亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        鄰苯二甲酸對(duì)蘿卜種子萌發(fā)、幼苗葉片膜脂過(guò)氧化及滲透調(diào)節(jié)物質(zhì)的影響

        2013-12-09 06:30:39楊延杰王曉偉
        生態(tài)學(xué)報(bào) 2013年19期
        關(guān)鍵詞:化感鄰苯二甲酸酚酸

        楊延杰,王曉偉,趙 康,陳 寧,林 多

        (青島農(nóng)業(yè)大學(xué)園藝學(xué)院, 青島 266109)

        鄰苯二甲酸對(duì)蘿卜種子萌發(fā)、幼苗葉片膜脂過(guò)氧化及滲透調(diào)節(jié)物質(zhì)的影響

        楊延杰,王曉偉,趙 康,陳 寧,林 多*

        (青島農(nóng)業(yè)大學(xué)園藝學(xué)院, 青島 266109)

        華北地區(qū)是我國(guó)玉米的主產(chǎn)區(qū),玉米秸稈還田不僅可有效改善土壤理化性狀、提高土壤生物有效性,還會(huì)在腐解過(guò)程中釋放出目前公認(rèn)的化感物質(zhì)——酚酸類物質(zhì),鄰苯二甲酸是玉米秸稈腐解液中的主要酚酸類物質(zhì)。從玉米秸稈還田過(guò)程中主要腐解產(chǎn)物(鄰苯二甲酸)對(duì)蔬菜作物的化感效應(yīng)角度進(jìn)行了研究,為量化秸稈還田量及構(gòu)建糧-菜輪作制度探尋化感效應(yīng)依據(jù)。試驗(yàn)以蘿卜為蔬菜材料,通過(guò)配置4個(gè)濃度(0.05、0.5、1.0、2.0 mmol/L)的鄰苯二甲酸溶液,模擬玉米秸稈還田條件,以清水為對(duì)照,研究主要腐解產(chǎn)物鄰苯二甲酸對(duì)蘿卜種子萌發(fā)、幼苗生長(zhǎng)、膜脂過(guò)氧化作用及滲透調(diào)節(jié)物質(zhì)的影響。結(jié)果表明:(1)蘿卜不同生育期對(duì)鄰苯二甲酸化感效應(yīng)的響應(yīng)程度不同。在0.05—1 mmol/L濃度范圍內(nèi),鄰苯二甲酸處理促進(jìn)了蘿卜種子萌發(fā),但隨著處理濃度的增大,促進(jìn)作用減弱;濃度達(dá)到2 mmol/L時(shí)對(duì)蘿卜種子萌發(fā)具有抑制效果。(2)鄰苯二甲酸0.05mmol/L處理,促進(jìn)了蘿卜幼苗干鮮物質(zhì)積累,幼苗根系生長(zhǎng),其中根系長(zhǎng)度和根系表面積分別比對(duì)照提高42.03%、38.36%,顯著高于清水對(duì)照;植株體內(nèi)超氧化物歧化酶(Superoxide dismutase, SOD)活性增大,過(guò)氧化物酶(Peroxidase, POD)、過(guò)氧化氫酶(Catalase, CAT)活性降低,膜脂過(guò)氧化產(chǎn)物丙二醛(Malonaldehyde, MDA)含量與對(duì)照無(wú)顯著差異。(3)當(dāng)鄰苯二甲酸濃度超過(guò)0.5 mmol/L時(shí),蘿卜幼苗脂質(zhì)過(guò)氧化傷害加劇,體內(nèi)MDA含量急劇增加,代謝與生理功能出現(xiàn)紊亂,正常生長(zhǎng)及干鮮物質(zhì)積累受到顯著抑制。鄰苯二甲酸濃度達(dá)到2 mmol/L時(shí),葉片數(shù)較對(duì)照降低了36.51%;根系長(zhǎng)度、根系表面積及根尖數(shù)降幅分別為64.46%、40.20%、41.28%。(4)對(duì)于滲透調(diào)節(jié)物質(zhì)的影響,鄰苯二甲酸處理促進(jìn)了蘿卜幼苗葉片可溶性糖含量的增加,但隨著處理濃度的升高其促進(jìn)作用逐漸減弱;可溶性蛋白含量隨著鄰苯二甲酸處理濃度的升高表現(xiàn)出逐漸減少的趨勢(shì),分別較對(duì)照降低了12.82%、14.88%、21.58%、24.73%。因此,華北地區(qū)實(shí)施玉米-蘿卜輪作模式,從化感效應(yīng)角度研究玉米秸稈量化還田,應(yīng)將土壤中鄰苯二甲酸濃度控制在0.5 mmol/L范圍以內(nèi),以防止鄰苯二甲酸濃度過(guò)高對(duì)蘿卜幼苗生長(zhǎng)的抑制作用。

