亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        機載雷達空時自適應檢測方法研究進展

        2014-01-11 05:17:11王永良劉維建謝文沖段克清王澤濤
        雷達學報 2014年2期
        關鍵詞:信號檢測

        王永良 劉維建 謝文沖 段克清 高 飛 王澤濤

        ①(空軍預警學院 武漢 430019)

        ②(國防科學技術大學電子科學與工程學院 長沙 410073)

        1 引言

        針對機載雷達空時2維濾波問題,Brennan等人[1]于 1973年首次提出了空時自適應處理(Space-Time Adaptive Processing, STAP)理論。在此基礎上,各種背景下的STAP技術被不斷提出。經過40年的不斷發(fā)展,STAP技術不斷完善,并形成理論體系[2-4]。更重要的是,該技術已經面向工程實用。根據有關報道,STAP技術已在美國生產的E-2D預警機上得到應用。

        需要指出的是,STAP技術是機載雷達雜波抑制的有效途徑,但是雜波抑制僅是目標檢測的一個步驟,而不是機載雷達的最終目標。雷達最重要的作用是目標檢測與參數估計,任何信號處理方法都應以此為目的[5]。現有的機載雷達目標檢測方法通常是先利用脈沖多普勒技術或STAP技術進行雜波抑制,然后再利用諸如單元平均等恒虛警率(Constant False Alarm Rate, CFAR)處理進行目標檢測。文獻[6,7]把以空時聯(lián)合為框架、以機載雷達目標檢測為目的的自適應處理技術稱為空時自適應檢測(Space-Time Adaptive Detection, STAD)。STAD方法根據待檢測單元的數據及訓練樣本形成檢測統(tǒng)計量,直接判定有無目標??梢钥闯?,STAP屬于濾波的范疇,而STAD屬于檢測的范疇。

        STAD實現了雜波抑制與檢測的一體化,結構簡單,僅需要設計合理的檢測器即可,而不必設計濾波器。從本質上講,雜波抑制是數據白化的過程,對于STAD技術,這一過程隱含在檢測器中,而不需要額外的雜波抑制步驟。與先雜波抑制后檢測的方法相比,STAD具有3個主要的優(yōu)點:

        (1) STAD往往具CFAR特性,不需要額外的CFAR技術。這大大地簡化了檢測的流程和成本。例如,從濾波角度,根據最優(yōu)輸出信雜噪比(SCNR)準則得到的采用協(xié)方差矩陣求逆(Sample Matrix Inversion, SMI)[8]算法可看做檢測器,但是 SMI不具有 CFAR特性。而根據兩步廣義似然比(Two-Step Generalized Likelihood Ratio Test, 2S-GLRT)準則得到的自適應匹配濾波器(Adaptive Matched Filter, AMF)[9,10],從濾波角度看,其濾波性能與SMI相同,但卻具有CFAR特性。

        (2) STAD技術往往比先雜波抑制后檢測方法具有更高的檢測概率。例如,在信噪比(Signal-to-Noise Ratio, SNR)不是特別高時,基于GLRT準則得到的KGLRT (Kelly’s GLRT)[11]檢測器比從濾波角度得到SMI或AMF檢測器的檢測概率要高。

        (3) STAD設計靈活,可根據不同的準則,基于不同的度量進行設計。常用的檢測器設計準則有 3種[12-14]:GLRT準則,Rao準則和Wald準則。對檢測器的度量指標包括:檢測概率的高低、對失配信號的穩(wěn)健性和對失配信號的抑制能力,等等。

        針對色噪聲下多通道信號的自適應檢測問題,國內外的學者展開了多方面的研究,并取得了大量成果,這些方法均可應用到STAD中。但很少有文獻針對STAD進行單獨研究,沒有深入地分析機載雷達STAD與常規(guī)色噪聲下多通道自適應檢測方法的區(qū)別。此外,值得指出的是,Klemm在其著作[15]中曾指出,STAP下一步的一個研究熱點為自適應檢測。

        本文旨在對STAD這一技術進行簡要介紹,闡述STAD技術與現有STAP雜波抑制后檢測方法相比具有的優(yōu)勢,并綜述可用到STAD中的現有自適應檢測方法,探討下一步的研究方向,起到拋磚引玉的作用。

