亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        多能干細(xì)胞分化來源視網(wǎng)膜色素上皮細(xì)胞移植治療視網(wǎng)膜變性研究進(jìn)展

        2014-01-23 10:05:46鄧雯麗向萍金子兵
        關(guān)鍵詞:支架

        鄧雯麗 向萍 金子兵

        ?綜述?

        多能干細(xì)胞分化來源視網(wǎng)膜色素上皮細(xì)胞移植治療視網(wǎng)膜變性研究進(jìn)展

        鄧雯麗 向萍 金子兵

        視網(wǎng)膜色素上皮(RPE)對(duì)視覺功能的維持起著至關(guān)重要的作用。視網(wǎng)膜變性是全球不可治愈性致盲疾病的重要原因,它由視網(wǎng)膜色素上皮功能失常所引起。因此,視網(wǎng)膜色素上皮移植是視網(wǎng)膜變性患者恢復(fù)視力的一種最有前景的手段之一。隨著干細(xì)胞技術(shù)的快速發(fā)展,從多能干細(xì)胞(PSC)到有功能的視網(wǎng)膜色素上皮細(xì)胞的體外分化誘導(dǎo)技術(shù)已經(jīng)成熟,其中包括胚胎干細(xì)胞(ESCs)和誘導(dǎo)多能干細(xì)胞(iPSCs)等。此外,從患者特異性iPSCs分化而來的RPE更能用于闡明發(fā)病機(jī)理并有針對(duì)性地個(gè)體治療。更值得一提的是,經(jīng)誘導(dǎo)得到RPE的移植不論在動(dòng)物模型中,還是在臨床試驗(yàn)里都已經(jīng)得到了可喜的治療效果。本文回顧PSC來源RPE干預(yù)治療視網(wǎng)膜變性的最新研究進(jìn)展。

        色素上皮,眼;胚胎干細(xì)胞;多潛能干細(xì)胞;視網(wǎng)膜變性;干細(xì)胞移植

        視網(wǎng)膜是中樞神經(jīng)系統(tǒng)的一個(gè)重要部分,在視力的產(chǎn)生,視覺信號(hào)的處理中起著關(guān)鍵作用。視網(wǎng)膜色素上皮位于神經(jīng)視網(wǎng)膜的外層,由單層色素上皮細(xì)胞組成,其主要作用為滋養(yǎng)感光細(xì)胞,應(yīng)答不同的細(xì)胞外信號(hào),吸收分散光線,視網(wǎng)膜視覺周期異構(gòu)化,分泌神經(jīng)營養(yǎng)因子吞噬感光細(xì)胞外節(jié)層,并作為血—視網(wǎng)膜屏障中的緊密連接部分[1-3]。視網(wǎng)膜色素上皮(retinal pigmented epithelial,RPE)的缺失和功能失常是導(dǎo)致視網(wǎng)膜變性疾病的主要病因,包括年齡相關(guān)性黃斑變性(age-related macular degeneration,AMD)、遺傳性視網(wǎng)膜變性——視網(wǎng)膜色素變性(retinitis pigmentosa,RP)以及Stargardt病。這些都是世界范圍內(nèi)不可治愈性致盲疾病,遺憾的是目前仍未有根本措施能減緩這些疾病的進(jìn)程,并恢復(fù)喪失視力。截止到現(xiàn)在,在視網(wǎng)膜變性治療的道路上已有很多人貢獻(xiàn)了自己的力量。如今,細(xì)胞移植技術(shù)是填充和置換變性受損RPE的治療策略中最有前景的一種,如其能正確整合入現(xiàn)存受損細(xì)胞網(wǎng)絡(luò),將為治愈視網(wǎng)膜變性帶來希望。在此之前,各型RPE細(xì)胞,包括同源同體和同種異體RPE、胚胎RPE、自發(fā)人類RPE永生細(xì)胞系A(chǔ)RPE-19和同源同體的虹膜色素上皮等都已被用來作為移植的細(xì)胞來源。然而,遺傳易感性和移植材料的缺乏極大地限制了進(jìn)一步移植的進(jìn)程。

        多能干細(xì)胞(pluripotent stem cells,PSCs),包括胚胎干細(xì)胞(embryonic stem cell,ESCs)和誘導(dǎo)多能干細(xì)胞(induced pluripotent stem cells,iPSCs),無論從分子還是功能上都具備與體內(nèi)的PRE細(xì)胞相同的分化潛能[4-6]。更重要的是,在黃斑變性的老鼠等動(dòng)物模型中已有足夠的證據(jù)說明,人類胚胎干細(xì)胞(human embroynic stem cells,hESCs)來源的RPE細(xì)胞移植能挽救感光細(xì)胞并阻止視力的進(jìn)一步丟失[7-8]。2012年Schwartz等[9]報(bào)道了hESCs來源的RPE細(xì)胞能成功地移植到嚴(yán)重的視網(wǎng)膜變性疾病中。雖然關(guān)于hESCs與iPSCs的爭(zhēng)論從未停止,但它們都有類似的優(yōu)點(diǎn),即個(gè)性化治療視網(wǎng)膜變性疾病。在本文中,將總結(jié)基于多能干細(xì)胞的發(fā)展現(xiàn)狀,概括出分化RPE細(xì)胞的不同方法,并討論支持與運(yùn)輸RPE細(xì)胞的支架。

        一、多能干細(xì)胞(PSCs)