        玉米秸稈還田;化感物質(zhì);蘿卜;種子萌發(fā);膜脂過(guò)氧化;滲透調(diào)節(jié)

        近年來(lái),隨著循環(huán)農(nóng)業(yè)的發(fā)展,以秸稈還田為主的農(nóng)田生物培肥措施逐漸受到重視[1]。進(jìn)行秸稈還田,可以有效改善土壤理化性狀、提高土壤生物有效性、減輕土傳病害并促進(jìn)作物增產(chǎn)[2- 5]。然而,還田秸稈在土壤中還會(huì)分解釋放出化感物質(zhì),當(dāng)其不斷積累并達(dá)到一定濃度后,會(huì)對(duì)下茬作物種子萌發(fā)、幼苗生長(zhǎng)及根系吸收等產(chǎn)生抑制[6- 8]。李彥斌等[9]研究表明,隨著棉花秸稈還田量的增多和秸稈腐解時(shí)間的延長(zhǎng),棉花植株單葉凈光合速率、氣孔導(dǎo)度、蒸騰速率及胞間CO2濃度等顯著降低,植株體內(nèi)抗氧化物酶活性顯著下降。作物化感效應(yīng)的強(qiáng)弱主要取決于土壤中秸稈還田量的多少、不同秸稈的自身成分、腐解過(guò)程和特點(diǎn)[10]。

        酚酸類物質(zhì)是目前公認(rèn)的化感物質(zhì)[11- 12],鄰苯二甲酸是玉米秸稈腐解液中含量較高的酚酸類物質(zhì)之一[13- 14]。已有研究指出,鄰苯二甲酸能夠抑制茄子根際黃萎菌的增殖,對(duì)茄子、黃瓜、辣椒種子萌發(fā)及幼苗生長(zhǎng)的影響表現(xiàn)為“低促高抑”[15- 17];另外,高濃度鄰苯二甲酸還能夠引起番茄幼苗根系膜脂過(guò)氧化,導(dǎo)致幼苗光合速率、氣孔導(dǎo)度及蒸騰速率下降,同時(shí)抑制幼苗生物量的增加[18- 19]。

        華北地區(qū)作為我國(guó)玉米主產(chǎn)區(qū),每年都會(huì)產(chǎn)生大量玉米秸稈[20]。目前,關(guān)于玉米秸稈還田的研究主要集中在還田耕作方式、秸稈腐解特點(diǎn)、秸稈還田后土壤質(zhì)量和微生物生物量變化及對(duì)下茬糧食作物生長(zhǎng)、產(chǎn)量與品質(zhì)影響等方面[21- 23],而關(guān)于從化感角度研究玉米秸稈還田量及其對(duì)下茬蔬菜生長(zhǎng)影響方面的研究鮮有報(bào)道。為此,本試驗(yàn)以蘿卜為蔬菜試材,通過(guò)配置不同濃度鄰苯二甲酸,模擬玉米秸稈還田條件下主要腐解產(chǎn)物鄰苯二甲酸對(duì)蘿卜種子萌發(fā)及幼苗生長(zhǎng)的化感效應(yīng),旨在為華北地區(qū)秸稈還田量化標(biāo)準(zhǔn)的制定及糧-菜輪作制度的構(gòu)建,實(shí)現(xiàn)農(nóng)業(yè)可持續(xù)健康發(fā)展,提供化感理論依據(jù)。

        1 材料與方法

        1.1 試驗(yàn)材料

        試驗(yàn)于2012年4月至5月在青島農(nóng)業(yè)大學(xué)連棟育苗溫室內(nèi)進(jìn)行,供試蘿卜(RaphanussativusL.)品種為‘濰縣青’(山東麗林公司生產(chǎn));鄰苯二甲酸為分析純(國(guó)藥集團(tuán)化學(xué)試劑有限公司),共設(shè)4個(gè)濃度處理,分別為T1 0.05 mmol/L、T2 0.5 mmol/L、T3 1.0 mmol/L、T4 2.0 mmol/L,以清水為對(duì)照(CK)。