        2 STAD方法研究現狀

        上文指出,STAD屬于檢測范疇。進一步講,STAD屬于色噪聲背景下的多通道信號自適應檢測。因此,現有的色噪聲背景下多通道信號檢測方法都可以應用到STAD中。自適應的含義指的是雜波加噪聲的協(xié)方差矩陣未知,這就需要利用訓練樣本來自適應地估計該協(xié)方差矩陣。訓練樣本必須與待檢測單元中雜波加噪聲的統(tǒng)計特性具有一定的相關性,否則訓練樣本不提供任何有價值的信息。

        美國林肯實驗室的Kelly于1986年基于GLRT準則,提出了著名的KGLRT,這成為色噪聲中的多通道信號自適應檢測的奠基之作。上文指出,常用的檢測器設計準則有3種,即GLRT準則,Rao準則和 Wald準則1)需要注意的是,GLRT, Rao和 Wald并不是某一種特定的檢測器,而是通用的檢測器設計準則。在不同的環(huán)境下GLRT往往是不同的,Rao和Wald也是一樣。此外,當我們說“提出了一種GLRT檢測器、Rao檢測器或 Wald檢測器”時,指的是根據 GLRT準則、Rao準則或Wald準則,提出了相應的檢測器。這一用法在現有文獻中被普遍采用[24-27]。。此外,在實際中,三者對應的兩步檢測器設計準則也經常被應用。兩步檢測器設計準則的設計流程為:先假設協(xié)方差矩陣已知,然后根據相應的設計準則得到檢測器,最后用采樣協(xié)方差矩陣代替已得到檢測器中的未知協(xié)方差矩陣[9,16]。

        2.1 均勻環(huán)境中的目標檢測

        均勻環(huán)境指的是待檢測單元中雜波加噪聲的統(tǒng)計特性與訓練樣本中的統(tǒng)計特性完全相同[11]。在KGLRT的基礎上,Chen等人[10]與Robey等人[9]利用兩步GLRT設計準則在均勻環(huán)境下分別獨立提出了自適應匹配濾波器(Adaptive Matched Filter,AMF)。De Maio分別在文獻[17]和文獻[18]中根據Rao檢測器和Wald檢測器提出了相應的檢測器,并且證明了Wald檢測器與AMF等價。為敘述方便,記文獻[17]中的 Rao檢測器為 DMRao(De Maio’s Rao)。

        2.2 非均勻環(huán)境中的目標檢測

        由于載機飛行姿態(tài)的變化以及陣列結構擺放(共形陣、雙基地)的影響,在實際中機載雷達所面臨的環(huán)境往往是非均勻的。部分均勻環(huán)境是非均勻的一種,是指待檢測單元的協(xié)方差矩陣和訓練樣本的協(xié)方差矩陣具有相同的結構,但具有不同的功率。文獻[16]通過實測數據驗證了部分均勻環(huán)境模型適用于機載雷達所面臨的實際環(huán)境?;?S-GLRT設計準則,Scharf于1996年提出了自適應相關估計器(Adaptive Coherence Estimator, ACE)[19],該檢測器被證明是部分均勻環(huán)境中的 GLRT[19],相應的Rao和Wald檢測器在文獻[20]中提出,并且均等價于ACE。

        文獻[21,22]提出了一種廣義特征關系(Generalized Eigen-Relation, GER)非均勻環(huán)境,并指出 GER非均勻模型在實際中往往可以很好地近似滿足。該非均勻環(huán)境中的GLRT被證明與KGLRT具有相同的形式[23],相應的Rao檢測器即為雙歸一化自適應匹配濾波器(Double-Normailized AMF,DN-AMF),而Wald檢測器被證明與AMF等價[24]。

        其它非均勻模型包括復合高斯模型[25,26]、球不變隨機過程(Spherically Invariant Random Process,SIRP)模型[27]、及貝葉斯非均勻[28]、復橢圓等高線分布(Elliptically Contoured Distribution, ECD)非均勻[29,30]等。

        2.3 信號失配下的目標檢測

        上述檢測器都是在目標導向矢量確知情況下得到的,在實際中,由于存在陣元校正誤差、指向誤差和多徑效應等影響,往往存在導向矢量失配的情況。文獻[31]從濾波的角度研究了導向矢量失配對輸出 SCNR的影響,并推廣了 RMB(Reed-Mallet-Brennan)準則[8]。通過理論分析,文獻[31]指出,當存在導向矢量失配時,只有通過增加訓練樣本數才能減小SCNR損失。信號失配下的檢測最早由Kelly開始研究,在文獻[32]中,Kelly指出信號失配對濾波和檢測的影響不同,通過合理的設計檢測器,可以降低信號失配對自適應檢測的影響。這一功能由檢測器的CFAR特性實現。

