亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        機(jī)載雷達(dá)空時(shí)自適應(yīng)檢測(cè)方法研究進(jìn)展

        2014-01-11 05:17:11王永良劉維建謝文沖段克清王澤濤
        雷達(dá)學(xué)報(bào) 2014年2期
        關(guān)鍵詞:失配訓(xùn)練樣本雜波

        王永良 劉維建 謝文沖 段克清 高 飛 王澤濤

        ①(空軍預(yù)警學(xué)院 武漢 430019)

        ②(國(guó)防科學(xué)技術(shù)大學(xué)電子科學(xué)與工程學(xué)院 長(zhǎng)沙 410073)

        1 引言

        針對(duì)機(jī)載雷達(dá)空時(shí)2維濾波問(wèn)題,Brennan等人[1]于 1973年首次提出了空時(shí)自適應(yīng)處理(Space-Time Adaptive Processing, STAP)理論。在此基礎(chǔ)上,各種背景下的STAP技術(shù)被不斷提出。經(jīng)過(guò)40年的不斷發(fā)展,STAP技術(shù)不斷完善,并形成理論體系[2-4]。更重要的是,該技術(shù)已經(jīng)面向工程實(shí)用。根據(jù)有關(guān)報(bào)道,STAP技術(shù)已在美國(guó)生產(chǎn)的E-2D預(yù)警機(jī)上得到應(yīng)用。

        需要指出的是,STAP技術(shù)是機(jī)載雷達(dá)雜波抑制的有效途徑,但是雜波抑制僅是目標(biāo)檢測(cè)的一個(gè)步驟,而不是機(jī)載雷達(dá)的最終目標(biāo)。雷達(dá)最重要的作用是目標(biāo)檢測(cè)與參數(shù)估計(jì),任何信號(hào)處理方法都應(yīng)以此為目的[5]?,F(xiàn)有的機(jī)載雷達(dá)目標(biāo)檢測(cè)方法通常是先利用脈沖多普勒技術(shù)或STAP技術(shù)進(jìn)行雜波抑制,然后再利用諸如單元平均等恒虛警率(Constant False Alarm Rate, CFAR)處理進(jìn)行目標(biāo)檢測(cè)。文獻(xiàn)[6,7]把以空時(shí)聯(lián)合為框架、以機(jī)載雷達(dá)目標(biāo)檢測(cè)為目的的自適應(yīng)處理技術(shù)稱(chēng)為空時(shí)自適應(yīng)檢測(cè)(Space-Time Adaptive Detection, STAD)。STAD方法根據(jù)待檢測(cè)單元的數(shù)據(jù)及訓(xùn)練樣本形成檢測(cè)統(tǒng)計(jì)量,直接判定有無(wú)目標(biāo)。可以看出,STAP屬于濾波的范疇,而STAD屬于檢測(cè)的范疇。

        STAD實(shí)現(xiàn)了雜波抑制與檢測(cè)的一體化,結(jié)構(gòu)簡(jiǎn)單,僅需要設(shè)計(jì)合理的檢測(cè)器即可,而不必設(shè)計(jì)濾波器。從本質(zhì)上講,雜波抑制是數(shù)據(jù)白化的過(guò)程,對(duì)于STAD技術(shù),這一過(guò)程隱含在檢測(cè)器中,而不需要額外的雜波抑制步驟。與先雜波抑制后檢測(cè)的方法相比,STAD具有3個(gè)主要的優(yōu)點(diǎn):

        (1) STAD往往具CFAR特性,不需要額外的CFAR技術(shù)。這大大地簡(jiǎn)化了檢測(cè)的流程和成本。例如,從濾波角度,根據(jù)最優(yōu)輸出信雜噪比(SCNR)準(zhǔn)則得到的采用協(xié)方差矩陣求逆(Sample Matrix Inversion, SMI)[8]算法可看做檢測(cè)器,但是 SMI不具有 CFAR特性。而根據(jù)兩步廣義似然比(Two-Step Generalized Likelihood Ratio Test, 2S-GLRT)準(zhǔn)則得到的自適應(yīng)匹配濾波器(Adaptive Matched Filter, AMF)[9,10],從濾波角度看,其濾波性能與SMI相同,但卻具有CFAR特性。

        (2) STAD技術(shù)往往比先雜波抑制后檢測(cè)方法具有更高的檢測(cè)概率。例如,在信噪比(Signal-to-Noise Ratio, SNR)不是特別高時(shí),基于GLRT準(zhǔn)則得到的KGLRT (Kelly’s GLRT)[11]檢測(cè)器比從濾波角度得到SMI或AMF檢測(cè)器的檢測(cè)概率要高。

        (3) STAD設(shè)計(jì)靈活,可根據(jù)不同的準(zhǔn)則,基于不同的度量進(jìn)行設(shè)計(jì)。常用的檢測(cè)器設(shè)計(jì)準(zhǔn)則有 3種[12-14]:GLRT準(zhǔn)則,Rao準(zhǔn)則和Wald準(zhǔn)則。對(duì)檢測(cè)器的度量指標(biāo)包括:檢測(cè)概率的高低、對(duì)失配信號(hào)的穩(wěn)健性和對(duì)失配信號(hào)的抑制能力,等等。

