亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        科學(xué)路上,數(shù)學(xué)不是絆腳石

        2013-12-31 00:00:00byE.O.Wilson譯/銘之
        新東方英語 2013年10期

        似乎很多人小時候都有一個“長大要當(dāng)科學(xué)家”的理想。如今“長大”已經(jīng)實現(xiàn)了,說好的“科學(xué)家”呢?也許你早就發(fā)現(xiàn)了,要想成為科學(xué)家并不是那么容易,要為科學(xué)奉獻一生需要多么濃厚的興趣和刻苦鉆研的精神?。∈裁??你是因為數(shù)學(xué)不好才斷了當(dāng)科學(xué)家的念想?那還來得及,趕快重新投入科學(xué)的懷抱吧,誰告訴你數(shù)學(xué)不好就當(dāng)不了科學(xué)家的?

        For many young people who aspire to be scientists, the great bugbear1) is mathematics. Without advanced math, how can you do serious work in the sciences? Well, I have a professional secret to share: Many of the most successful scientists in the world today are mathematically no more than semiliterate.

        During my decades of teaching biology at Harvard, I watched sadly as bright undergraduates turned away from the possibility of a scientific career, fearing that, without strong math skills, they would fail. This mistaken assumption has deprived science of an immeasurable amount of sorely needed talent.

        I speak as an authority on this subject because I myself am an extreme case. Having spent my precollege years in relatively poor Southern schools, I didn’t take algebra until my freshman year at the University of Alabama. I finally got around to2) calculus as a 32-year-old tenured3) professor at Harvard, where I sat uncomfortably in classes with undergraduate students only a bit more than half my age. A couple of them were students in a course on evolutionary biology I was teaching. I swallowed my pride and learned calculus.

        I was never more than a C student while catching up, but I was reassured by the discovery that superior mathematical ability is similar to fluency in foreign languages. I might have become fluent with more effort and sessions talking with the natives, but being swept up with field and laboratory research, I advanced only by a small amount.

        Fortunately, exceptional mathematical fluency is required in only a few disciplines, such as particle physics, astrophysics and information theory. Far more important throughout the rest of science is the ability to form concepts, during which the researcher conjures4) images and processes by intuition.

        Everyone sometimes daydreams like a scientist. Ramped up5) and disciplined, fantasies are the fountainhead of all creative thinking. Newton dreamed, Darwin dreamed, you dream. The images evoked are at first vague. They may shift in form and fade in and out. They grow a bit firmer when sketched as diagrams on pads of paper, and they take on life as real examples are sought and found.

        Pioneers in science only rarely make discoveries by extracting ideas from pure mathematics. Most of the stereotypical photographs of scientists studying rows of equations on a blackboard are instructors explaining discoveries already made. Real progress comes in the field writing notes, at the office amid a litter of doodled paper, in the hallway struggling to explain something to a friend, or eating lunch alone. Eureka moments6) require hard work. And focus.

        Ideas in science emerge most readily when some part of the world is studied for its own sake. They follow from thorough, well-organized knowledge of all that is known or can be imagined of real entities and processes within that fragment of existence. When something new is encountered, the follow-up steps usually require mathematical and statistical methods to move the analysis forward. If that step proves too technically difficult for the person who made the discovery, a mathematician or statistician can be added as a collaborator.

        In the late 1970s, I sat down with the mathematical theorist George Oster to work out the principles of caste7) and the division of labor in the social insects. I supplied the details of what had been discovered in nature and the lab, and he used theorems8) and hypotheses from his tool kit to capture these phenomena. Without such information, Mr. Oster might have developed a general theory, but he would not have had any way to deduce which of the possible permutations9) actually exist on earth.

        Over the years, I have co-written many papers with mathematicians and statisticians, so I can offer the following principle with confidence. Call it Wilson’s Principle No. 1: It is far easier for scientists to acquire needed collaboration from mathematicians and statisticians than it is for mathematicians and statisticians to find scientists able to make use of their equations.

        This imbalance is especially the case in biology, where factors in a real-life phenomenon are often misunderstood or never noticed in the first place. The annals10) of theoretical biology are clogged with mathematical models that either can be safely ignored or, when tested, fail. Possibly no more than 10% have any lasting value. Only those linked solidly to knowledge of real living systems have much chance of being used.

        If your level of mathematical competence is low, plan to raise it, but meanwhile, know that you can do outstanding scientific work with what you have. Think twice, though, about specializing in fields that require a close alternation of experiment and quantitative analysis. These include most of physics and chemistry, as well as a few specialties in molecular biology.

        Newton invented calculus in order to give substance to his imagination. Darwin had little or no mathematical ability, but with the masses of information he had accumulated, he was able to conceive a process to which mathematics was later applied.