        在Kelly的研究[32]基礎上不斷有新方法被提出,按照對失配信號的敏感程度可把檢測器分為兩類,一類為穩(wěn)健檢測器,另一類為失配敏感檢測器。前者在導向矢量失配量相對較大的情況下,仍然能以較高的檢測概率檢測出目標。而對于后者,即使導向矢量失配較小,檢測器的檢測概率也會大為下降,即不把失配信號作為感興趣的目標。實際中究竟需要穩(wěn)健檢測器還是失配敏感檢測器,要視具體情況而定。一般來說,當雷達工作在搜索模式時,需要選擇穩(wěn)健檢測器,當雷達工作在跟蹤模式時,需要選擇失配敏感檢測器。

        針對導向矢量失配下的檢測,通常有4種檢測器設計方法:直接建模法[33-37]、增加虛擬信號/干擾法[38-42]、檢測器級聯(lián)法[17,22,43-49]和可調檢測器法[49-52]。直接建模法指的是確定失配角的范圍,假設目標實際導向矢量位于以陣列指向為軸心的真錐中,通過(凸)優(yōu)化技術設計檢測器。增加虛擬信號/干擾法指的是在 H0假設檢驗下,假設存在確定(非隨機)信號或者虛擬隨機干擾。檢測器級聯(lián)法指的是檢測器由兩個子檢測器級聯(lián)組成,并且這兩個子檢測器分別為穩(wěn)健檢測器和失配敏感檢測器??烧{檢測器法指的是通過控制可調參數來控制檢測器對失配信號的敏感程度。

        值得指出的是直接建模法往往得不到閉合解;增加虛擬信號/干擾法得到的檢測器對失配信號具有很好的抑制作用,但缺乏穩(wěn)健性。檢測器級聯(lián)法和可調檢測器法的一個共同特點是,針對匹配信號,通過實際合理的選擇門限對或者可調參數,二者均可以達到比子檢測器(對于檢測器級聯(lián)法)或特例檢測器(對于可調檢測器法)更高的檢測概率。另外,檢測器級聯(lián)法對失配信號的穩(wěn)健性和失配敏感性受制于子檢測器的穩(wěn)健性和敏感性,而可調檢測器往往不受特例檢測器對失配信號敏感程度的影響,具有更高的靈活性。

        2.4 小訓練樣本數下的目標檢測

        機載雷達的自由度為陣元數與脈沖數的乘積。該自由度往往很大,導致雜波加噪聲的協(xié)方差矩陣維數很高。根據RMB準則[8],要獲得滿意的協(xié)方差矩陣估計,至少需要兩倍于系統(tǒng)自由度維數的訓練樣本,然而這在實際中很難滿足。因此,有必要研究小訓練樣本數下的自適應檢測。

        文獻[53]分析了級聯(lián) STAD的性能,并與常規(guī)STAD進行了比較。文獻[54]把聯(lián)合域局域處理(Joint Domain Localised, JDL)與KGLRT結合,形成了JDL-GLRT檢測器。文獻[55]把對角加載[56]技術與 KGLRT結合,提出了對角加載 GLRT(Diagonally Loaded GLRT, DL-GLRT)。文獻[6,7]把對角加載技術與AMF和ACE結合,提出了對角加載AMF(Diagonally Loaded AMF, DL-AMF)和對角加載 ACE(Diagonally Loaded ACE, DLACE)。文獻[57]把主分量法[58]應用 KGLRT, AMF和 ACE中,形成了降秩 GLRT(Reduced-Rank GLRT, RR-GLRT),降秩 AMF(Reduced-Rank AMF, RR-AMF)和降秩ACE(Reduced-Rank ACE,RR-ACE)。文獻[59, 60]根據正交投影變換的思想,提出相應的降秩檢測器,文獻[61]把這一思想與ACE結合,提出了新的降秩檢測器。