        針對(duì)色噪聲下多通道信號(hào)的自適應(yīng)檢測(cè)問(wèn)題,國(guó)內(nèi)外的學(xué)者展開(kāi)了多方面的研究,并取得了大量成果,這些方法均可應(yīng)用到STAD中。但很少有文獻(xiàn)針對(duì)STAD進(jìn)行單獨(dú)研究,沒(méi)有深入地分析機(jī)載雷達(dá)STAD與常規(guī)色噪聲下多通道自適應(yīng)檢測(cè)方法的區(qū)別。此外,值得指出的是,Klemm在其著作[15]中曾指出,STAP下一步的一個(gè)研究熱點(diǎn)為自適應(yīng)檢測(cè)。

        本文旨在對(duì)STAD這一技術(shù)進(jìn)行簡(jiǎn)要介紹,闡述STAD技術(shù)與現(xiàn)有STAP雜波抑制后檢測(cè)方法相比具有的優(yōu)勢(shì),并綜述可用到STAD中的現(xiàn)有自適應(yīng)檢測(cè)方法,探討下一步的研究方向,起到拋磚引玉的作用。

        2 STAD方法研究現(xiàn)狀

        上文指出,STAD屬于檢測(cè)范疇。進(jìn)一步講,STAD屬于色噪聲背景下的多通道信號(hào)自適應(yīng)檢測(cè)。因此,現(xiàn)有的色噪聲背景下多通道信號(hào)檢測(cè)方法都可以應(yīng)用到STAD中。自適應(yīng)的含義指的是雜波加噪聲的協(xié)方差矩陣未知,這就需要利用訓(xùn)練樣本來(lái)自適應(yīng)地估計(jì)該協(xié)方差矩陣。訓(xùn)練樣本必須與待檢測(cè)單元中雜波加噪聲的統(tǒng)計(jì)特性具有一定的相關(guān)性,否則訓(xùn)練樣本不提供任何有價(jià)值的信息。

        美國(guó)林肯實(shí)驗(yàn)室的Kelly于1986年基于GLRT準(zhǔn)則,提出了著名的KGLRT,這成為色噪聲中的多通道信號(hào)自適應(yīng)檢測(cè)的奠基之作。上文指出,常用的檢測(cè)器設(shè)計(jì)準(zhǔn)則有3種,即GLRT準(zhǔn)則,Rao準(zhǔn)則和 Wald準(zhǔn)則1)需要注意的是,GLRT, Rao和 Wald并不是某一種特定的檢測(cè)器,而是通用的檢測(cè)器設(shè)計(jì)準(zhǔn)則。在不同的環(huán)境下GLRT往往是不同的,Rao和Wald也是一樣。此外,當(dāng)我們說(shuō)“提出了一種GLRT檢測(cè)器、Rao檢測(cè)器或 Wald檢測(cè)器”時(shí),指的是根據(jù) GLRT準(zhǔn)則、Rao準(zhǔn)則或Wald準(zhǔn)則,提出了相應(yīng)的檢測(cè)器。這一用法在現(xiàn)有文獻(xiàn)中被普遍采用[24-27]。。此外,在實(shí)際中,三者對(duì)應(yīng)的兩步檢測(cè)器設(shè)計(jì)準(zhǔn)則也經(jīng)常被應(yīng)用。兩步檢測(cè)器設(shè)計(jì)準(zhǔn)則的設(shè)計(jì)流程為:先假設(shè)協(xié)方差矩陣已知,然后根據(jù)相應(yīng)的設(shè)計(jì)準(zhǔn)則得到檢測(cè)器,最后用采樣協(xié)方差矩陣代替已得到檢測(cè)器中的未知協(xié)方差矩陣[9,16]。

        2.1 均勻環(huán)境中的目標(biāo)檢測(cè)

        均勻環(huán)境指的是待檢測(cè)單元中雜波加噪聲的統(tǒng)計(jì)特性與訓(xùn)練樣本中的統(tǒng)計(jì)特性完全相同[11]。在KGLRT的基礎(chǔ)上,Chen等人[10]與Robey等人[9]利用兩步GLRT設(shè)計(jì)準(zhǔn)則在均勻環(huán)境下分別獨(dú)立提出了自適應(yīng)匹配濾波器(Adaptive Matched Filter,AMF)。De Maio分別在文獻(xiàn)[17]和文獻(xiàn)[18]中根據(jù)Rao檢測(cè)器和Wald檢測(cè)器提出了相應(yīng)的檢測(cè)器,并且證明了Wald檢測(cè)器與AMF等價(jià)。為敘述方便,記文獻(xiàn)[17]中的 Rao檢測(cè)器為 DMRao(De Maio’s Rao)。

        2.2 非均勻環(huán)境中的目標(biāo)檢測(cè)

        由于載機(jī)飛行姿態(tài)的變化以及陣列結(jié)構(gòu)擺放(共形陣、雙基地)的影響,在實(shí)際中機(jī)載雷達(dá)所面臨的環(huán)境往往是非均勻的。部分均勻環(huán)境是非均勻的一種,是指待檢測(cè)單元的協(xié)方差矩陣和訓(xùn)練樣本的協(xié)方差矩陣具有相同的結(jié)構(gòu),但具有不同的功率。文獻(xiàn)[16]通過(guò)實(shí)測(cè)數(shù)據(jù)驗(yàn)證了部分均勻環(huán)境模型適用于機(jī)載雷達(dá)所面臨的實(shí)際環(huán)境?;?S-GLRT設(shè)計(jì)準(zhǔn)則,Scharf于1996年提出了自適應(yīng)相關(guān)估計(jì)器(Adaptive Coherence Estimator, ACE)[19],該檢測(cè)器被證明是部分均勻環(huán)境中的 GLRT[19],相應(yīng)的Rao和Wald檢測(cè)器在文獻(xiàn)[20]中提出,并且均等價(jià)于ACE。