        For aspiring scientists, a key first step is to find a subject that interests them deeply and focus on it. In doing so, they should keep in mind Wilson’s Principle No. 2: For every scientist, there exists a discipline for which his or her level of mathematical competence is enough to achieve excellence.

        對于很多有志于成為科學(xué)家的年輕人來說,數(shù)學(xué)是個大難題。離開了高等數(shù)學(xué),你怎么能在科學(xué)領(lǐng)域開展需要認真思考的工作呢?不過,我有一個職業(yè)秘密要分享:當(dāng)今世界上很多非常成功的科學(xué)家在數(shù)學(xué)方面不過是半文盲罷了。

        我在哈佛教授生物學(xué)的幾十年間,曾遺憾地看到一些聰明的本科生放棄了從事科學(xué)工作的可能性,他們擔(dān)心自己會因沒有出色的數(shù)學(xué)技能而失敗。這種錯誤的臆斷使科學(xué)界痛失了無數(shù)亟需的人才。

        在這方面我可是個權(quán)威,因為我自己就是一個極端的例子。大學(xué)之前,我在條件相對較差的南部學(xué)校上學(xué),在我去亞拉巴馬大學(xué)上大學(xué)一年級之前,我可沒學(xué)過代數(shù)。我到32歲才終于開始學(xué)習(xí)微積分,那時我已是哈佛大學(xué)的終身教授,不自在地與本科生坐在一起上課。那些本科生的年齡僅僅是我的一半多一點兒,其中有幾個還是我當(dāng)時正在教授的進化生物學(xué)課上的學(xué)生。但我拋開了自尊,學(xué)會了微積分。

        盡管我緊追猛趕,但我頂多也就是個C等生。不過令我安心的是,我發(fā)現(xiàn)出色的數(shù)學(xué)能力類似于流利的外語水平。如果我付出更多努力,花更多時間與母語人士交談,我的外語可能會變得很流利,但是因為忙于實地研究和實驗室研究,我只進步了一點點。

        幸運的是,對數(shù)學(xué)能力有極高要求的僅僅是少數(shù)幾個學(xué)科,如粒子物理學(xué)、天體物理學(xué)和信息論等。在科學(xué)的其他領(lǐng)域,更重要的是形成概念的能力,在此過程中,研究者利用直覺來想象出圖像和過程。

        人人都有像科學(xué)家那樣做白日夢的時候。經(jīng)過升華與約束的幻想是所有創(chuàng)造性思維的源頭。牛頓做過夢,達爾文做過夢,你也做夢。腦海中被喚起的那些圖像最初是模糊的,它們可能會變換形狀,漸漸顯形又漸漸消失。當(dāng)你把它們畫在紙上,形成圖形時,它們就變得更明確一些;當(dāng)你探尋并找到了真實的例證時,它們就開始有了生氣。

        科學(xué)先驅(qū)們的發(fā)現(xiàn)極少是通過從純數(shù)學(xué)中提煉觀點而得來的。那些展現(xiàn)科學(xué)家研究黑板上一行一行方程式的老套照片其實大都是老師在解釋已有的發(fā)現(xiàn)。真正的科學(xué)進步源自實地考察所做的筆記中,源自到處堆著涂鴉紙張的辦公室里,源自在走廊里努力向朋友解釋某事時,源自獨自吃午飯時?!办`感突發(fā)時刻”的到來需要你努力工作并且專注其中。

        科學(xué)領(lǐng)域的觀點最容易出現(xiàn)在為了世上某物本身而進行研究時。當(dāng)人們對現(xiàn)存事物中的真正實體和過程的所有已知情況或可想象情況有了詳盡和條理清晰的了解后,科學(xué)觀點才會誕生。當(dāng)某種新發(fā)現(xiàn)出現(xiàn)時,后續(xù)的步驟往往需要用數(shù)學(xué)和統(tǒng)計學(xué)方法來推進分析。如果做出發(fā)現(xiàn)的人覺得這一步驟的技術(shù)難度太大,那可以增加一位數(shù)學(xué)家或統(tǒng)計學(xué)家作為其合作者。

        在20世紀70年代末,我與數(shù)學(xué)理論家喬治·奧斯特一起研究社會性昆蟲中的等級原則和勞動分工。我提供了自然界中和實驗室內(nèi)已經(jīng)發(fā)現(xiàn)的細節(jié),他則使用其“工具包”內(nèi)的定理和假設(shè)來描述這些現(xiàn)象。如果沒有我提供的那些信息,奧斯特先生或許可以提出一個籠統(tǒng)的理論,但他將無法推斷出哪些可能的排列是地球上真正存在的。