        1.2 種子發(fā)芽試驗(yàn)

        在鋪有兩層定性濾紙的潔凈培養(yǎng)皿中(直徑10 cm)放入均勻飽滿的受體蘿卜種子50粒,然后將5 mL不同處理溶液注入相應(yīng)培養(yǎng)皿床,重復(fù)3次。將培養(yǎng)皿放入25℃的恒溫培養(yǎng)箱中培養(yǎng),期間分別用相應(yīng)溶液對(duì)濾紙進(jìn)行濕潤(rùn)以保持其濕度。每天定時(shí)統(tǒng)計(jì)種子發(fā)芽數(shù),直到?jīng)]有種子發(fā)芽為止。種子發(fā)芽率采用公式:已發(fā)芽的種子數(shù)÷總數(shù)×100%計(jì)算。

        1.3 幼苗生長(zhǎng)試驗(yàn)

        用不同處理溶液對(duì)蘿卜種子進(jìn)行催芽處理(方法同種子發(fā)芽試驗(yàn)),4月15日選取發(fā)芽勢(shì)一致的種子將其播種于72孔穴盤中,育苗基質(zhì)配比為草炭∶珍珠巖∶蛭石=2∶1∶1,每處理1盤,3次重復(fù),完全隨機(jī)排列。各處理日常澆水以相應(yīng)鄰苯二甲酸溶液代替,其它同常規(guī)育苗管理。

        播種后20d每處理隨機(jī)取15株幼苗洗凈,采用常規(guī)方法測(cè)定幼苗葉片數(shù)、地上部干鮮質(zhì)量及根系干鮮質(zhì)量,用Epson Perfection V700 Photo 根系掃描儀對(duì)根系進(jìn)行掃描,Win RHIZO根系分析儀進(jìn)行根系分析,分析指標(biāo)包括根長(zhǎng)、根系表面積及根尖數(shù)。SOD活性采用氮藍(lán)四唑法測(cè)定[24];POD活性采用愈創(chuàng)木酚法測(cè)定[24];CAT活性采用紫外吸收法測(cè)定[24];MDA含量采用硫代巴比妥酸法測(cè)定[24];可溶性糖含量采用蒽酮比色法測(cè)定[24];可溶性蛋白含量采用考馬斯亮藍(lán)G- 250染色法測(cè)定[24]。

        1.4 數(shù)據(jù)分析

        試驗(yàn)數(shù)據(jù)采用Microsoft Excel、Origin(Version 7.0)和DPS(7.05)軟件進(jìn)行數(shù)據(jù)統(tǒng)計(jì)分析及作圖,差異顯著性比較采用最小顯著極差法(LSD法)。

        2 結(jié)果與分析

        2.1 鄰苯二甲酸對(duì)蘿卜種子萌發(fā)率的影響

        圖1 鄰苯二甲酸對(duì)蘿卜種子萌發(fā)率的影響 Fig.1 Effect of phthalic acid on seed germination rate of radishCK: 0 mmol/L; T1: 0.05 mmol/L; T2: 0. 5 mmol/L; T3: 1 mmol/L; T4: 2 mmol/L

        如圖1所示,在0.05—1 mmol/L濃度范圍內(nèi),鄰苯二甲酸處理促進(jìn)了蘿卜種子的萌發(fā),但隨著處理濃度的增大,促進(jìn)作用減弱。蘿卜種子發(fā)芽率在鄰苯二甲酸處理濃度為0.05 mmol/L時(shí)達(dá)到峰值,為89%,比對(duì)照高出5.95%;與對(duì)照相比,2 mmol/L的鄰苯二甲酸處理抑制了蘿卜種子萌發(fā),發(fā)芽率僅為83%。