        文獻(xiàn)[21,22]提出了一種廣義特征關(guān)系(Generalized Eigen-Relation, GER)非均勻環(huán)境,并指出 GER非均勻模型在實(shí)際中往往可以很好地近似滿足。該非均勻環(huán)境中的GLRT被證明與KGLRT具有相同的形式[23],相應(yīng)的Rao檢測(cè)器即為雙歸一化自適應(yīng)匹配濾波器(Double-Normailized AMF,DN-AMF),而Wald檢測(cè)器被證明與AMF等價(jià)[24]。

        其它非均勻模型包括復(fù)合高斯模型[25,26]、球不變隨機(jī)過(guò)程(Spherically Invariant Random Process,SIRP)模型[27]、及貝葉斯非均勻[28]、復(fù)橢圓等高線分布(Elliptically Contoured Distribution, ECD)非均勻[29,30]等。

        2.3 信號(hào)失配下的目標(biāo)檢測(cè)

        上述檢測(cè)器都是在目標(biāo)導(dǎo)向矢量確知情況下得到的,在實(shí)際中,由于存在陣元校正誤差、指向誤差和多徑效應(yīng)等影響,往往存在導(dǎo)向矢量失配的情況。文獻(xiàn)[31]從濾波的角度研究了導(dǎo)向矢量失配對(duì)輸出 SCNR的影響,并推廣了 RMB(Reed-Mallet-Brennan)準(zhǔn)則[8]。通過(guò)理論分析,文獻(xiàn)[31]指出,當(dāng)存在導(dǎo)向矢量失配時(shí),只有通過(guò)增加訓(xùn)練樣本數(shù)才能減小SCNR損失。信號(hào)失配下的檢測(cè)最早由Kelly開(kāi)始研究,在文獻(xiàn)[32]中,Kelly指出信號(hào)失配對(duì)濾波和檢測(cè)的影響不同,通過(guò)合理的設(shè)計(jì)檢測(cè)器,可以降低信號(hào)失配對(duì)自適應(yīng)檢測(cè)的影響。這一功能由檢測(cè)器的CFAR特性實(shí)現(xiàn)。

        在Kelly的研究[32]基礎(chǔ)上不斷有新方法被提出,按照對(duì)失配信號(hào)的敏感程度可把檢測(cè)器分為兩類(lèi),一類(lèi)為穩(wěn)健檢測(cè)器,另一類(lèi)為失配敏感檢測(cè)器。前者在導(dǎo)向矢量失配量相對(duì)較大的情況下,仍然能以較高的檢測(cè)概率檢測(cè)出目標(biāo)。而對(duì)于后者,即使導(dǎo)向矢量失配較小,檢測(cè)器的檢測(cè)概率也會(huì)大為下降,即不把失配信號(hào)作為感興趣的目標(biāo)。實(shí)際中究竟需要穩(wěn)健檢測(cè)器還是失配敏感檢測(cè)器,要視具體情況而定。一般來(lái)說(shuō),當(dāng)雷達(dá)工作在搜索模式時(shí),需要選擇穩(wěn)健檢測(cè)器,當(dāng)雷達(dá)工作在跟蹤模式時(shí),需要選擇失配敏感檢測(cè)器。

        針對(duì)導(dǎo)向矢量失配下的檢測(cè),通常有4種檢測(cè)器設(shè)計(jì)方法:直接建模法[33-37]、增加虛擬信號(hào)/干擾法[38-42]、檢測(cè)器級(jí)聯(lián)法[17,22,43-49]和可調(diào)檢測(cè)器法[49-52]。直接建模法指的是確定失配角的范圍,假設(shè)目標(biāo)實(shí)際導(dǎo)向矢量位于以陣列指向?yàn)檩S心的真錐中,通過(guò)(凸)優(yōu)化技術(shù)設(shè)計(jì)檢測(cè)器。增加虛擬信號(hào)/干擾法指的是在 H0假設(shè)檢驗(yàn)下,假設(shè)存在確定(非隨機(jī))信號(hào)或者虛擬隨機(jī)干擾。檢測(cè)器級(jí)聯(lián)法指的是檢測(cè)器由兩個(gè)子檢測(cè)器級(jí)聯(lián)組成,并且這兩個(gè)子檢測(cè)器分別為穩(wěn)健檢測(cè)器和失配敏感檢測(cè)器??烧{(diào)檢測(cè)器法指的是通過(guò)控制可調(diào)參數(shù)來(lái)控制檢測(cè)器對(duì)失配信號(hào)的敏感程度。