        PSCs是一類擁有無限增殖潛能和分化為身體任意胚層(外胚層、中胚層、內(nèi)胚層)能力的細(xì)胞。PSCs由ESCs與iPSCs組成。

        Thomson以及同事成功建立了人類ESCs細(xì)胞系[10],這激起了科學(xué)領(lǐng)域與社會(huì)大眾的廣泛興趣,利用其在細(xì)胞治療上的潛能可以在體外建立疾病模型,因?yàn)檫@樣的干細(xì)胞系能避開人類干細(xì)胞來源的缺乏問題。

        iPSCs是從無干性的成體細(xì)胞如表皮細(xì)胞,通過四個(gè)轉(zhuǎn)錄因子(Oct4、Sox2、Klf4、c-Myc)的異位表達(dá)誘導(dǎo)而來,此方法最早在2006年由Takahashi和Yamanaka[11]在小鼠模型中建立。一年后他們[12]以及另一實(shí)驗(yàn)小組成功將成人表皮成纖維細(xì)胞重編程為多潛能性,并證實(shí)這種hiPSCs在形態(tài)、增殖、表面抗原、基因表達(dá)、干細(xì)胞特異性狀態(tài)與端粒酶活性等與hESCs相同[13]。截止到現(xiàn)在,iPSCs在針對(duì)不同細(xì)胞類型,各種轉(zhuǎn)錄因子,不同的方法[14]上仍在探索中,其最主要的關(guān)注點(diǎn)是更高效,非整合,以及個(gè)體化。初始的iPSCs系相對(duì)于ES樣的克隆效率低。而如今,很多團(tuán)隊(duì)都已經(jīng)報(bào)道通過各種方法增強(qiáng)iPSCs的分化效率,如:優(yōu)化培養(yǎng)環(huán)境[15-16]、降低氧濃度[17],加入丙戊酸(組蛋白脫乙酰酶抑制劑)[18]、鋰[19]、維生素C[20]等小分子化合物。原始的iPSCs由四個(gè)關(guān)鍵轉(zhuǎn)錄因子經(jīng)病毒載體轉(zhuǎn)染而產(chǎn)生,因此,各種對(duì)于基因組的轉(zhuǎn)基因整合將導(dǎo)致人為的突變也限制了iPSCs的運(yùn)用。緊接著,非整合性的策略顯示了其安全性,通過質(zhì)粒[21-22]或者定點(diǎn)整合的腺相關(guān)病毒[23]、泡沫病毒[24]、仙臺(tái)病毒[25]、PiggyBac(PB)轉(zhuǎn)座子[26]、mRNA[27]、重組蛋白[28]以及化合物[29]替代了早期病毒載體。與ESCs相比較,iPSCs能較輕易地將患者的體細(xì)胞重編程為特異性的iPSCs,它擁有與相同白細(xì)胞抗原的同源同體干細(xì)胞治療方法的不竭來源[30-31]??偠灾ㄟ^非整合方法能高效地形成安全并個(gè)體化的iPSCs已逐漸成為可能。

        二、RPE細(xì)胞的來源

        在過去十年中,很多小組已經(jīng)持續(xù)深入地在體外從PSCs分化為RPE進(jìn)行了研究,下面將詳述細(xì)節(jié)。

        1.基質(zhì)細(xì)胞共培養(yǎng):2002年Kawasaki等[32]第一次通過猴ES細(xì)胞系與基質(zhì)細(xì)胞系PA6共培養(yǎng)能夠分化出RPE樣的細(xì)胞。在培養(yǎng)3周后,擁有的大片色素細(xì)胞不但呈現(xiàn)六邊形而且標(biāo)記物Pax6呈陽性,這在大約10﹪的早期ES克隆中能見到。兩年后,他們小組又報(bào)道了培養(yǎng)出的RPE細(xì)胞不僅表達(dá)典型的RPE標(biāo)記物:ZO-1、RPE65、CRALBP和Mertk等,而且擁有廣泛的微絨毛能吞噬乳膠微粒。令人欣喜的是,對(duì)于RPE功能障礙的經(jīng)典模型鼠(royal college of surgeons rats,RCS)的RPE細(xì)胞視網(wǎng)膜下移植,于8周后展現(xiàn)出在保存視功能上的重要改善。2012年Okamoto等[33]發(fā)表了關(guān)于用食蟹猴的腹部皮膚在PA6的滋養(yǎng)層上(被定義為標(biāo)準(zhǔn)的SDIA法)或者在PA6上清中(改良的SDIA法)培養(yǎng)均能分化出RPE樣細(xì)胞。然而,筆者對(duì)于PA6培養(yǎng)基到底是提供了一個(gè)適合誘導(dǎo)的RPE細(xì)胞分化的環(huán)境,亦或是直接促成了其誘導(dǎo),這其中的分子機(jī)制仍不甚清楚。

