亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        On the exponent of NmK2([Cpn])*

        2019-01-21 08:24:18,

        ,

        (School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China)(Received 22 November 2017: Revised 20 December 2017)

        Abstract Let Cpn be the cyclic p-group of order pn and a finite field of characteristic p. For any integer 1≤l≤n, we obtain infinitely many non-trivial elements of order pl in NmK2([Cpn]). In fact, these elements form a generating set of NmK2([Cpn]) and the exponent of NmK2([Cpn]) is pn.

        Keywords K-theory; Bass Nil groups; truncated polynomial

        LetRbe a ring with unit. The Bass Nil groupsNmKi(R) are introduced by Bass[1]in order to investigate the relation betweenKi(R[x1,…,xm]) andKi(R). For anyi∈,NKi(R) is defined to be the kernel of surjective mapKi(R[x1])→Ki(R) induced byx1|→0. AndNmKi(R) is defined by iteration, i.e., the kernel of the surjectionNm-1Ki(R[xm])→Nm-1Ki(R) induced byxm|→0. Wheni=0,1,2,Ki(R) are the classical algebraicK-groups defined by Grothendieck[2], Bass[1]and Milnor[3], respectively. Wheni<0, the negativeK-theory is defined by Bass[1]. Wheni>2,Ki(R)=πi(K(R)) is defined to be thei-th homotopy group of theK-theory spaceK(R) which was first invented by Quillen[4]via plus-construction orQ-construction. As for the Bass Nil groups, the most known property is the following phenomenon.

        TheoremA(See Refs. [5-9]). LetRbe a ring. For anyi,m∈andm≥1, ifNmKi(R)≠0, then it is not finitely generated as an abelian group.

        Letpbe a prime number. In some cases,NKi(R) are abelianp-groups[8]. However, the exponents of these abelianp-groups are not completely determined. For example, the exponents ofNK0([C4]) andNK1([C4]) are both 2, but the exponent ofNK2([C4]) is still unknown[10].

        K2([Cpn][x1,…,xm])?(1+N)mK2([Cpn])=

        In Ref. [12], Juan-Pineda showed the non-finiteness ofNK2(p[Cpn]) by giving one non-trivial element of orderpand concluded thatNK2([C])≠0 for any non-trivial cyclic groupC. In this paper, we could give infinitely many non-trivial elements of orderplfor any 1≤l≤ninNmK2([Cpn]). In fact, we give a presentation ofNmK2([Cpn]) in terms of Dennis-Stein symbols and show that the exponent ofNmK2([Cpn]) ispn.

        1 Main result

        Lemma1.1NK2([Cpn])?K2([Cpn][x],J[x]).

        ProofObserve that[Cpn][x]/J[x]?[x] and[x]→[Cpn][x] is a split inclusion. Sinceis a finite field,K2([Cpn])=K2()=0. AndK2([x])=K2()⊕NK2()=0 becauseis regular. Hence the result follows from the two exact sequences ofK-groups:

        0→K2([Cpn][x],J[x])→K2([Cpn][x])

        →K2([Cpn][x]/J[x])=0→0,

        0→NK2([Cpn])→K2([Cpn][x])→

        K2([Cpn])=0→0.

        [Cpn]?[t1]/,

        viaσ-1|→t1andxi|→ti+1. LetA=[t1,…,tm+1]/Iandbe its nilradical where. Then[x1,…,xm]?A/MandK2(A)?K2(A,M). So the above lemma becomesNK2([Cpn])?K2([t1,t2]/I,M) (m=1).

        ProofIfk=1, the computation is easy. Supposepn-t-1+1≤k≤pn-t, the result follows from the inequalities

        Theorem1.1LetCpnbe the cyclic group of orderpn(n≥1) generated byσ. For any integerm≥1,NmK2([Cpn])?⊕∞/pi) can be generated by these elements:

        ProofSuppose we get a generating set ofK2([Cpn][x1,…,xm])?K2(A,M) in terms of Dennis-Stein symbols. Fixjdifferent indeterminates in {x1,…,xm}, say {xi1,…,xij}. The elements of the direct summandNjK2([Cpn])?K2([Cpn][xi1,…,xij])?K2([Cpn][x1,…,xm]) can be represented by using those Dennis-Stein symbols containing thesejdifferent indeterminates. HenceK2([Cpn][x1,…,xm]) containspieces ofNjK2([Cpn]). So the elements ofNmK2([Cpn]) can be represented by using those Dennis-Stein symbols inK2([Cpn][x1,…,xm]) containing all themindeterminates.

        We follow the notations in Ref. [13]. Let={0,1,2…} be the set of non-negative integers and+={1,2,3,…} the set of positive integers. Letεi=(0,…,0,1,0,…,0)∈m+1be thei-th basis vector. Forα∈m+1, writetα…wheret1=σ-1 andti+1=xifor 1≤i≤m. Define

        For (α,i)∈Λ′, let [α,i]=min{k∈|kα-εi∈Δ′} andw(α,i)=min{w∈|pw≥[α,i]}. Then [α,1]=「?, [α,j]=「? for anyj≠1. If gcd(p,α1,…,αm+1)=1, put [α]=max{[α,i]|αi?0 modp}. Set Λ′0={(α,i)∈Λ′| gcd(p,α1,…,αm+1)=1,i≠min{j|αj?0 modp,[α,j]=[α]}}, and let(α,i)∈Λ′0|[α,i]>1}.