        值得指出的是直接建模法往往得不到閉合解;增加虛擬信號(hào)/干擾法得到的檢測(cè)器對(duì)失配信號(hào)具有很好的抑制作用,但缺乏穩(wěn)健性。檢測(cè)器級(jí)聯(lián)法和可調(diào)檢測(cè)器法的一個(gè)共同特點(diǎn)是,針對(duì)匹配信號(hào),通過(guò)實(shí)際合理的選擇門(mén)限對(duì)或者可調(diào)參數(shù),二者均可以達(dá)到比子檢測(cè)器(對(duì)于檢測(cè)器級(jí)聯(lián)法)或特例檢測(cè)器(對(duì)于可調(diào)檢測(cè)器法)更高的檢測(cè)概率。另外,檢測(cè)器級(jí)聯(lián)法對(duì)失配信號(hào)的穩(wěn)健性和失配敏感性受制于子檢測(cè)器的穩(wěn)健性和敏感性,而可調(diào)檢測(cè)器往往不受特例檢測(cè)器對(duì)失配信號(hào)敏感程度的影響,具有更高的靈活性。

        2.4 小訓(xùn)練樣本數(shù)下的目標(biāo)檢測(cè)

        機(jī)載雷達(dá)的自由度為陣元數(shù)與脈沖數(shù)的乘積。該自由度往往很大,導(dǎo)致雜波加噪聲的協(xié)方差矩陣維數(shù)很高。根據(jù)RMB準(zhǔn)則[8],要獲得滿意的協(xié)方差矩陣估計(jì),至少需要兩倍于系統(tǒng)自由度維數(shù)的訓(xùn)練樣本,然而這在實(shí)際中很難滿足。因此,有必要研究小訓(xùn)練樣本數(shù)下的自適應(yīng)檢測(cè)。

        文獻(xiàn)[53]分析了級(jí)聯(lián) STAD的性能,并與常規(guī)STAD進(jìn)行了比較。文獻(xiàn)[54]把聯(lián)合域局域處理(Joint Domain Localised, JDL)與KGLRT結(jié)合,形成了JDL-GLRT檢測(cè)器。文獻(xiàn)[55]把對(duì)角加載[56]技術(shù)與 KGLRT結(jié)合,提出了對(duì)角加載 GLRT(Diagonally Loaded GLRT, DL-GLRT)。文獻(xiàn)[6,7]把對(duì)角加載技術(shù)與AMF和ACE結(jié)合,提出了對(duì)角加載AMF(Diagonally Loaded AMF, DL-AMF)和對(duì)角加載 ACE(Diagonally Loaded ACE, DLACE)。文獻(xiàn)[57]把主分量法[58]應(yīng)用 KGLRT, AMF和 ACE中,形成了降秩 GLRT(Reduced-Rank GLRT, RR-GLRT),降秩 AMF(Reduced-Rank AMF, RR-AMF)和降秩ACE(Reduced-Rank ACE,RR-ACE)。文獻(xiàn)[59, 60]根據(jù)正交投影變換的思想,提出相應(yīng)的降秩檢測(cè)器,文獻(xiàn)[61]把這一思想與ACE結(jié)合,提出了新的降秩檢測(cè)器。

        共軛梯度(Conjugate Gradient, CG)[62]、多級(jí)維納濾波器(Multistage Wiener Filter, MWF)[63]和自適應(yīng)輔助向量濾波器(Auxiliary-Vector Filtering,AVF)[64]屬于Krylov子空間技術(shù)(數(shù)值計(jì)算中的一類(lèi)方法)。近年來(lái),Krylov子空間技術(shù)被成功應(yīng)用到自適應(yīng)檢測(cè)中。文獻(xiàn)[65]把CG法應(yīng)用到最優(yōu)檢測(cè)器(即匹配濾波器,或稱(chēng)為匹配檢測(cè)器,該檢測(cè)器在協(xié)方差矩陣已知的前提下得到)中。文獻(xiàn)[66]把MWF與AVF應(yīng)用到自適應(yīng)檢測(cè)中,提出了相應(yīng)的檢測(cè)器。

        上述新的檢測(cè)方法比常規(guī)的KGLRT, AMF和ACE等方法具有更高的檢測(cè)概率,尤其是在訓(xùn)練樣本數(shù)小的情況下,這一優(yōu)勢(shì)更為明顯。

        3 結(jié)論與展望

        通過(guò)上文的分析可以看出,STAP以雜波抑制為目標(biāo),而STAD以檢測(cè)目標(biāo)的有無(wú)為目標(biāo)。雜波抑制體現(xiàn)在STAD的中間過(guò)程中,而非作為一個(gè)獨(dú)立的步驟。下面列出自適應(yīng)檢測(cè)的幾個(gè)亟待解決的問(wèn)題或新的研究方向:

        (1) 嚴(yán)重非均勻及非高斯環(huán)境下的檢測(cè)[67-69];

        (2) 結(jié)構(gòu)化協(xié)方差矩陣下的檢測(cè)[70-74];

        (3) 擴(kuò)展目標(biāo)的檢測(cè)[14,16,75-79];

        (4) 機(jī)載MIMO或多基地檢測(cè)[80-84];

        (5) 壓縮感知檢測(cè)[85];

        (6) 認(rèn)知雷達(dá)檢測(cè)[86];

        (7) 基于先驗(yàn)知識(shí)的檢測(cè)[82,87-94]。

        [1]Brennan L E and Reed L S.Theory of adaptive radar[J].IEEE Transactions on Aerospace and Electronic Systems,1973, 9(2): 237-252.