        2.自發(fā)分化:自發(fā)分化的方案最早由Klimanskaya等建立。他們讓hESCs首先生長(zhǎng)過度并層疊覆蓋后,在缺乏堿性成纖維生長(zhǎng)因子(bFGF)的培養(yǎng)基中能被誘導(dǎo)自由分化為類似RPE細(xì)胞[34]。這種合成的RPE樣細(xì)胞在基因表達(dá)譜上更接近人類胚胎RPE細(xì)胞而非RPE細(xì)胞系,在移植入RCS大鼠長(zhǎng)時(shí)間(>220 d)后,它能吞噬視桿細(xì)胞外節(jié),有極性地分泌色素上皮因子[35],表達(dá)ATP依賴的外轉(zhuǎn)運(yùn)蛋白[36],在劑量依賴的條件下能維持視功能與感光細(xì)胞的完整,而不形成畸胎瘤或者棘手的病理反應(yīng)[7]。近期臨床研究表明hESC-RPE細(xì)胞的視網(wǎng)膜下移植安全并且耐受[9]。這份自發(fā)分化的方案同樣在誘導(dǎo)的iPSC分化為RPE細(xì)胞中廣泛應(yīng)用[3-4,37]。hiPSCs分化出的RPE在功能缺陷的RCS老鼠視網(wǎng)膜下移植后,已被證實(shí)能促進(jìn)吞噬感光細(xì)胞外節(jié)而維持其短期平衡狀態(tài)[4]。然而,有趣的是,相同條件下撤除bFGF后通過iPS出現(xiàn)產(chǎn)生色素的時(shí)間比誘導(dǎo)ES的平均時(shí)間明顯縮短[37]。盡管這份方案已被多個(gè)小組證實(shí)是一個(gè)從ESCs或者iPSCs分化為RPE的可信方法,但誘導(dǎo)成功時(shí)間仍未達(dá)成統(tǒng)一。但總而言之,當(dāng)撤除生長(zhǎng)因子后需要1 ~ 8周才能觀察到色素化的趨勢(shì),而要出現(xiàn)足夠大的色素斑點(diǎn)還需要6 ~ 14周。

        3.重組蛋白與化合物誘導(dǎo):Osakada等[38-39]早前建立了利用重組蛋白尤其是信號(hào)通路抑制劑使PSC分化為PRE細(xì)胞的方法。在這個(gè)方案里,hESC克隆在一開始就被分離成3 ~ 10個(gè)細(xì)胞集落,接著這些集落在含有Dkk-1(Wnt信號(hào)通路抑制劑)和Lefty-A(Nodal抑制劑)的培養(yǎng)基中懸浮培養(yǎng)21 d,緊接著種到經(jīng)纖連蛋白、層黏連蛋白和單純多聚賴氨酸(PDL)包被的皿中,分化40 d后能在光學(xué)顯微鏡下觀察到色素細(xì)胞,然而,要觀察更多的色素沉著以及多邊形態(tài)需要超過60 d。分化為成熟的RPE細(xì)胞需要4個(gè)月。另一些因子如noggin(骨形態(tài)生成蛋白拮抗劑),Shh(sonic hedgehog),胰島素樣生長(zhǎng)因子(IGF),激活素等已被報(bào)道能誘導(dǎo)RPE的分化[40-41]。然而,這些重組蛋白在動(dòng)物細(xì)胞或者大腸桿菌中生成,這增加了由于種屬差異帶來的感染和免疫排斥風(fēng)險(xiǎn)。另一方面,Osakada等[42]運(yùn)用一種改良的方法,即化學(xué)抑制劑阻斷Wnt與Nodal信號(hào)通路,誘導(dǎo)hESCs和hiPSCs分化為RPE細(xì)胞。在這一方案中,小分子CKI-7(抑制酪蛋白激酶I阻斷Wnt信號(hào)通路)和SB431542(抑制激活蛋白受體樣激酶-1阻斷Nodal信號(hào)通路)分別替代了Dkk-1和Lefty-A。這樣誘導(dǎo)出的類RPE細(xì)胞呈現(xiàn)六邊形,表達(dá)RPE65和CRALBP,ZO-1陽性,擁有緊密連接并具備吞噬功能。此外,另外一種化合物尼克酰胺也被成功運(yùn)用到hESCs到RPE細(xì)胞的分化中。這種hESC來源的RPE不僅在形態(tài)、表達(dá)標(biāo)志物、功能上與真正的RPE相似,而且通過視網(wǎng)膜電圖上記錄,與13 d后才進(jìn)行移植的對(duì)側(cè)眼相比,其顯著挽救了視網(wǎng)膜結(jié)構(gòu)及其功能[43]。相比之下,這種通過小分子誘導(dǎo)hESCs和iPSCs為RPE細(xì)胞比重組蛋白有更多優(yōu)勢(shì)。因化合物有穩(wěn)定的活性,在產(chǎn)量上無差別,并且,其不存在生物源性,能確切避免感染與免疫排斥,這對(duì)基于人類多能干細(xì)胞移植的治療至關(guān)重要。

        三、特異性RPE生成

        從可遺傳的基因突變產(chǎn)生的iPSCs將對(duì)再生醫(yī)學(xué)產(chǎn)生重要影響[44]。這種疾病特異性的iPSCs將為研究那些缺乏適合動(dòng)物模型的疾病致病機(jī)制提供空前的機(jī)會(huì),同時(shí)這增加了疾病調(diào)查,藥物篩選,以及細(xì)胞治療的機(jī)會(huì)[45]。2011年,筆者首先建立了從五個(gè)視網(wǎng)膜色素變性患者在RP1、RP9、PRPH2或者RHO等擁有突變基因的hiPSCs[46]。其后,這些hiPSCs在體外分化為感光細(xì)胞和RPE細(xì)胞。有趣的是,這些誘導(dǎo)出的細(xì)胞能展現(xiàn)典型內(nèi)質(zhì)網(wǎng)應(yīng)激特征,印證了疾病在體外的表型,這將幫助說明在視網(wǎng)膜色素變性中的基因突變致病機(jī)制。2012年,Baharvand小組報(bào)道了一種新型、簡(jiǎn)便、快捷且高效的方法,能直接從有Leber’s先天性黑朦與視神經(jīng)病變,Usher綜合征,視網(wǎng)膜色素變性等的患者h(yuǎn)iPSCs分化為RPE細(xì)胞[41]。然而上述個(gè)體化iPSCS的方法都通過逆轉(zhuǎn)錄病毒重編程。為避免逆轉(zhuǎn)錄病毒在宿主基因組中的隨機(jī)重組帶來的不可預(yù)知的副作用,筆者將非重組性的仙臺(tái)病毒載體轉(zhuǎn)入四個(gè)關(guān)鍵重編程因子(POU5F1、SOX2、KLF4、c-MYC)后,轉(zhuǎn)染入視網(wǎng)膜色素變性患者皮膚細(xì)胞中[47],這將成為RPE移植的可能細(xì)胞來源。

