12-18)
·綜 述·
中國醫(yī)學(xué)科學(xué)院學(xué)報(bào)2014年2期