        共軛梯度(Conjugate Gradient, CG)[62]、多級維納濾波器(Multistage Wiener Filter, MWF)[63]和自適應輔助向量濾波器(Auxiliary-Vector Filtering,AVF)[64]屬于Krylov子空間技術(數值計算中的一類方法)。近年來,Krylov子空間技術被成功應用到自適應檢測中。文獻[65]把CG法應用到最優(yōu)檢測器(即匹配濾波器,或稱為匹配檢測器,該檢測器在協(xié)方差矩陣已知的前提下得到)中。文獻[66]把MWF與AVF應用到自適應檢測中,提出了相應的檢測器。

        上述新的檢測方法比常規(guī)的KGLRT, AMF和ACE等方法具有更高的檢測概率,尤其是在訓練樣本數小的情況下,這一優(yōu)勢更為明顯。

        3 結論與展望

        通過上文的分析可以看出,STAP以雜波抑制為目標,而STAD以檢測目標的有無為目標。雜波抑制體現在STAD的中間過程中,而非作為一個獨立的步驟。下面列出自適應檢測的幾個亟待解決的問題或新的研究方向:

        (1) 嚴重非均勻及非高斯環(huán)境下的檢測[67-69];

        (2) 結構化協(xié)方差矩陣下的檢測[70-74];

        (3) 擴展目標的檢測[14,16,75-79];

        (4) 機載MIMO或多基地檢測[80-84];

        (5) 壓縮感知檢測[85];

        (6) 認知雷達檢測[86];

        (7) 基于先驗知識的檢測[82,87-94]。

        [1]Brennan L E and Reed L S.Theory of adaptive radar[J].IEEE Transactions on Aerospace and Electronic Systems,1973, 9(2): 237-252.

        [2]王永良, 彭應寧.空時自適應信號處理[M].北京: 清華大學出版社, 2000.Wang Yong-liang and Peng Ying-ning.Space-Time Adaptive Processing[M].Beijing: Tsinghua University Press, 2000.

        [3]Klemm R.Principles of Space-Time Adaptive Processing[M].3rd Edition, London: The Institution of Electrical Engineers,2006.

        [4]Guerci J R.Space-Time Adaptive Processing for Radar[M].Boston: Artech House, 2003.

        [5]Nickel U.Design of generalised 2D adaptive sidelobe blanking detectors using the detection margin[J].Signal Processing,2010, 90(5): 1357-1372.

        [6]Liu W, Xie W, and Wang Y.Diagonally loaded space-time adaptive detection[C].IEEE International Conference on Radar, Chengdu, 2011.

        [7]劉維建, 謝文沖, 王永良.基于對角加載的自適應匹配濾波器和自適應相干估計器[J].系統(tǒng)工程與電子技術, 2013, 35(3):463-468.Liu Wei-jian, Xie Wen-chong, and Wang Yong-liang.AMF and ACE detectors based on diagonal loading[J].Systems Engineering and Electronics, 2013, 35(3): 463-468.

        [8]Reed I S, Mallett J D, and Brennan L E.Rapid convergence rate in adaptive arrays[J].IEE E Transactions on Aerospace and Electronic Systems, 1974, 10(6): 853-863.

        [9]Robey F C, Fuhrmann D R, Kelly E J, et al..A CFAR adaptive matched filter detector[J].IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(1): 208-216.

        [10]Chen W-S and Reed I S.A new CFAR detection test for radar[J].Digital Signal Processing, 1991, 1(4): 198-214.

        [11]Kelly E J.An adaptive detection algorithm[J].IEEE Transactions on Aerospace and Electronic Systems, 1986,22(1): 115-127.

        [12]Kay S M.Fundamentals of Statistical Signal Processing:Detection Theory[M].Englewood Cliffs, NJ: Prentice-Hall,1998.

        [13]De Maio A, Kay S M, and Farina A.On the invariance,coincidence, and statistical equivalence of the GLRT, Rao test, and wald test[J].IEEE Transactions on Signal Processing, 2010, 58(4): 1967-1979.

        [14]Liu W, Wang Y, and Xie W.Fisher information matrix, Rao test, and Wald test for complex-valued signals and their applications[J].Signal Processing, 2014,DOI:10.1016/j.sigpro.2013.06.032.

        [15]Klemm R.Applications of Space-Time Adaptive Processing[M].London: The Institution of Electrical Engineers, 2004: 415.

        [16]Conte E, Maio A D, and Ricci G.GLRT-based adaptive detection algorithms for range-spread targets[J].IEEE Transactions on Signal Processing, 2001, 49(7): 1336-1348.