        2.2 鄰苯二甲酸對(duì)蘿卜幼苗生長(zhǎng)的影響

        從表1可以看出,與對(duì)照相比,0.05 mmol/L的鄰苯二甲酸處理雖未對(duì)蘿卜幼苗地上部生長(zhǎng)產(chǎn)生顯著影響,卻顯著促進(jìn)了幼苗根系生長(zhǎng)。其中,根系長(zhǎng)度、根系表面積及根尖數(shù)分別較對(duì)照高出了42.03%、38.36%、28.02%;幼苗地上部干鮮質(zhì)量及根系干質(zhì)量也在不同程度上有所增加。鄰苯二甲酸處理濃度超過(guò)0.5 mmol/L,蘿卜幼苗生長(zhǎng)及物質(zhì)積累受到顯著抑制,且鄰苯二甲酸濃度越大,抑制幅度越大。當(dāng)濃度達(dá)到2 mmol/L時(shí),葉片數(shù)較對(duì)照降低了36.51%;根系長(zhǎng)度、根系表面積及根尖數(shù)降幅分別為64.46%、40.20%、41.28%。

        表1 鄰苯二甲酸對(duì)蘿卜幼苗生長(zhǎng)狀況的影響

        同列不同小寫字母表示不同處理間差異顯著(Plt;0.05)

        2.3 鄰苯二甲酸對(duì)蘿卜幼苗葉片膜脂過(guò)氧化的影響

        由圖2可見(jiàn),不同濃度鄰苯二甲酸對(duì)蘿卜幼苗膜脂過(guò)氧化的影響存在較大差異性。各處理幼苗SOD活性不同程度的有所增強(qiáng),增強(qiáng)幅度隨著濃度的增加而增大。不同濃度鄰苯二甲酸處理均抑制了幼苗POD及CAT活性,隨著處理濃度的增加,均表現(xiàn)出先增強(qiáng)后減弱的趨勢(shì),其中POD活性峰值為0.5 mmol/L,而CAT活性峰值為1 mmol/L。與對(duì)照相比,0.05—0.5 mmol/L濃度范圍內(nèi)的幼苗MDA合成量有所減少,當(dāng)濃度超過(guò)0.5 mmol/L時(shí),MDA合成量又逐漸增加(圖2)。

        圖2 鄰苯二甲酸對(duì)蘿卜幼苗SOD、POD、CAT活性及MDA含量的影響Fig.2 Effect of phthalic acid on SOD, POD, CAT activity and MDA content of radish seedlings

        2.4 鄰苯二甲酸對(duì)蘿卜幼苗葉片滲透調(diào)節(jié)物質(zhì)的影響

        不同濃度鄰苯二甲酸處理均促進(jìn)了蘿卜幼苗葉片可溶性糖含量的增加,但隨著濃度的升高,其促進(jìn)作用逐漸減弱,其中,0.5 mmol/L鄰苯二甲酸處理的幼苗葉片可溶性糖含量最高,比對(duì)照高出80.10%。蘿卜幼苗可溶性蛋白含量隨著鄰苯二甲酸濃度的增大呈現(xiàn)出逐漸降低的趨勢(shì)(圖3),蘿卜幼苗可溶性蛋白含量分別較對(duì)照低了12.82%、14.88%、21.58%、24.73%。

        圖3 鄰苯二甲酸對(duì)蘿卜幼苗滲透調(diào)節(jié)物質(zhì)的影響Fig.3 Effect of phthalic acid on osmoregulation substance of radish seedlings