        Then by Corollary 2.7 in Ref. [13] and the above discussion,NmK2([Cpn]) has a presentation with

        relations:pw(α,i)〈btα-εi,ti〉=0, wherew(α,i)=「logp[α,i]?.

        So one gets

        ·〈b(σ-1)pk-1xβ,(σ-1)〉 where 1≤k≤pn-1and gcd(p,β1,…,βm)=1;

        ·〈b(σ-1)pkxβ-εi,xi〉 where 1≤k

        ·〈b(σ-1)pk-hxβ-εi,xi〉 where 1≤k≤pn-1,1≤h

        The relations are

        Then by Lemma 1.2, the result follows.

        2 Examples

        Example2.1LetC4be the cyclic group of order 4 generated byσ. ThenNK2(2[C4])?⊕∞(/2⊕/4) can be generated by these elements: the generators of order 4 are

        {〈(σ-1)xi-1,x〉|i≥1},

        {〈(σ-1)x2i-1,(σ-1)〉|i≥1},

        and the generators of order 2 are

        {〈(σ-1)3xi-1,x〉|i≥1},

        {〈(σ-1)3x2i-1,(σ-1)〉|i≥1}.

        N2K2(2[C4])?⊕∞(/2⊕/4) can be generated by these elements: the generators of order 4 are

        {〈(σ-1)xi-1yj,x〉|i≥1,j≥1},

        {〈(σ-1)xiyj-1,y〉|i≥1,j≥1},

        {〈(σ-1)x2i-1yj,(σ-1)〉|i≥1,j≥1},

        {〈(σ-1)x2iy2j-1,(σ-1)〉|i≥1,j≥1},

        and the generators of order 2 are

        {〈(σ-1)3xi-1yj,x〉|i≥1,j≥1},

        {〈(σ-1)3xiyj-1,y〉|i≥1,j≥1},

        {〈(σ-1)2x2i-1y2j-1,x〉|i≥1,j≥1},

        {〈(σ-1)2x2i-1yj-1,y〉|i≥1,j≥1},

        {〈(σ-1)3x2i-1yj,(σ-1)〉|i≥1,j≥1},

        {〈(σ-1)3x2iy2j-1,(σ-1)〉|i≥1,j≥1},

        wherex,yare indeterminates.

        Corollary2.1NK1([Cp2])?⊕∞/p.

        ProofAssumeCp2is generated byσ. There is a Milnor square,

        whereζp2is a primitivep2-th root of unity and[ζp2] is the ring of integers in(ζp2). By the Mayer-Vietoris sequence forNK-functors, we get an exact sequence

        NK2([Cp2])→NK2([ζp2])⊕

        NK2([Cp])→NK2(p[Cp])→

        NK1([Cp2])→NK1([ζp2])⊕NK1([Cp]).

        NK2([Cp])→NK2(p[Cp])→

        NK1([Cp2])→0.

        Moreover, we haveNK2(p[Cp])?⊕∞/pandNK1([Cp2])≠0 (see Ref. [14]). HenceNK1([Cp2]) is not finitely generated, therefore

        NK1([Cp2])?⊕∞/p.

        国产精品女同二区五区九区| 亚洲精品久久国产高清情趣图文| 青草福利在线| 黑人巨大亚洲一区二区久| 日韩精品极品系列在线免费视频| 日本在线 | 中文| 久久精品无码中文字幕| www.日本一区| 久久精品人妻一区二三区| 狠狠色噜噜狠狠狠777米奇| 无遮挡又黄又刺激又爽的视频| 91最新免费观看在线| 国产成人一区二区三区| 色综合久久蜜芽国产精品| 少妇无码一区二区三区免费| 亚洲tv精品一区二区三区| 国产av一区二区三区狼人香蕉| 狂猛欧美激情性xxxx大豆行情| 麻豆精品传媒一二三区| 久久国产国内精品对话对白| 国产91九色免费视频| 国产丝袜美女| 天天干成人网| 亚洲国产精品日韩专区av| 亚洲综合自拍偷拍一区| 免费操逼视频| 亚洲成a人片在线网站| 国产免费一区二区三区三| 久久国产人妻一区二区| 精品香蕉久久久爽爽| 特一级熟女毛片免费观看| 丰满人妻中文字幕一区三区| 国产人妻久久精品二区三区老狼| 亚洲色大成在线观看| 国产女主播福利一区二区| 国产极品女主播国产区| 久久久无码一区二区三区| 欧美又大又色又爽aaaa片| 天天爽夜夜爽人人爽曰喷水| 一本色道久久综合亚州精品| 内射白浆一区二区在线观看|