        [2]王永良, 彭應(yīng)寧.空時(shí)自適應(yīng)信號(hào)處理[M].北京: 清華大學(xué)出版社, 2000.Wang Yong-liang and Peng Ying-ning.Space-Time Adaptive Processing[M].Beijing: Tsinghua University Press, 2000.

        [3]Klemm R.Principles of Space-Time Adaptive Processing[M].3rd Edition, London: The Institution of Electrical Engineers,2006.

        [4]Guerci J R.Space-Time Adaptive Processing for Radar[M].Boston: Artech House, 2003.

        [5]Nickel U.Design of generalised 2D adaptive sidelobe blanking detectors using the detection margin[J].Signal Processing,2010, 90(5): 1357-1372.

        [6]Liu W, Xie W, and Wang Y.Diagonally loaded space-time adaptive detection[C].IEEE International Conference on Radar, Chengdu, 2011.

        [7]劉維建, 謝文沖, 王永良.基于對(duì)角加載的自適應(yīng)匹配濾波器和自適應(yīng)相干估計(jì)器[J].系統(tǒng)工程與電子技術(shù), 2013, 35(3):463-468.Liu Wei-jian, Xie Wen-chong, and Wang Yong-liang.AMF and ACE detectors based on diagonal loading[J].Systems Engineering and Electronics, 2013, 35(3): 463-468.

        [8]Reed I S, Mallett J D, and Brennan L E.Rapid convergence rate in adaptive arrays[J].IEE E Transactions on Aerospace and Electronic Systems, 1974, 10(6): 853-863.

        [9]Robey F C, Fuhrmann D R, Kelly E J, et al..A CFAR adaptive matched filter detector[J].IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(1): 208-216.

        [10]Chen W-S and Reed I S.A new CFAR detection test for radar[J].Digital Signal Processing, 1991, 1(4): 198-214.

        [11]Kelly E J.An adaptive detection algorithm[J].IEEE Transactions on Aerospace and Electronic Systems, 1986,22(1): 115-127.

        [12]Kay S M.Fundamentals of Statistical Signal Processing:Detection Theory[M].Englewood Cliffs, NJ: Prentice-Hall,1998.

        [13]De Maio A, Kay S M, and Farina A.On the invariance,coincidence, and statistical equivalence of the GLRT, Rao test, and wald test[J].IEEE Transactions on Signal Processing, 2010, 58(4): 1967-1979.

        [14]Liu W, Wang Y, and Xie W.Fisher information matrix, Rao test, and Wald test for complex-valued signals and their applications[J].Signal Processing, 2014,DOI:10.1016/j.sigpro.2013.06.032.

        [15]Klemm R.Applications of Space-Time Adaptive Processing[M].London: The Institution of Electrical Engineers, 2004: 415.

        [16]Conte E, Maio A D, and Ricci G.GLRT-based adaptive detection algorithms for range-spread targets[J].IEEE Transactions on Signal Processing, 2001, 49(7): 1336-1348.

        [17]De Maio A.Rao test for adaptive detection in Gaussian interference with unknown covariance matrix[J].IEEE Transactions on Signal Processing, 2007, 55(7): 3577-3584.

        [18]De Maio A.A new derivation of the adaptive matched filter[J].IEEE Signal Processing Letters, 2004, 11(10):792-793.

        [19]Kraut S and Scharf L L.The CFAR adaptive subspace detector is a scale-invariant GLRT[J].IEEE Transactions on Signal Processing, 1999, 47(9): 2538-2541.

        [20]De Maio A and Iommelli S.Coincidence of the Rao test, Wald test, and GLRT in partially homogeneous environment[J].IEEE Signal Processing Letters, 2008, 15: 385-388.

        [21]Richmond C D.Statistics of adaptive nulling and use of the generalized eigenrelation (GER) for modeling inhomogeneities in adaptive processing[J]. IEEE Transactions on Signal Processing, 2000, 48(5): 1263-1273.

        [22]Richmond C D.Performance of a class of adaptive detection algorithms in nonhomogeneous environments[J].IEEE Transactions on Signal Processing, 2000, 48(5): 1248-1262.

        [23]Besson O and Orlando D.Adaptive detection in nonhomogeneous environments using the generalized eigenrelation[J].IEEE Signal Processing Letters, 2007, 14(10):731-734.

        [24]Hao C, Orlando D, and Hou C.Rao and Wald tests for nonhomogeneous scenarios[J].Sensors, 2012, 12(4): 4730-4736.

        [25]Conte E, Lops M, and Ricci G.Asymptotically optimum radar detection in compound-Gaussian clutter[J].IEEE Transactions on Aerospace and Electronic Systems, 1995,31(2): 617-625.

        [26]Gini F and Farina A.Vector subspace detection in compound-Gaussian clutter part I: Survey and new results[J].IEEE Transactions on Aerospace and Electronic Systems,2002, 38(4): 1295-1311.

        [27]Conte E, Lops M, and Ricci G.Adaptive matched filter detection in spherically invariant noise[J].IEEE Signal Processing Letters, 1996, 3(8): 248-250.

        [28]Bidon S, Besson O, and Tourneret J-Y.A Bayesian approach to adaptive detection in nonhomogeneous environments[J].IEEE Transactions on Signal Processing, 2008, 56(1):205-217.