        [17]De Maio A.Rao test for adaptive detection in Gaussian interference with unknown covariance matrix[J].IEEE Transactions on Signal Processing, 2007, 55(7): 3577-3584.

        [18]De Maio A.A new derivation of the adaptive matched filter[J].IEEE Signal Processing Letters, 2004, 11(10):792-793.

        [19]Kraut S and Scharf L L.The CFAR adaptive subspace detector is a scale-invariant GLRT[J].IEEE Transactions on Signal Processing, 1999, 47(9): 2538-2541.

        [20]De Maio A and Iommelli S.Coincidence of the Rao test, Wald test, and GLRT in partially homogeneous environment[J].IEEE Signal Processing Letters, 2008, 15: 385-388.

        [21]Richmond C D.Statistics of adaptive nulling and use of the generalized eigenrelation (GER) for modeling inhomogeneities in adaptive processing[J]. IEEE Transactions on Signal Processing, 2000, 48(5): 1263-1273.

        [22]Richmond C D.Performance of a class of adaptive detection algorithms in nonhomogeneous environments[J].IEEE Transactions on Signal Processing, 2000, 48(5): 1248-1262.

        [23]Besson O and Orlando D.Adaptive detection in nonhomogeneous environments using the generalized eigenrelation[J].IEEE Signal Processing Letters, 2007, 14(10):731-734.

        [24]Hao C, Orlando D, and Hou C.Rao and Wald tests for nonhomogeneous scenarios[J].Sensors, 2012, 12(4): 4730-4736.

        [25]Conte E, Lops M, and Ricci G.Asymptotically optimum radar detection in compound-Gaussian clutter[J].IEEE Transactions on Aerospace and Electronic Systems, 1995,31(2): 617-625.

        [26]Gini F and Farina A.Vector subspace detection in compound-Gaussian clutter part I: Survey and new results[J].IEEE Transactions on Aerospace and Electronic Systems,2002, 38(4): 1295-1311.

        [27]Conte E, Lops M, and Ricci G.Adaptive matched filter detection in spherically invariant noise[J].IEEE Signal Processing Letters, 1996, 3(8): 248-250.

        [28]Bidon S, Besson O, and Tourneret J-Y.A Bayesian approach to adaptive detection in nonhomogeneous environments[J].IEEE Transactions on Signal Processing, 2008, 56(1):205-217.

        [29]Richmond C D.A note on non-Gaussian adaptive array detection and signal parameter estimation[J].IE EE Signal Processing Letters, 1996, 3(8): 251-252.

        [30]Besson O and Abramovich Y I.Invariance properties of the likelihood ratio for covariance matrix estimation in some complex elliptically contoured distributions[J].Journal of Multivariate Analysis, 2014, 124: 237-246.

        [31]Boroson D M.Sample size considerations for adaptive arrays[J].IEEE Transactions on Aerospace and Electronic Systems, 1980, 16(4): 446-451.

        [32]Kelly E J.Performance of an adaptive detection algorithm:rejection of unwanted signals[J].IEEE Transactions on Aerospace and Electronic Systems, 1989, 25(2): 122-133.

        [33]De Maio A.Robust adaptive radar detection in the presence of steering vector mismatches[J].IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4): 1322-1337.

        [34]Bandiera F, De Maio A, and Ricci G.Adaptive CFAR radar detection with conic rejection[J].IEEE Transactions on Signal Processing, 2007, 55(6): 2533-2541.

        [35]De Maio A, De Nicola S, and Farina A.GLRT versus mflrt for adaptive CFAR radar detection with conic uncertainty[J].IEEE Signal Processing Letters, 2009, 16(8): 707-710.

        [36]Bandiera F, Orlando D, and Ricci G.CFAR detection strategies for distributed targets under conic constraints[J].IEEE Transactions on Signal Processing, 2009, 57(9):3305-3316.

        [37]Maio A D, Nicola S D, Farina A, et al..Adaptive detection of a signal with angle uncertainty[J].IET Radar, Sonar &Navigation, 2010, 4(4): 537-547.

        [38]Pulsone N B and Rader C M.Adaptive beamformer orthogonal rejection test[J].IEEE Transactions on Signal Processing, 2001, 49(3): 521-529.

        [39]Bandiera F, Besson O, and Ricci G.An abort-like detector with improved mismatched signals rejection capabilities[J].IEEE Transactions on Signal Processin g, 2008, 56(1): 14-25.