        四、RPE細(xì)胞的移植支架

        在健康視網(wǎng)膜中,RPE是由連續(xù)的單層極性色素細(xì)胞組成的單層結(jié)構(gòu),通過介于中間的緊密連接在外部視網(wǎng)膜與脈絡(luò)膜血管中創(chuàng)建了一個(gè)屏障[37,48]。RPE移植的最終目的是盡可能恢復(fù)規(guī)律的極性,運(yùn)用表面和基底部不同的蛋白,這對(duì)正常RPE的功能與維持血-視網(wǎng)膜屏障至關(guān)重要。很多研究顯示,來源于ESCs[49]和iPSCs的RPE細(xì)胞注射入RCS大鼠視網(wǎng)膜下區(qū)域后能在一定程度上挽救視功能。然而,很多分離出的細(xì)胞經(jīng)視網(wǎng)膜下或者玻璃體內(nèi)注射,表現(xiàn)得雜亂無章,不能準(zhǔn)確定位,更有細(xì)胞從注射部位反流而出。為解決這些問題,很多支架被用來支撐RPE細(xì)胞形成擁有細(xì)胞連續(xù)性與極性的完整細(xì)胞層以進(jìn)行視網(wǎng)膜下移植[50-53]。之前的報(bào)道顯示相對(duì)于視網(wǎng)膜下注射而言,支架的結(jié)合能讓移植后的細(xì)胞生存狀態(tài)和極性顯著提高[54-55]。截止到現(xiàn)在,一系列的聚合物因其生物相容性與降解性能模擬RPE細(xì)胞在細(xì)胞內(nèi)基質(zhì)的情況已被用于構(gòu)建支架,其中包括天然生物材料和人造聚合物。Lu等[56]為視網(wǎng)膜上皮細(xì)胞的培養(yǎng)準(zhǔn)備了一層薄的膠原膜支架。RPE細(xì)胞種在這些膠原膜上能形成上皮表型并且吞噬感光細(xì)胞外節(jié)。其后,另一研究組將這些在超薄膠原膜上培養(yǎng)的RPE細(xì)胞植入兔子的結(jié)膜下與視網(wǎng)膜下[53]。在移植后的16周,仍未有免疫或者排斥反應(yīng)出現(xiàn),這也展示了膠原膜在體內(nèi)的優(yōu)良生物相容性。人類RPE細(xì)胞已被證實(shí)能在其他細(xì)胞外基質(zhì)蛋白(纖連蛋白、層粘連蛋白和玻連蛋白),生物高聚物(明膠、基底膜基質(zhì)),或者組織支架(羊膜)等存活[57]。此外,最近觀察發(fā)現(xiàn)纖連蛋白-111是hESC/hiPSC-RPE細(xì)胞生長(zhǎng)的理想基質(zhì),即便傳數(shù)代后仍能維持穩(wěn)定性[37]。然而,因?yàn)椴豢杀苊獾膭?dòng)物源性的污染,以及機(jī)械性能和難控制的降解率,由生物多聚物或者組織構(gòu)建出連續(xù)的支架就顯得不那么現(xiàn)實(shí)。與生物材料的支架顯著不同,合成多聚物能被設(shè)計(jì)成滿足特定移植需求,并且能輕易控制降解率和機(jī)械性能[58]。實(shí)際上,一系列合成多聚物被廣泛研究以求獲得在正確定位的條理清晰的RPE細(xì)胞層。早在1996年,用低分子左旋聚乳酸(PLLA)和聚乳酸-羥基乙酸共聚物(PLGA)制造出的厚度在(12 ± 3)μm的膜能作為人類胚胎RPE細(xì)胞的暫時(shí)基質(zhì)[59]。Lu等[60]證實(shí)了在PLGA膜上生長(zhǎng)的人類視網(wǎng)膜色素上皮細(xì)胞增長(zhǎng)率快于組織培養(yǎng)板。如同鵝卵石般的形態(tài)與細(xì)胞表面的緊密連接這些特征都能在體外實(shí)驗(yàn)中看到。緊接著,同一個(gè)研究小組用模型基質(zhì)的表面微模型化去控制RPE細(xì)胞形態(tài),使其更先融合與表達(dá)分化的基因型[61]。Thomson與其同事發(fā)現(xiàn),PLGA混合PLLA后更有益于人類RPE細(xì)胞基質(zhì)的形成[62]。另外,聚二甲基硅氧烷(PDMS)[63],聚羥基丁酸戊酸酯(PHBV8)[64-65],聚亞安酯(polyether urethanes)[66-67],聚四氟乙烯(ePTFE)[50]等也被經(jīng)常運(yùn)用。令人驚訝的是,目前仍有少量報(bào)道運(yùn)用人類RPE細(xì)胞/合成支架層進(jìn)行動(dòng)物或者人類的視網(wǎng)膜下移植。盡管大量支架能為RPE細(xì)胞提供合適的基質(zhì),可能會(huì)作為有規(guī)律的RPE細(xì)胞視網(wǎng)膜下移植的臨時(shí)轉(zhuǎn)運(yùn)體。不過目前沒有PSCs來源的RPE與支架相互之間作用的報(bào)道。另外,仍有許多值得思考的問題留待解決:為保證細(xì)胞存活以及保持黃斑視力,理想的細(xì)胞層需要培養(yǎng)多久?如何能找到組織再生、支架降解與機(jī)械性能改變的平衡點(diǎn)?為了能回答這些問題,需要完成更深層次的尤其是體內(nèi)的實(shí)驗(yàn)。