        3 討論

        根系是植物水分和養(yǎng)分吸收、多種激素及氨基酸合成的重要器官,其發(fā)育好壞決定著植株利用土壤養(yǎng)分及水分能力的高低[25],植株幼苗干鮮重不僅能夠反映根系吸收水分及幼苗通過(guò)光合作用積累光合產(chǎn)物的多少,而且對(duì)外界環(huán)境脅迫較為敏感,因而常用于生物測(cè)定的指標(biāo)[26]。植株在正常情況下,體內(nèi)活性氧產(chǎn)生與清除處于動(dòng)態(tài)平衡狀態(tài),SOD、POD、CAT是植物細(xì)胞中清除活性氧,保護(hù)細(xì)胞的重要酶系統(tǒng)[27- 38],MDA作為膜脂過(guò)氧化的最終分解產(chǎn)物,其含量可以反映植物遭受逆境傷害的程度[29]。本研究結(jié)果表明,0.05—1 mmol/L的鄰苯二甲酸處理促進(jìn)了蘿卜種子的萌發(fā),但隨著處理濃度的增大,促進(jìn)作用減弱(圖1);濃度達(dá)到2 mmol/L時(shí),種子萌發(fā)受到抑制。蘿卜幼苗經(jīng)0.05 mmol/L鄰苯二甲酸處理,SOD活性增強(qiáng),POD、CAT活性有所減弱,MDA合成量與對(duì)照基本持平,說(shuō)明0.05 mmol/L的鄰苯二甲酸脅迫,幼苗體內(nèi)自由基能及時(shí)得到清除,不但未對(duì)蘿卜幼苗產(chǎn)生明顯傷害,反而促進(jìn)了幼苗生長(zhǎng)及干鮮物質(zhì)積累,根系表面積也顯著增加(表1)。當(dāng)鄰苯二甲酸濃度超過(guò)0.5 mmol/L時(shí),SOD、POD、CAT不足以清除幼苗體內(nèi)產(chǎn)生的氧自由基,造成脂質(zhì)過(guò)氧化傷害加劇,膜的透性加強(qiáng),MDA合成量急劇增加,進(jìn)而導(dǎo)致幼苗生長(zhǎng)代謝及生理功能出現(xiàn)紊亂,幼苗生長(zhǎng)及干鮮物質(zhì)積累受到顯著抑制。另外,SOD、POD、CAT作為細(xì)胞保護(hù)酶,在相同處理方式下表現(xiàn)出的變化趨勢(shì)卻不相同,說(shuō)明鄰苯二甲酸對(duì)蘿卜幼苗不同酶活性的影響不同。這與前人在番茄[19]、萵苣[30]等作物上的研究結(jié)果一致。

        酚酸脅迫條件下,植物細(xì)胞會(huì)通過(guò)積累滲透調(diào)節(jié)物質(zhì)(如可溶性糖、可溶性蛋白等),以調(diào)節(jié)細(xì)胞內(nèi)滲透勢(shì)、維持水分平衡及細(xì)胞膜正常結(jié)構(gòu)[31]。本試驗(yàn)中,鄰苯二甲酸處理均促進(jìn)了蘿卜幼苗葉片可溶性糖含量的增加,并且隨著濃度的升高其促進(jìn)作用逐漸減弱。而葉片可溶性蛋白含量變化則相反,表現(xiàn)為隨著鄰苯二甲酸濃度的增大,可溶性蛋白含量逐漸降低,造成這一結(jié)果的原因可能是由于蛋白質(zhì)相對(duì)合成速率減小,現(xiàn)有可溶性蛋白質(zhì)大量分解為游離氨基酸,用于調(diào)節(jié)滲透壓并提供代謝能源,從而造成可溶性蛋白含量降低[32- 33]。本試驗(yàn)中,鄰苯二甲酸對(duì)蘿卜種子萌發(fā)及幼苗生長(zhǎng)的影響存在較大差異性,可能是由于蘿卜不同生育時(shí)期對(duì)鄰苯二甲酸感應(yīng)程度不同造成,這與前人研究酚酸類物質(zhì)對(duì)苜蓿種子萌發(fā)及幼苗生長(zhǎng)影響結(jié)論一致[26]。