        [40]Besson O.Detection in the presence of surprise or undernulled interference[J].IEEE Signal Processing Letters,2007, 14(5): 352-354.

        [41]Orlando D and Ricci G.A Rao test with enhanced selectivity properties in homogeneous scenarios[J].IEE E Transactions on Signal Processing, 2010, 58(10): 5385-5390.

        [42]Liu W, Xie W, and Wang Y.A Wald test with enhanced selectivity properties in homogeneous environments[J].E URASIP Journal on Ad vances in Signal Processing, 2013,DOI:10.1186/1687-6180-2013-14.

        [43]Richmond C D.Performance of the adaptive sidelobe blanker detection algorithm in homogeneous environments[J].IEEE Transactions on Signal Processing, 2000, 48(5): 1235-1247.

        [44]Pulsone N B and Zatman M A.A computationally efficient two-step implementation of the GLRT[J].IEEE Transactions on Signal Processing, 2000, 48(3): 609-616.

        [45]Bandiera F, Orlando D, and Ricci G.A subspace-based adaptive sidelobe blanker[J].IEEE Transactions on Signal Processing, 2008, 56(9): 4141-4151.

        [46]Raghavan R S, Pulsone N, and McLaughlin D J.Performance of the GLRT for adaptive vector subspace detection[J].IEEE Transactions on Aerospace and Electronic Systems, 1996,32(4): 1473-1487.

        [47]Bandiera F, Besson O, Orlando D, et al..An improved adaptive sidelobe blanker[J].IEEE Transactions on Signal Processing, 2008, 56(9): 4152-4161.

        [48]Hao C, Liu B, and Cai L.Performance analysis of a two-stage Rao detector[J].Signal Processing, 2011, 91(8): 2141-2146.

        [49]Bandiera F, Orlando D, and Ricci G.One- and two-stage tunable receivers[J].IEEE Transactions on Signal Processing,2009, 57(8): 3264-3273.

        [50]Kalson S Z.An adaptive array detector with mismatched signal rejection[J].IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(1): 195-207.

        [51]Hao C, Liu B, Yan S, et al..Parametric adaptive radar detector with enhanced mismatched signals rejection capabilities[J].EUR ASIP Journal on Advances in Signal Processing, 2010, DOI: 10.1155/2010/375136.

        [52]Liu W, Xie W, and Wang Y.Parametric detector in the situation of mismatched signals[J].IET Radar, Sonar &Navigation, 2014, 8(1): 48-53.

        [53]Reed I S, Gau Y L, and Truong T K.CFAR detection and estimation for STAP radar[J].IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(3): 722-735.

        [54]Wang H and Cai L.On adaptive spatial-temporal processing for airborne surveillance radar systems[J].IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(3): 660-670.

        [55]Ayoub T F and Haimovich A M.Modified GLRT signal detection algorithm[J].IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(3): 810-818.

        [56]Carlson B D.Covariance matrix estimation errors and diagonal loading in adaptive arrays[J].IEEE Transactions on Aerospace and Electronic Systems, 1988, 24(4): 397-401.

        [57]Wang Y, Liu W, Xie W, et al..Reduced-rank space-time adaptive detection for airborne radar[J].S CIENCE CHINA Information Sciences, 2014,DOI:10.1007/s11432-013-4984-5.

        [58]Guerci J R, Goldstein J S, and Reed I S.Optimal and adaptive reduced-rank STAP[J].IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(2): 647-663.

        [59]Reed I S and Gau Y-L.A fast CFAR detection space-time adaptive processing algorithm[J].IEEE Transactions on Signal Processing, 1999, 47(4): 1151-1154.

        [60]Gau Y-L and Reed I S.An improved reduced-rank CFAR space-time adaptive radar detection algorithm[J].IE EE Transactions on Signal Processing, 1998, 46(8): 2139-2146.

        [61]Liu W, Xie W, and Wang Y.Adaptive detection based on orthogonal partition of the primary and secondary data[J].Journal of Systems Engineerin g and Electronics, 2014, 25(1):34-42.

        [62]Chang P S and Alan N W, Jr.Analysis of conjugate gradient algorithms for adaptive filtering[J].IEEE Transactions on Signal Processing, 2000, 48(2): 409-418.

        [63]Goldstein J S, Reed I S, and Scharf L L.A multistage representation of the wiener filter based on orthogonal projections[J].IEEE Transactions on Information Th eory,1998, 44(7): 2943-2959.