        五、結(jié)論與展望

        PSCs尤其是iPSCs的運(yùn)用為生物科學(xué)以及再生醫(yī)學(xué)開辟了一條全新的道路。時(shí)至今日,很多改良后能安全有效地生成特異性iPSCs的非重組法已被建立。然而,下一步就是要建立起一個(gè)細(xì)胞系選擇金標(biāo)準(zhǔn)和有質(zhì)控的高效產(chǎn)出方法。

        如今在干細(xì)胞領(lǐng)域的進(jìn)步為體外從ES或者iPS到生成RPE細(xì)胞開辟了新路,可成為與RPE失調(diào)相關(guān)的視力退化性疾病的有效治療方法。然而,仍有很多困難需要解決。目前分化的具體流程還不能在保證效率與安全性的情況下精確到每一天,并且在移植前沒有精確的標(biāo)準(zhǔn)能夠評(píng)估功能性質(zhì)。目前,hESC來源的RPE細(xì)胞已經(jīng)預(yù)先移植到了一位進(jìn)展期Stargardt’s病患者與一位年齡相關(guān)性黃斑變性的廣泛地圖樣萎縮患者中進(jìn)行治療,然而,在沒有進(jìn)行免疫抑制的情況下移植物能否不因組織相容分子(MHC I 和 II)外源性差異而被免疫系統(tǒng)所接收?盡管從視網(wǎng)膜變性患者的iPSCs能解決免疫排斥問題,為個(gè)體化治療的實(shí)現(xiàn)提供了可能,但當(dāng)它分化為視網(wǎng)膜細(xì)胞時(shí)卻經(jīng)常出現(xiàn)功能上的缺陷。因此,在臨床移植之前精準(zhǔn)的基因修正與徹底的評(píng)估是必備的。分化而來的RPE細(xì)胞會(huì)經(jīng)歷不同的階段(較淺的色素塊,棕色色素點(diǎn),或者較深的色素塊),哪種更適合移植仍是個(gè)問題?除此之外,多種自然的或者合成的支架仍將繼續(xù)研發(fā)以支撐和運(yùn)送RPE細(xì)胞,不過在組織再生、支架降解與機(jī)械性質(zhì)的平衡問題上卻很少被提及。

        志 謝衷心感謝研究組每一位成員的不懈努力和實(shí)驗(yàn)室中心平臺(tái)的大力支持

        1 Bharti K,Miller SS,Arnheiter H.The new paradigm: retinal pigment epithelium cells generated from embryonic or induced pluripotent stem cells[J].Pigment Cell Melanoma Res,2011,24(1):21-34.

        2 Kokkinaki M,Sahibzada N,Golestaneh N.Human Induced Pluripotent Stem-Derived Retinal Pigment Epithelium (RPE) Cells Exhibit Ion Transport,Membrane Potential,Polarized Vascular Endothelial Growth Factor Secretion,and Gene Expression Pattern Similar to Native RPE[J].Stem Cells,2011,29(5):825-835.

        3 Liao JL,Yu J,Huang K,et al.Molecular signature of primary retinal pigment epithelium and stem-cell-derived RPE cells[J].Hum Mol Genet,2010,19(21):4229-4238.

        4 Carr AJ,Vugler AA,Hikita S T,et al.Protective effects of human iPS-derived retinal pigment epithelium cell transplantation in the retinal dystrophic rat[J].PLoS One,2009,4(12):e8152.

        5 Carr AJ,Vugler A,Lawrence J,et al.Molecular characterization and functional analysis of phagocytosis by human embryonic stem cell-derived RPE cells using a novel human retinal assay[J].Mol Vis,2009,15:283-295.

        6 Haruta M,Sasai Y,Kawasaki H,et al.In vitro and in vivo characterization of pigment epithelial cells differentiated from primate embryonic stem cells[J].Invest Ophthalmol Vis Sci,2004,45(3):1020-1025.

        7 Lu B,Malcuit C,Wang S,et al.Long-Term Safety and Function of RPE from Human Embryonic Stem Cells in Preclinical Models of Macular Degeneration[J].Stem cells,2009,27(9):2126-2135.

        8 Wang NK,Tosi J,Kasanuki JM,et al.Transplantation of reprogrammed embryonic stem cells improves visual function in a mouse model for retinitis pigmentosa[J].Transplantation,2010,89(8):911-999.

        9 Schwartz SD,Hubschman JP,Heilwell G,et al.Embryonic stem cell trials for macular degeneration: a preliminary report[J].The Lancet,2012,379(9817):713-720.