        [29]Richmond C D.A note on non-Gaussian adaptive array detection and signal parameter estimation[J].IE EE Signal Processing Letters, 1996, 3(8): 251-252.

        [30]Besson O and Abramovich Y I.Invariance properties of the likelihood ratio for covariance matrix estimation in some complex elliptically contoured distributions[J].Journal of Multivariate Analysis, 2014, 124: 237-246.

        [31]Boroson D M.Sample size considerations for adaptive arrays[J].IEEE Transactions on Aerospace and Electronic Systems, 1980, 16(4): 446-451.

        [32]Kelly E J.Performance of an adaptive detection algorithm:rejection of unwanted signals[J].IEEE Transactions on Aerospace and Electronic Systems, 1989, 25(2): 122-133.

        [33]De Maio A.Robust adaptive radar detection in the presence of steering vector mismatches[J].IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4): 1322-1337.

        [34]Bandiera F, De Maio A, and Ricci G.Adaptive CFAR radar detection with conic rejection[J].IEEE Transactions on Signal Processing, 2007, 55(6): 2533-2541.

        [35]De Maio A, De Nicola S, and Farina A.GLRT versus mflrt for adaptive CFAR radar detection with conic uncertainty[J].IEEE Signal Processing Letters, 2009, 16(8): 707-710.

        [36]Bandiera F, Orlando D, and Ricci G.CFAR detection strategies for distributed targets under conic constraints[J].IEEE Transactions on Signal Processing, 2009, 57(9):3305-3316.

        [37]Maio A D, Nicola S D, Farina A, et al..Adaptive detection of a signal with angle uncertainty[J].IET Radar, Sonar &Navigation, 2010, 4(4): 537-547.

        [38]Pulsone N B and Rader C M.Adaptive beamformer orthogonal rejection test[J].IEEE Transactions on Signal Processing, 2001, 49(3): 521-529.

        [39]Bandiera F, Besson O, and Ricci G.An abort-like detector with improved mismatched signals rejection capabilities[J].IEEE Transactions on Signal Processin g, 2008, 56(1): 14-25.

        [40]Besson O.Detection in the presence of surprise or undernulled interference[J].IEEE Signal Processing Letters,2007, 14(5): 352-354.

        [41]Orlando D and Ricci G.A Rao test with enhanced selectivity properties in homogeneous scenarios[J].IEE E Transactions on Signal Processing, 2010, 58(10): 5385-5390.

        [42]Liu W, Xie W, and Wang Y.A Wald test with enhanced selectivity properties in homogeneous environments[J].E URASIP Journal on Ad vances in Signal Processing, 2013,DOI:10.1186/1687-6180-2013-14.

        [43]Richmond C D.Performance of the adaptive sidelobe blanker detection algorithm in homogeneous environments[J].IEEE Transactions on Signal Processing, 2000, 48(5): 1235-1247.

        [44]Pulsone N B and Zatman M A.A computationally efficient two-step implementation of the GLRT[J].IEEE Transactions on Signal Processing, 2000, 48(3): 609-616.

        [45]Bandiera F, Orlando D, and Ricci G.A subspace-based adaptive sidelobe blanker[J].IEEE Transactions on Signal Processing, 2008, 56(9): 4141-4151.

        [46]Raghavan R S, Pulsone N, and McLaughlin D J.Performance of the GLRT for adaptive vector subspace detection[J].IEEE Transactions on Aerospace and Electronic Systems, 1996,32(4): 1473-1487.

        [47]Bandiera F, Besson O, Orlando D, et al..An improved adaptive sidelobe blanker[J].IEEE Transactions on Signal Processing, 2008, 56(9): 4152-4161.

        [48]Hao C, Liu B, and Cai L.Performance analysis of a two-stage Rao detector[J].Signal Processing, 2011, 91(8): 2141-2146.

        [49]Bandiera F, Orlando D, and Ricci G.One- and two-stage tunable receivers[J].IEEE Transactions on Signal Processing,2009, 57(8): 3264-3273.

        [50]Kalson S Z.An adaptive array detector with mismatched signal rejection[J].IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(1): 195-207.

        [51]Hao C, Liu B, Yan S, et al..Parametric adaptive radar detector with enhanced mismatched signals rejection capabilities[J].EUR ASIP Journal on Advances in Signal Processing, 2010, DOI: 10.1155/2010/375136.

        [52]Liu W, Xie W, and Wang Y.Parametric detector in the situation of mismatched signals[J].IET Radar, Sonar &Navigation, 2014, 8(1): 48-53.

        [53]Reed I S, Gau Y L, and Truong T K.CFAR detection and estimation for STAP radar[J].IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(3): 722-735.

        [54]Wang H and Cai L.On adaptive spatial-temporal processing for airborne surveillance radar systems[J].IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(3): 660-670.

        [55]Ayoub T F and Haimovich A M.Modified GLRT signal detection algorithm[J].IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(3): 810-818.

        [56]Carlson B D.Covariance matrix estimation errors and diagonal loading in adaptive arrays[J].IEEE Transactions on Aerospace and Electronic Systems, 1988, 24(4): 397-401.