        [64]Pados D A and Batalama S N.Joint space-time auxiliary-vector filtering for ds/CDMA systems with antenna arrays[J].IEEE Transactions on Communications, 1999,47(9): 1406-1415.

        [65]Jiang C, Li H, and Rangaswamy M.On the conjugate gradient matched filter[J].IEEE Transactions on Signal Processing, 2012, 60(5): 2660-2666.

        [66]Liu W, Xie W, and Wang Y.Adaptive detectors in the Krylov subspace[J].S CIEN CE CHINA Information Sciences,2014,DOI:10.1360/SCIS-2012-0749.R4.

        [67]Michels J H, Himed B, and Rangaswamy M.Robust STAP detection in a dense signal airborne radar environment[J].S ignal Processin g Special Section on New Trends and Find ings in Antenna Array Processing for Radar, 2004, 84(9):1625-1636.

        [68]Maio A D.Generalized CFAR property and UMP invariance for adaptive signal detection[J].IEEE Transactions on Signal Processing, 2013, 61(8): 2104-2115.

        [69]Guan J, Chen X-L, Huang Y, et al..Adaptive fractional fourier transform-based detection algorithm for moving target in heavy sea clutter[J].IET Radar, Sonar &Navigation, 2012, 6(5): 389-401.

        [70]Fuhrmann D R.Application of Toeplitz covariance estimation to adaptive beamforming and detection[J].IE EE Transactions on Signal Processing, 1991, 39(10): 2194-2198.

        [71]Kim H S, Alfred O, and Hero I.Comparison of GLR and invariant detectors under structured clutter covariance[J].IEEE Transactions on Image Processing, 2001, 10(10):1509-1520.

        [72]Bose S and Steinhardt A O.A maximal invariant framework for adaptive detection with structured and unstructured covariance matrices[J].IE EE Transactions on Signal Processing, 1995, 43(9): 2164-2175.

        [73]Wang P, Li H, and Himed B.A new parametric GLRT for multichannel adaptive signal detection[J].IEEE Transactions on Signal Processing, 2010, 58(1): 317-325.

        [74]Gao Y, Liao G, Zhu S, et al..Persymmetric adaptive detectors in homogeneous and partially homogeneous environments[J].IEE E Transactions on Signal Processing,2014, 62(2): 331-342.

        [75]Liu W, Xie W, and Wang Y.Rao and Wald tests for distributed targets detection with unknown signal steering[J].IEEE Signal Processin g Letters, 2013, 20(11): 1086-1089.

        [76]Shuai X, Kong L, and Yang J.Adaptive detection for distributed targets in Gaussian noise with Rao and Wald tests[J].SCIEN CE CHINA Information Sciences, 2012, 55(6):1290-1300.

        [77]Hao C, Yang J, Ma X, et al..Adaptive detection of distributed targets with orthogonal rejection[J].IET Radar,Sonar & Navigation, 2012, 6(6): 483-493.

        [78]Liu W, Xie W, Liu J, et al..Adaptive double subspace signal detection in Gaussian background—Part I: Homogeneous environments[J].IEE E Transactions on Signal Processing,2014, 62(9): 2345-2357.

        [79]Liu W, Xie W, Liu J, et al..Adaptive double subspace signal detection in Gaussian background—Part II: Partially homogeneous environments[J].IEEE Transactions on Signal Processing, 2014, 62(9): 2358-2369.

        [80]Wang J, Jiang S, He J, et al..Adaptive detectors with diagonal loading for airborne multi-input multi-output radar[J].IET Radar, Sonar & Navigation, 2009, 3(5): 493-501.

        [81]王鞠庭, 江勝利, 何勁, 等.基于對角加載的機載MIMO雷達GLRT檢測器[J].電子學報, 2009, 37(12): 2614-2619.Wang Ju-ting, Jiang Sheng-li, He Jin, et al..GLRT detector with diagonal loading for MIMO radars[J].Acta Electronica Sinica, 2009, 37(12): 2614-2619.

        [82]Zhang T, Cui G, Kong L, et al..Adaptive Bayesian detection using MIMO radar in spatially heterogeneous clutter[J].IEEE Signal Processin g Letters, 2013, 20(6): 547-550.

        [83]Goodman N A and Bruyere D.Optimum and decentralized detection for multistatic airborne radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007,43(2): 806-813.