        10 Thomson JA,Itskovitz-Eldor J,Shapiro SS,et al.Embryonic stem cell lines derived from human blastocysts[J].science,1998,282(5391):1145-1147.

        11 Takahashi K,Yamanaka S.Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by de fi ned factors[J].Cell,2006,126(4):663-676.

        12 Takahashi K,Tanabe K,Ohnuki M,et al.Induction of pluripotent stem cells from adult human fibroblasts by de fi ned factors[J].cell,2007,131(5):861-872.

        13 Nistor G,Seiler MJ,Yan F,et al.Three-dimensional early retinal progenitor 3D tissue constructs derived from human embryonic stem cells[J].J Neurosci Methods,2010,190(1):63-70.

        14 Zhou H,Ding S.Evolution of induced pluripotent stem cell technology[J].Curr Opin Hematol,2010,17(4):276-280.

        15 Chen J,Liu J,Chen Y,et al.Rational optimization of reprogramming culture conditions for the generation of induced pluripotent stem cells with ultra-high efficiency and fast kinetics[J].Cell research,2011,21(6):884-894.

        16 Chen J,Liu J,Han Q,et al.Towards an optimized culture medium for the generation of mouse induced pluripotent stem cells[J].J Biol Chem,2010,285(40):31066-31072.

        17 Yoshida Y,Takahashi K,Okita K,et al.Hypoxia enhances the generation of induced pluripotent stem cells[J].Cell Stem Cell,2009,5(3):237-241.

        18 Huangfu D,Osafune K,Maehr R,et al.Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2[J].Nature biotechnology,2008,26(11):1269-1275.

        19 Wang Q,Xu X,Li J,et al.Lithium,an anti-psychotic drug,greatly enhances the generation of induced pluripotent stem cells[J].Cell Res,2011,21(10):1424-1435.

        20 Esteban MA,Wang T,Qin B,et al.Vitamin C enhances the generation of mouse and human induced pluripotent stem cells[J].Cell Stem Cell,2010,6(1):71-79.

        21 Chou BK,Mali P,Huang X,et al.Ef fi cient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures[J].Cell Res,2011,21(3):518-529.

        22 Okita K,Matsumura Y,Sato Y,et al.A more efficient method to generate integration-free human iPS cells[J].Nat Methods,2011,8(5):409-412.

        23 Zhou W,Freed CR.Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells[J].Stem Cells,2009,27(11):2667-2674.

        24 Deyle DR,Khan IF,Ren G,et al.Normal collagen and bone production by gene-targeted human osteogenesis imperfecta iPSCs[J].Mol Ther,2011,20(1):204-213.

        25 Ban H,Nishishita N,Fusaki N,et al.Ef fi cient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors[J].Proc Natl Acad Sci U S A,2011,108(34):14234-14239.

        26 Woltjen K,Michael IP,Mohseni P,et al.piggyBac transposition reprograms fi broblasts to induced pluripotent stem cells[J].Nature,2009,458(7239):766-770.

        27 Plews JR,Li JL,Jones M,et al.Activation of pluripotency genes in human fibroblast cells by a novel mRNA based approach[J].PLoS One,2010,5(12):e14397.

        28 Zhou W,Freed CR.Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells[J].Stem Cells,2009,27(11):2667-2674.

        29 Lin T,Ambasudhan R,Yuan X,et al.A chemical platform for improved induction of human iPSCs[J].Nat Methods,2009,6(11):805-808.

        30 Jin ZB,Okamoto S,Mandai M,et al.Inducedpluripotent stem cells for retinal degenerative diseases: a new perspective on the challenges[J].J Genet,2009,88(4):417-424.

        31 Müller R,Lengerke C.Patient-specific pluripotent stem cells: promises and challenges[J].Nat Rev Endocrinol,2009,5(4):195-203.

        32 Kawasaki H,Suemori H,Mizuseki K,et al.Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell-derived inducing activity[J].Proc Natl Acad Sci U S A,2002,99(3): 1580-1585.

        33 Okamoto S,Takahashi M.Induction of retinal pigment epithelial cells from monkey iPS cells[J].Invest Ophthalmol Vis Sci,2011,52(12):8785-8790.

        34 Klimanskaya I,Hipp J,Rezai KA,et al.Derivation and comparative assessment of retinal pigment epithelium from human embryonic stem cells using transcriptomics[J].Cloning Stem Cells,2004,6(3):217-245.

        35 Zhu D,Deng X,Spee C,et al.Polarized Secretion of PEDF from Human Embryonic Stem Cell-Derived RPE Promotes Retinal Progenitor Cell Survival[J].Invest Ophthalmol Vis Sci,2011,52(3):1573-1585.

        36 Rowland TJ,Blaschke AJ,Buchholz DE,et al.Differentiation of human pluripotent stem cells to retinal pigmented epithelium in de fi ned conditions using puri fi ed extracellular matrix proteins[J].J Tissue Eng Regen Med,2012,7(8):642-653.

        37 Rizzolo LJ,Peng S,Luo Y,et al.Integration of tight junctions and claudins with the barrier functions of the retinal pigment epithelium[J].Prog Retin Eye Res,2011,30(5):296-323.

        38 Osakada F,Ikeda H,Mandai M,et al.Toward the generation of rod and cone photoreceptors from mouse,monkey and human embryonic stem cells[J].Nat Biotechnol,2008,26(2):215-224.