        鄰苯二甲酸作為玉米根系分泌的主要次生代謝產(chǎn)物和還田玉米秸稈產(chǎn)生的主要酚酸類物質(zhì)[34],隨著其在土壤中的不斷積累,達(dá)到一定量時(shí)就可產(chǎn)生化感效應(yīng),對(duì)下茬作物生長(zhǎng)產(chǎn)生影響[9,35]。張承胤等[14]通過(guò)室內(nèi)模擬玉米秸稈腐解試驗(yàn)發(fā)現(xiàn),腐解7—28 d時(shí)玉米秸稈腐解液中酚酸物質(zhì)含量相繼達(dá)到最大值,其中腐解7 d時(shí)鄰苯二甲酸含量在各類酚酸物質(zhì)中所占比例最大,為0.46 mmol/L。鄭皓皓等[36]研究發(fā)現(xiàn),每公頃進(jìn)行7500 kg小麥秸稈還田,在翻埋后40 d左右酚酸產(chǎn)生總量達(dá)到高峰期,且達(dá)到對(duì)下茬玉米生長(zhǎng)產(chǎn)生抑制的含量。武際等[3]研究指出,小麥秸稈還田0 d至30 d為快速腐解期,之后腐解速率逐漸放緩,并且節(jié)水灌溉模式下的小麥秸稈腐解速率要高于常規(guī)栽培模式。南雄雄等[10]研究指出,相同條件下,玉米秸稈比小麥秸稈更容易腐解。可以看出,不同時(shí)期不同條件下還田秸稈腐解量及酚酸物質(zhì)含量存在較大差異性。本試驗(yàn)?zāi)M玉米秸稈還田條件下,主要酚酸類物質(zhì)(鄰苯二甲酸)對(duì)蘿卜種子萌發(fā)、幼苗生長(zhǎng)、葉片膜脂過(guò)氧化及滲透調(diào)節(jié)物質(zhì)的影響,而關(guān)于還田玉米秸稈引起土壤肥力提升所帶來(lái)的正效應(yīng)與鄰苯二甲酸濃度升高對(duì)蘿卜品質(zhì)及產(chǎn)量所帶來(lái)的負(fù)效應(yīng)(酚酸毒害)之間的強(qiáng)弱關(guān)系如何還有待于進(jìn)一步研究。

        華北地區(qū)實(shí)施玉米-蘿卜這種糧菜輪作模式,從化感效應(yīng)角度,在秸稈還田時(shí)應(yīng)控制還田量,將土壤中鄰苯二甲酸濃度控制在0.5 mmol/L范圍以內(nèi),以防止鄰苯二甲酸濃度過(guò)高對(duì)蘿卜幼苗生長(zhǎng)產(chǎn)生抑制作用。

        [1] Mu P, Zhang E H, Wang H N, Fang Y F. Effects of continuous straw return to soil on maize growth and soil chemical and physical characteristics. Chinese Journal of Eco-Agriculture, 2012, 20(3): 291- 296.

        [2] Wu R M, Wang Y P, Li F M, Li X G. Effects of coupling film-mulched furrow-ridge cropping with maize straw soil- incorporation on maize yields and soil organic carbon pool at a semiarid loess site of China. Acta Ecologica Sinica, 2012, 32(9): 2855- 2862.

        [3] Wu J, Guo X S, Lu J W, Wan S X, Wang Y Q, Xu Z Y, Zhang X L. Decomposition characteristics of wheat straw and effects on soil biological properties and nutrient status under different rice cultivation. Acta Ecologica Sinica, 2013, 33(2): 565- 575.

        [4] Pan J L, Dai W A, Shang Z H, Guo R Y. Review of research progress on the influence and mechanism of field straw residue incorporation on soil organic matter and nitrogen availability. Chinese Journal of Eco-Agriculture, 2013, 21(5): 526- 535.

        [5] Yuan F, Zhang C L, Shen Q R. Effect and Mechanism of Phenol Compounds in Alleviating Cucumber FusariumWilt. Scientia Agricultura Sinica, 2004, 37(4): 545- 551.

        [6] Birkett M A, Chamberlain K, Hooper A M, Pickett J A. Does allelopathy offer real promise for practical weed management and for explaining rhizosphere interactions involving higher plants? Plant and Soil, 2001, 232(1/2): 31- 39.

        [7] Yu J O, Ye S F, Zhang M F, Hu W H. Effects of root exudates and aqueous root extracts of cucumber (Cucumissativus) and alleloehemicals on photosynthesis and autioxidant enzymes in cucumber. Biochemical Systematics and Ecology, 2003, 31(2): 129- 139.

        [8] Sannigrahi A K, Chakrabortty S. Allelopathic effects of weeds on germination and seedling growth of tomato. Allelopathy Journal, 2005, 16(2): 289- 294.

        [9] Li Y B, Liu J G, Cheng X R, Zhang W, Sun Y Y. The allelopathic effects of returning cotton stalk to soil on the growth of succeeding cotton. Acta Ecologica Sinica, 2009, 29(9): 4942- 4948.

        [10] Nan X X, Tian X H, Zhang L, You D H, Wu Y H, Cao Y X. Decomposition characteristics of maize and wheat straw and their effects on soil carbon and nitrogen contents. Plant Nutrition and Fertilizer Science, 2010, 16(3): 626- 633.