        [84]江勝利, 王鞠庭, 何勁, 等.基于對角加載的機載MIMO雷達自適應匹配濾波檢測器[J].宇航學報, 2009, 30(5): 1979-1984.

        [85]Anitori L, Maleki A, Otten M, et al..Design and analysisof compressed sensing radar detectors[J].IE EE Transactions on Signal Processing, 2013, 61(4): 813-827.

        [86]Zhang J, Zhu D, and Zhang G.Adaptive compressed sensing radar oriented toward cognitive detection in dynamic sparse target scene[J].IEEE Transactions on Signal Processing,2012, 60(4): 1718-1729.

        [87]De Maio A, Farina A, and Wicks M.KB-GLRT: exploiting knowledge of the clutter ridge in airborne radar[J].IEE Proceedings-Radar, Sonar and Navigation, 2005, 152(6):421-428.

        [88]Bandiera F, Besson O, and Ricci G.Knowledge-aided covariance matrix estimation and adaptive detection in compound-Gaussian noise[J].IEEE Transactions on Signal Processing, 2011, 58(10): 5390-5396.

        [89]Besson O, Tourneret J-Y, and Bidon S.Knowledge-aided Bayesian detection in heterogeneous environments[J].IEEE Signal Processing Letters, 2007, 14(5): 355-358.

        [90]Maio A D, Farina A, and Foglia G.Knowledge-aided Bayesian radar detectors & their application to live data[J].IEEE Transactions on Aerospace and Electronic Systems,2010, 46(1): 170-183.

        [91]Zhou Y and Zhang L-R.Knowledge-aided Bayesian radar adaptive detection in heterogeneous environment: GLRT,Rao and Wald test[J].AEU-International Journal of Electronics and Communications, 2012, 66(3): 239-243.

        [92]Aubry A, Maio A D, Pallotta L, et al..Radar detection of distributed targets in homogeneous interference whose inverse covariance structure is defined via unitary invariant functions[J].IEEE Transactions on Signal Processing, 2013,61(20): 4949-4961.

        [93]Bidon S, Besson O, and Tourneret J-Y.Knowledge-aided STAP in heterogeneous clutter using a hierarchical Bayesian algorithm[J].IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(3): 1863-1879.

        [94]Hao C, Shang X, Bandiera F, et al..Bayesian radar detection with orthogonal rejection[J].IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2012, E95-A(2): 596-599.

        猜你喜歡
        信號檢測
        “不等式”檢測題
        “一元一次不等式”檢測題
        “一元一次不等式組”檢測題
        信號
        鴨綠江(2021年35期)2021-04-19 12:24:18
        “幾何圖形”檢測題
        “角”檢測題
        完形填空二則
        孩子停止長個的信號
        小波變換在PCB缺陷檢測中的應用
        基于LabVIEW的力加載信號采集與PID控制
        精品av天堂毛片久久久| 国产 高潮 抽搐 正在播放| 67194熟妇人妻欧美日韩| 亚洲一区av无码少妇电影| 日本高清一区二区不卡视频| 国产精品亚洲最新地址| 中文字日产幕码三区的做法大全 | 在线a亚洲视频播放在线观看| 亚洲一区二区三区一站| 国产成人一区二区三区乱| 最爽无遮挡行房视频| 国内精品久久久影院| 黑人免费一区二区三区| 日韩极品视频免费观看| 亚洲七久久之综合七久久| 香蕉视频一级| 亚洲精品一区二区三区蜜臀| 美女很黄很色国产av | 国产精品爽爽va在线观看无码| 国产午夜精品久久久久九九| av在线播放亚洲天堂| 亚洲av一二三四区四色婷婷 | 久久久老熟女一区二区三区| 国产精品露脸张开双腿| 一区二区三区国产亚洲网站| 五月开心婷婷六月综合| aaa级久久久精品无码片| 美女高潮流白浆视频在线观看| 日本一级三级在线观看| 国产综合色在线视频区| 美丽人妻被按摩中出中文字幕| 国产99精品精品久久免费 | 在线观看的网站| 国内精品久久久久久无码不卡| 淫欲一区二区中文字幕| 性av一区二区三区免费| 欧洲精品免费一区二区三区| 91精品国产免费青青碰在线观看| 亚洲午夜经典一区二区日韩| 一边做一边喷17p亚洲乱妇50p| 高清在线亚洲中文精品视频|