        [57]Wang Y, Liu W, Xie W, et al..Reduced-rank space-time adaptive detection for airborne radar[J].S CIENCE CHINA Information Sciences, 2014,DOI:10.1007/s11432-013-4984-5.

        [58]Guerci J R, Goldstein J S, and Reed I S.Optimal and adaptive reduced-rank STAP[J].IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(2): 647-663.

        [59]Reed I S and Gau Y-L.A fast CFAR detection space-time adaptive processing algorithm[J].IEEE Transactions on Signal Processing, 1999, 47(4): 1151-1154.

        [60]Gau Y-L and Reed I S.An improved reduced-rank CFAR space-time adaptive radar detection algorithm[J].IE EE Transactions on Signal Processing, 1998, 46(8): 2139-2146.

        [61]Liu W, Xie W, and Wang Y.Adaptive detection based on orthogonal partition of the primary and secondary data[J].Journal of Systems Engineerin g and Electronics, 2014, 25(1):34-42.

        [62]Chang P S and Alan N W, Jr.Analysis of conjugate gradient algorithms for adaptive filtering[J].IEEE Transactions on Signal Processing, 2000, 48(2): 409-418.

        [63]Goldstein J S, Reed I S, and Scharf L L.A multistage representation of the wiener filter based on orthogonal projections[J].IEEE Transactions on Information Th eory,1998, 44(7): 2943-2959.

        [64]Pados D A and Batalama S N.Joint space-time auxiliary-vector filtering for ds/CDMA systems with antenna arrays[J].IEEE Transactions on Communications, 1999,47(9): 1406-1415.

        [65]Jiang C, Li H, and Rangaswamy M.On the conjugate gradient matched filter[J].IEEE Transactions on Signal Processing, 2012, 60(5): 2660-2666.

        [66]Liu W, Xie W, and Wang Y.Adaptive detectors in the Krylov subspace[J].S CIEN CE CHINA Information Sciences,2014,DOI:10.1360/SCIS-2012-0749.R4.

        [67]Michels J H, Himed B, and Rangaswamy M.Robust STAP detection in a dense signal airborne radar environment[J].S ignal Processin g Special Section on New Trends and Find ings in Antenna Array Processing for Radar, 2004, 84(9):1625-1636.

        [68]Maio A D.Generalized CFAR property and UMP invariance for adaptive signal detection[J].IEEE Transactions on Signal Processing, 2013, 61(8): 2104-2115.

        [69]Guan J, Chen X-L, Huang Y, et al..Adaptive fractional fourier transform-based detection algorithm for moving target in heavy sea clutter[J].IET Radar, Sonar &Navigation, 2012, 6(5): 389-401.

        [70]Fuhrmann D R.Application of Toeplitz covariance estimation to adaptive beamforming and detection[J].IE EE Transactions on Signal Processing, 1991, 39(10): 2194-2198.

        [71]Kim H S, Alfred O, and Hero I.Comparison of GLR and invariant detectors under structured clutter covariance[J].IEEE Transactions on Image Processing, 2001, 10(10):1509-1520.

        [72]Bose S and Steinhardt A O.A maximal invariant framework for adaptive detection with structured and unstructured covariance matrices[J].IE EE Transactions on Signal Processing, 1995, 43(9): 2164-2175.

        [73]Wang P, Li H, and Himed B.A new parametric GLRT for multichannel adaptive signal detection[J].IEEE Transactions on Signal Processing, 2010, 58(1): 317-325.

        [74]Gao Y, Liao G, Zhu S, et al..Persymmetric adaptive detectors in homogeneous and partially homogeneous environments[J].IEE E Transactions on Signal Processing,2014, 62(2): 331-342.

        [75]Liu W, Xie W, and Wang Y.Rao and Wald tests for distributed targets detection with unknown signal steering[J].IEEE Signal Processin g Letters, 2013, 20(11): 1086-1089.

        [76]Shuai X, Kong L, and Yang J.Adaptive detection for distributed targets in Gaussian noise with Rao and Wald tests[J].SCIEN CE CHINA Information Sciences, 2012, 55(6):1290-1300.

        [77]Hao C, Yang J, Ma X, et al..Adaptive detection of distributed targets with orthogonal rejection[J].IET Radar,Sonar & Navigation, 2012, 6(6): 483-493.

        [78]Liu W, Xie W, Liu J, et al..Adaptive double subspace signal detection in Gaussian background—Part I: Homogeneous environments[J].IEE E Transactions on Signal Processing,2014, 62(9): 2345-2357.

        [79]Liu W, Xie W, Liu J, et al..Adaptive double subspace signal detection in Gaussian background—Part II: Partially homogeneous environments[J].IEEE Transactions on Signal Processing, 2014, 62(9): 2358-2369.

        [80]Wang J, Jiang S, He J, et al..Adaptive detectors with diagonal loading for airborne multi-input multi-output radar[J].IET Radar, Sonar & Navigation, 2009, 3(5): 493-501.

        [81]王鞠庭, 江勝利, 何勁, 等.基于對(duì)角加載的機(jī)載MIMO雷達(dá)GLRT檢測(cè)器[J].電子學(xué)報(bào), 2009, 37(12): 2614-2619.Wang Ju-ting, Jiang Sheng-li, He Jin, et al..GLRT detector with diagonal loading for MIMO radars[J].Acta Electronica Sinica, 2009, 37(12): 2614-2619.