        39 Osakada F,Ikeda H,Sasai Y,et al.Stepwise differentiation of pluripotent stem cells into retinal cells[J].Nat Protoc,2009,4(6):811-824.

        40 Park UC,Cho MS,Park JH,et al.Subretinal transplantation of putative retinal pigment epithelial cells derived from human embryonic stem cells in rat retinal degeneration model[J].Clin Exp Reprod Med,2011,38(4):216-221.

        41 Zahabi A,Shahbazi E,Ahmadieh H,et al.A new efficient protocol for directed differentiation of retinal pigmented epithelial cells from normal and retinal disease induced pluripotent stem cells[J].Stem Cells Dev,2011,21(12):2262-2272.

        42 Osakada F,Jin ZB,Hirami Y,et al.In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction[J].J Cell Sci.,2009,122(17):3169-3179.

        43 Idelson M,Alper R,Obolensky A,et al.Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells[J].Cell Stem Cell,2009,5(4):396-408.

        44 Park I H,Arora N,Huo H,et al.Disease-speci fi c induced pluripotent stem cells[J].Cell,2008,134(5):877-886.

        45 Jang J,Yoo JE,Lee JA,et al.Disease-specific induced pluripotent stem cells: a platform for human disease modeling and drug discovery[J].Exp Mol Med,2011,44(3):202-213.

        46 Jin ZB,Okamoto S,Osakada F,et al.Modeling retinal degeneration using patient-specific induced pluripotent stem cells[J].PloS One,2011,6(2):e17084.

        47 Jin ZB,Okamoto S,Xiang P,et al.Integration-free induced pluripotent stem cells derived from retinitis pigmentosa patient for disease modeling[J].Stem Cells Transl Med,2012,1(6):503-509.

        48 Lee E,MacLaren RE.Sources of retinal pigment epithelium (RPE) for replacement therapy[J].Br J Ophthalmol,2011,95(4):445-449.

        49 Vugler A,Carr A J,Lawrence J,et al.Elucidating the phenomenon of HESC-derived RPE: anatomy of cell genesis,expansion and retinal transplantation[J].Exp Neurol,2008,214(2):347-361.

        50 Krishna Y,Sheridan C,Kent D,et al.Expanded polytetrafluoroethylene as a substrate for retinal pigment epithelial cell growth and transplantation in age-related macular degeneration[J].Br J Ophthalmol,2011,95(4):569-573.

        51 Lu L,Yaszemski MJ,Mikos A G.Retinal pigment epithelium engineering using synthetic biodegradable polymers[J].Biomaterials,2001,22(24):3345-3355.

        52 Thomson HAJ,Treharne AJ,Walker P,et al.Optimisation of polymer scaffolds for retinal pigment epithelium (RPE) cell transplantation[J].Br J Ophthalmol,2011,95(4):563-568.

        53 Thumann G,Viethen A,Gaebler A,et al.The in vitro and in vivo behaviour of retinal pigment epithelial cells cultured on ultrathin collagen membranes[J].Biomaterials,2009,30(3):287-294.

        54 Hynes SR,Lavik EB.A tissue-engineered approach towards retinal repair: scaffolds for cell transplantation to the subretinal space[J].Graefes Arch Clin Exp Ophthalmol,2010,248(6):763-778.

        55 Yao J,Tao SL,Young MJ.Synthetic polymer scaffolds for stem cell transplantation in retinal tissue engineering[J].Polymers,2011,3(2):899-914.

        56 Lu JT,Lee CJ,Bent SF,et al.Thin collagen fi lm scaffolds for retinal epithelial cell culture[J].Biomaterials,2007,28(8):1486-1494.

        57 Rowland TJ,Buchholz DE,Clegg DO.Pluripotent human stem cells for the treatment of retinal disease[J].J Cell Physiol,2012,227(2):457-466.

        58 Binder S.Scaffolds for retinal pigment epithelium (RPE) replacement therapy[J].Br J Ophthalmol,2011,95(4):441-442.

        59 Rohman G,Pettit JJ,Isaure F,et al.Influence of the physical properties of two-dimensional polyester substrates on the growth of normal human urothelial and urinary smooth muscle cells in vitro[J].Biomaterials,2007,28(14):2264-2274.

        60 Lu L,Garcia CA,Mikos AG.Retinal pigment epithelium cell culture on thin biodegradable poly (DL-lactic-coglycolic acid) films[J].J Biomater Sci Polym Ed,1998,9(11):1187-1205.

        61 Lu L,Nyalakonda K,Kam L,et al.Retinal pigment epithelial cell adhesion on novel micropatterned surfaces fabricated from synthetic biodegradable polymers[J].Biomaterials,2001,22(3):291-297.

        62 Thomson HA,Treharne AJ,Backholer LS,et al.Biodegradable poly (α-hydroxy ester) blended microspheres as suitable carriers for retinal pigment epithelium cell transplantation[J].J Biomed Mater Res A,2010,95(4):1233-1243.

        63 Lim JM,Byun S,Chung S,et al.Retinal pigment epithelial cell behavior is modulated by alterations in focal cellsubstrate contacts[J].Invest Ophthalmol Vis Sci,2004,45(11):4210-4216.

        64 Tezcaner A,Bugra K,Has?rc? V.Retinal pigment epithelium cell culture on surface modified poly (hydroxybutyrateco-hydroxyvalerate) thin films[J].Biomaterials,2003,24(25):4573-4583.