        多年來,我與數(shù)學(xué)家和統(tǒng)計學(xué)家合寫過很多論文,所以我可以自信地給出以下定律,姑且稱之為“威爾遜第一定律”:比起讓數(shù)學(xué)家和統(tǒng)計學(xué)家找到能運用其方程式的科學(xué)家,讓科學(xué)家從數(shù)學(xué)家和統(tǒng)計學(xué)家處得到其所需的合作要容易得多。

        這種不平衡在生物學(xué)領(lǐng)域尤為顯著,因為在這個領(lǐng)域,真實生活中某個現(xiàn)象的某些因素往往被誤解,或者一開始就根本沒被注意到。理論生物學(xué)的歷史記載中充斥著要么可以完全忽略、要么經(jīng)過驗證是錯誤的數(shù)學(xué)模型,有長久價值的模型可能頂多只占10%。只有那些與真實生命系統(tǒng)的知識緊密相連的模型才有較大可能得到運用。

        如果你的數(shù)學(xué)能力較低,那就做個計劃提升一下。但同時你也要知道,運用現(xiàn)有的數(shù)學(xué)能力你同樣可以完成杰出的科學(xué)工作。但是,如果你想專攻需要不斷交替進行實驗和定量分析的領(lǐng)域時,那就要三思了。這些領(lǐng)域包括物理學(xué)和化學(xué)的大多數(shù)專業(yè),還有分子生物學(xué)方面的幾個專業(yè)。

        牛頓發(fā)明了微積分,以便為他的想象賦予實質(zhì)內(nèi)容。達爾文幾乎或者說根本沒有數(shù)學(xué)能力,但他卻能憑借自己積累的大量信息構(gòu)想出一個過程,數(shù)學(xué)被應(yīng)用于此過程是后來的事了。

        對于有抱負的科學(xué)家來說,關(guān)鍵的第一步是找到一個非常感興趣的學(xué)科,并專攻該學(xué)科。在這樣做時,他們應(yīng)當(dāng)牢記“威爾遜第二定律”:對于每一位科學(xué)家來說,都有一個學(xué)科是其數(shù)學(xué)能力足以使之取得杰出成就的。

        1.bugbear [?b?ɡ?be?(r)] n. 棘手的問題,難題;恐懼(或煩惱)的原因

        2.get around to:抽出時間做(或考慮)某事

        3.tenured [?tenj?(r)d] adj. 〈主美〉享有終身職位的

        4.conjure [?k?nd??(r)] vt. 想象;提出

        5.ramp up:增加,提高

        6.Eureka moment:“尤里卡”(Eureka)原是古希臘語,意思是“好?。∮修k法啦!”古希臘學(xué)者阿基米德有一次在浴盆里洗澡,突然來了靈感,發(fā)現(xiàn)了他久未解決的計算浮力問題的辦法,于是驚喜地叫了一聲“尤里卡”。“尤里卡時刻”因此用來形容靈感突現(xiàn)、豁然開朗的時刻。

        7.caste [kɑ?st] n. [昆]級(社會性昆蟲中成熟個體如兵、工等的不同型)

        8.theorem [?θ??r?m] n. [數(shù)]定理

        9.permutation [?p??(r)mj??te??(?)n] n. [數(shù)]排列,置換

        10.annals [??n(?)lz] n. [復(fù)]歷史記載

        久久天天躁狠狠躁夜夜爽| 激情综合五月开心婷婷| 丰满少妇高潮惨叫久久久一| 麻豆国产成人av高清在线观看| 亚洲欧美日韩精品香蕉| 亚洲国产一区一区毛片a| 男女猛烈拍拍拍无挡视频 | 日本一区二区三区高清千人斩 | 久久精品人成免费| 精品丝袜国产在线播放| 草逼视频免费观看网站| 欧美人牲交| 女同啪啪免费网站www| 国产一区二区毛片视频| 99久久久精品免费| 久久精品人人爽人人爽| 久久亚洲欧洲无码中文| 亚洲欧洲日产国码高潮αv| 亚欧视频无码在线观看| 国产情侣亚洲自拍第一页| 亚洲一区二区三区香蕉| 久热这里只有精品99国产| 亚洲av精品一区二区| 全免费a级毛片免费看无码| 免费人成视频在线观看网站| 亚洲色拍拍噜噜噜最新网站| 91精品国产91综合久久蜜臀| 女人被弄到高潮的免费视频| 99热这里只有精品69| 偷拍美女一区二区三区视频| 婷婷成人丁香五月综合激情| 四虎国产精品永久在线无码| 亚洲精品熟女乱色一区| 人妖一区二区三区四区| 98久9在线 | 免费| 无码人妻精品中文字幕免费| 亚洲成人av在线蜜桃| 五十路丰满中年熟女中出| 国产av专区一区二区三区| 中文字幕女同人妖熟女| 国语对白做受xxxxx在线|