        [82]Zhang T, Cui G, Kong L, et al..Adaptive Bayesian detection using MIMO radar in spatially heterogeneous clutter[J].IEEE Signal Processin g Letters, 2013, 20(6): 547-550.

        [83]Goodman N A and Bruyere D.Optimum and decentralized detection for multistatic airborne radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007,43(2): 806-813.

        [84]江勝利, 王鞠庭, 何勁, 等.基于對(duì)角加載的機(jī)載MIMO雷達(dá)自適應(yīng)匹配濾波檢測(cè)器[J].宇航學(xué)報(bào), 2009, 30(5): 1979-1984.

        [85]Anitori L, Maleki A, Otten M, et al..Design and analysisof compressed sensing radar detectors[J].IE EE Transactions on Signal Processing, 2013, 61(4): 813-827.

        [86]Zhang J, Zhu D, and Zhang G.Adaptive compressed sensing radar oriented toward cognitive detection in dynamic sparse target scene[J].IEEE Transactions on Signal Processing,2012, 60(4): 1718-1729.

        [87]De Maio A, Farina A, and Wicks M.KB-GLRT: exploiting knowledge of the clutter ridge in airborne radar[J].IEE Proceedings-Radar, Sonar and Navigation, 2005, 152(6):421-428.

        [88]Bandiera F, Besson O, and Ricci G.Knowledge-aided covariance matrix estimation and adaptive detection in compound-Gaussian noise[J].IEEE Transactions on Signal Processing, 2011, 58(10): 5390-5396.

        [89]Besson O, Tourneret J-Y, and Bidon S.Knowledge-aided Bayesian detection in heterogeneous environments[J].IEEE Signal Processing Letters, 2007, 14(5): 355-358.

        [90]Maio A D, Farina A, and Foglia G.Knowledge-aided Bayesian radar detectors & their application to live data[J].IEEE Transactions on Aerospace and Electronic Systems,2010, 46(1): 170-183.

        [91]Zhou Y and Zhang L-R.Knowledge-aided Bayesian radar adaptive detection in heterogeneous environment: GLRT,Rao and Wald test[J].AEU-International Journal of Electronics and Communications, 2012, 66(3): 239-243.

        [92]Aubry A, Maio A D, Pallotta L, et al..Radar detection of distributed targets in homogeneous interference whose inverse covariance structure is defined via unitary invariant functions[J].IEEE Transactions on Signal Processing, 2013,61(20): 4949-4961.

        [93]Bidon S, Besson O, and Tourneret J-Y.Knowledge-aided STAP in heterogeneous clutter using a hierarchical Bayesian algorithm[J].IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(3): 1863-1879.

        [94]Hao C, Shang X, Bandiera F, et al..Bayesian radar detection with orthogonal rejection[J].IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2012, E95-A(2): 596-599.

        猜你喜歡
        失配訓(xùn)練樣本雜波
        基于無(wú)差拍電流預(yù)測(cè)控制的PMSM電感失配研究
        STAR2000型空管一次雷達(dá)雜波抑制淺析
        人工智能
        基于特征分解的方位向多通道SAR相位失配校正方法
        寬帶光譜成像系統(tǒng)最優(yōu)訓(xùn)練樣本選擇方法研究
        融合原始樣本和虛擬樣本的人臉識(shí)別算法
        基于稀疏重構(gòu)的機(jī)載雷達(dá)訓(xùn)練樣本挑選方法
        密集雜波環(huán)境下確定性退火DA-HPMHT跟蹤算法
        殘留應(yīng)變對(duì)晶格失配太陽(yáng)電池設(shè)計(jì)的影響
        交錯(cuò)采樣技術(shù)中的失配誤差建模與估計(jì)
        亚洲熟妇无码一区二区三区导航 | 日本一区二区三区在线播放| 久久人妻少妇嫩草av蜜桃 | 天堂无码人妻精品av一区| 亚洲天堂第一区| 日本成人三级视频网站| 91精品国产色综合久久| 中文字幕av免费专区| 一本大道东京热无码中字| 国产一区二区三区免费小视频| 久久精品国产色蜜蜜麻豆国语版| 男女后进式猛烈xx00动态图片 | 亚洲福利二区三区四区| 女人被爽到高潮视频免费国产| 国产内射合集颜射| 白白青青视频在线免费观看| 人妖国产视频一区二区| 国产产区一二三产区区别在线| 麻豆精品久久久久久久99蜜桃 | 亚洲国产av高清一区二区三区| 五十六十日本老熟妇乱| 99久久免费看少妇高潮a片特黄| 青青青国产免A在线观看| 久久久精品人妻一区二区三区游戏| 97精品久久久久中文字幕| 在线免费观看国产精品| 国产精品一区二区三区黄片视频| 极品嫩模大尺度av在线播放| 亚洲国产一区二区a毛片| 亚洲地区一区二区三区| 精品人妻一区二区三区狼人| 国产二区交换配乱婬| 91久久精品国产91久久| 久久亚洲精品成人av观看| 国产精品无码制服丝袜| 亚洲国产av导航第一福利网| 一区二区三区国产美女在线播放| 亚洲国产综合人成综合网站| 9 9久热re在线精品视频| 国产系列丝袜熟女精品视频| 日韩一级137片内射视频播放|