        [11] Wang Y P, Wang H T. Allelochemicals from roots exudation and its environment behavior in soil. Chinese Journal of Soil Science, 2010, 41(2): 501- 507.

        [12] Chon S U, Choib S K, Jung S, Jang H G, Pyo B S, Kim S M. Effects of alfalfa leaf extracts and phenolic allelochemicals on early seedling growth and root morphology of alfalfa and barnyard grass. Crop Protection, 2002, 21(10): 1077- 1082.

        [13] Liang C Q, Zhen W C, Zhang C Y, Yin B Z. Determination of phenolic acids in decomposing products of maize straw and their allelopathy on pathogens of wheat soil-borne disease. Chinese Agricultural Science Bulletin, 2009, 25(2): 210- 213.

        [14] Zhang C Y. Study on Allelopathy of Maize Straw Retention on Root Disease of Wheat [D]. Hebei: Hebei Agricultural University, 2007.

        [15] Zhou B L, Sun C Q, Han L, Wu J X, Lei B. Effects of dibutyl phthalate on amount ofVerticlliumdahliaeand soil microbial composition in Rhizosphere of eggplant. Acta Agriculturae Boreali-Sinica, 2010, 25(6): 150- 153.

        [16] Zhou B L, Chen F, Liu N, Wu Q, Lu B. Allelopathy of diisobutyl phthalate toVerticilliumwilt and seedling growth of eggplant. Acta Agriculturae Boreali-Occidentalis Sinica, 2010, 19(4): 179- 183.

        [17] Li Y X, Zhou B L, Liu N, Fu Y W. Effect of different concentration Dibutyl Phthalate (DBP) on the germination and seedlings growth of three vegetable seeds. Acta Agriculturae Boreali-Occidentalis Sinica, 2009, 18(2): 217- 220, 224- 224.

        [18] Zhang W B, Zhang S H, Zhang E P, Li L L, Li T L. Effects of applied phthalic acid and phloroglucionol dihydrate on the root oxidative damage in tomato seedlings. Allelopathy Journal, 2009, 23(2): 437- 437.

        [19] Li L L, Li T L, Zhang E P, Chen B, Liu W E, Wu Z C. Studies on alleviation effect of carbonized maize cob to Phthalic acid on restraining growth and enzyme activity of tomato seedlings. China Vegetables, 2011, 16: 50- 55.

        [20] Wang B W, Chi S Y, Tian S Z, Ning Y T, Chen G Q, Zhao H X, Li Z J. CH4 uptake and its affecting factors in winter wheat field under different stubble height of straw returning. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(5): 170- 178.

        [21] Pang X, He W Q, Yan C R, Liu E K, Liu S, Yin T. Effect of tillage and residue management on dynamic of soil microbial biomass carbon. Acta Ecologica Sinica, 2013, 33(4): 1308- 1316.

        [22] Shen X S, Qu H J, Li J C, Huang G, Chen S H, Liu D H. Effects of the Maize Straw Returned to the Field and Tillage Patterns on Nutrition Accumulation and Translocation of Winter Wheat. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(1): 143- 149.

        [23] Ge L L, Ma Y H, Bian J L, Wang Z Q, Yang J C, Liu L J. Effects of returning maize straw to field and site-specific nitrogen management on grain yield and quality in rice. Chinese Journal of Rice Science, 2013, 27(2): 153- 160.

        [24] Wang X K. Principles and Techniques of Plant Physiological Biochemical Experiment. Beijing: Higher Education Press, 2006.

        [25] Yang J C. Relationships of rice root morphology and physiology with the formation of grain yield and quality and the nutrient absorption and utilization. Scientia Agricultura Sinica, 2011, 44(1): 36- 46.

        [26] Song L, Pan K W, Wang J C, Ma Y H. Effects of phenolic acids on seed germination and seedling antioxidant enzyme activity of alfalfa. Acta Ecologica Sinica, 2006, 26(10): 3393- 3403.

        [27] Zhang E P, Zhang W B, Zhang S H, Li L L, Li T L. Effects of exogenic benzoic acid and cinnamic acid on the root oxidative damage of tomato seedlings. Acta Agriculturae Boreali-Occidentalis Sinica, 2010, 19(1): 186- 190.