        65 Tezcaner A,Hicks D.In vitro characterization of micropatterned PLGA-PHBV8 blend fi lms as temporary scaffolds for photoreceptor cells[J].J Biomed Mater Res A,2008,86(1):170-181.

        66 da Silva GR1,Junior Ada S,Saliba JB,et al.Polyurethanes as supports for human retinal pigment epithelium cell growth[J].Int J Artif Organs,2011,34(2):198-209.

        67 Williams RL,Krishna Y,Dixon S,et al.Polyurethanes as potential substrates for sub-retinal retinal pigment epithelial cell transplantation[J].J Mater Sci Mater Med,2005,16(12):1087-1092.

        The research progress toward clinical transplantation of pluripotent stem cell-derived retinal pigmented epithelial cells


        Deng Wenli,Xiang Ping,Jin Zibing.Division of Ophthalmic Genetics,Laboratory for Stem Cell & Retinal Regeneration,The Eye Hospital of Wenzhou Medical University,Wenzhou 325027,China

        Jin zibing,Email:jinzb@mail.eye.ac.cn

        Retinal pigmented epithelial (RPE) cell is essential to maintain retinal function.RPE loss or dysfunction is the leading cause of incurable blindness worldwide.RPE cell replacement has been one of the most promising approaches to restore vision for these patients.With rapid progress of stem cell biology,great efforts have been made to induce functional RPE cells from pluripotent stem cells (PSCs),including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs).Disease-specific RPE cells differentiated from patient iPS cells are greatly expected to elucidate mechanism of pathogenesis and personalized therapies for retinal degenerative diseases.Additionally,transplantation of induced RPE into subretinal space has shown encouraging remedies in both animal models and clinical trials.In this review,we focus on PSC-derived RPE in field of regenerative medicine and to summarize methods for RPE cell production and delivering .

        Pigment epithelium of eye;Embryonic stem cell;Pluripotent stem cells;Retinal degeneration;Stem cell transplantation;

        2014-02-10)

        (本文編輯:李少婷)

        10.3877/cma.j.issn.2095-1221.2014.02.004

        國家重大科學(xué)研究計(jì)劃(2013CB967502);國家自然科學(xué)基金 (81170879)

        325027 溫州,溫州醫(yī)科大學(xué)附屬眼視光醫(yī)院視網(wǎng)膜再生醫(yī)療研究組 省部共建國家重點(diǎn)實(shí)驗(yàn)培育基地、衛(wèi)生部視覺科學(xué)重點(diǎn)實(shí)驗(yàn)室

        金子兵,Email:jinzb@mail.eye.ac.cn

        鄧雯麗,向萍,金子兵.多能干細(xì)胞分化來源視網(wǎng)膜色素上皮細(xì)胞移植治療視網(wǎng)膜變性研究進(jìn)展[J/CD].中華細(xì)胞與干細(xì)胞雜志:電子版,2014,4(2):97-103.

        猜你喜歡
        支架
        支架≠治愈,隨意停藥危害大
        給支架念個(gè)懸浮咒
        一種便攜式側(cè)掃聲吶舷側(cè)支架的設(shè)計(jì)及實(shí)現(xiàn)
        右冠狀動(dòng)脈病變支架植入后顯示后降支近段肌橋1例
        三維多孔電磁復(fù)合支架構(gòu)建與理化表征
        前門外拉手支架注射模設(shè)計(jì)與制造
        模具制造(2019年3期)2019-06-06 02:10:54
        基于ANSYS的輪轂支架結(jié)構(gòu)設(shè)計(jì)
        血管內(nèi)超聲在冠狀動(dòng)脈支架置入中的應(yīng)用與評(píng)價(jià)
        下肢動(dòng)脈硬化閉塞癥支架術(shù)后再狹窄的治療
        星敏感器支架的改進(jìn)設(shè)計(jì)
        航天器工程(2014年5期)2014-03-11 16:35:55
        91网站在线看| 亚洲国产精品无码久久| 日韩一卡2卡3卡4卡新区亚洲| 午夜AV地址发布| 国产桃色精品网站| 亚洲岛国一区二区三区| 亚洲av综合av国产av中文| 亚洲精品国产成人无码区a片| 九九久久国产精品大片| 国产一级黄片久久免费看| 日韩精品人妻久久久一二三| 婷婷亚洲久悠悠色悠在线播放 | 国产精品一区二区韩国av| 久久亚洲欧美国产精品| 欧美黑人疯狂性受xxxxx喷水| 国产视频嗯啊啊啊| 青青草免费手机直播视频| 曰本女人与公拘交酡| 漂亮人妻被黑人久久精品| 极品人妻少妇一区二区| 91精品啪在线观九色| 亚洲精品久久久久久久久久吃药| 国产一区曰韩二区欧美三区| 免费观看在线一区二区| 日本道免费一区二区三区日韩精品| 久久久无码人妻精品一区 | 强d乱码中文字幕熟女1000部| 精品国产自在现线看久久| 欧美成人在线视频| 无码一区二区三区AV免费换脸| 国产自拍精品视频免费观看| 国精产品一区一区三区| 天堂一区人妻无码| 亚洲成AV人久久| 亚洲av高清天堂网站在线观看| 少妇无码av无码一区| 亚洲中文字幕在线爆乳| 亚洲av色香蕉一区二区三区av | 久久免费亚洲免费视频| 人妻聚色窝窝人体www一区| 亚洲av无码成人网站www|