        [28] Wu F Z, Huang C H, Zhao F Y. Effects of phenolic acids on growth and activities of membrance protective enzymes of cucumber seedlings. Scientia Agricultura Sinica, 2002, 35(7): 821- 825.

        [29] Tan Z J, Li Q, Chen D L, Zhou Q M, Xiao Q M, Li J G. On the effect of rice-straw returned to the field on microbes and enzyme activity in paddy soil. Acta Ecologica Sinica, 2006, 26(10): 3385- 3392.

        [30] Geng G D, Zhang S Q, Cheng Z H. Allelopathy of 1, 2-benzenedicarboxylic acid and its mechanism. Journal of Hunan Agricultural University: Natural Sciences, 2008, 34(6): 656- 659.

        [31] Chen S L, Zhou B L, Lin S S, Li X, Ye X Y. Effects of cinnamic acid and vanillin on grafted eggplant root growth and physiological characteristics. Chinese Journal of Applied Ecology, 2010, 21(6): 1446- 1452.

        [32] Yang M, Lin S Z, Huang Y H, Cao G Q. Allelopathic effects of salicylic acid stress on membrane lipid peroxidation and osmosis- regulating substances in different Chinese Fir Clones. Acta Botanica Boreali-Occidentalia Sinica, 2006, 26(10): 2088- 2093.

        [33] Yue J J, Zhang J L, Mu X Q, Yuan L G, Zhang R, Xu M. Preliminary study of allelopathy mechanism ofEuphorbiahelioscopialL. Acta Agriculturae Boreali-Occidentalis Sinica, 2007, 16(5): 246- 249.

        [34] Liu X Y, He P, Jin J Y. Effect of potassium chloride on the exudation of sugars and phenolic acids by maize root and its relation to growth of stalk rot pathogen. Plant Nutrition and Fertilizer Science, 2008, 14(5): 929- 934.

        [35] Hou Y X, Zhou B L, Wu X L. Allelopathic effects of different crop stalks on pepper growth. Chinese Journal of Ecology, 2009, 28(6): 1107- 1111.

        [36] Zheng H H, Hu X J, Jia J Y, Wu E, Xing J J. Changes of the phenolic acid in plough layer and its effects on the growth and yield of summer corn with returning wheat straw. Chinese Journal of Eco-Agriculture, 2001, 9(4): 79- 81.

        參考文獻(xiàn):

        [1] 慕平, 張恩和, 王漢寧, 方永豐. 不同年限全量玉米秸稈還田對(duì)玉米生長(zhǎng)發(fā)育及土壤理化性狀的影響. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2012, 20(3): 291- 296.

        [2] 吳榮美, 王永鵬, 李鳳民, 李小剛. 秸稈還田與全膜雙壟集雨溝播耦合對(duì)半干旱黃土高原玉米產(chǎn)量和土壤有機(jī)碳庫(kù)的影響. 生態(tài)學(xué)報(bào), 2012, 32(9): 2855- 2862.

        [3] 武際, 郭熙盛, 魯劍巍, 萬(wàn)水霞, 王允青, 許征宇, 張曉玲. 不同水稻栽培模式下小麥秸稈腐解特征及對(duì)土壤生物學(xué)特性和養(yǎng)分狀況的影響. 生態(tài)學(xué)報(bào), 2013, 33(2): 565- 575.

        [4] 潘劍玲, 代萬(wàn)安, 尚占環(huán), 郭瑞英. 秸稈還田對(duì)土壤有機(jī)質(zhì)和氮素有效性影響及機(jī)制研究進(jìn)展. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2013, 21(5): 526- 535.

        [5] 袁飛, 張春蘭, 沈其榮. 酚酸物質(zhì)減輕黃瓜枯萎病的效果及其原因分析. 中國(guó)農(nóng)業(yè)科學(xué), 2004, 37(4): 545- 551.

        [9] 李彥斌, 劉建國(guó), 程相儒, 張偉, 孫艷艷. 秸稈還田對(duì)棉花生長(zhǎng)的化感效應(yīng). 生態(tài)學(xué)報(bào), 2009, 29(9): 4942- 4948.

        [10] 南雄雄, 田霄鴻, 張琳, 游東海, 吳玉紅, 曹玉賢. 小麥和玉米秸稈腐解特點(diǎn)及對(duì)土壤中碳、氮含量的影響. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2010, 16(3): 626- 633.

        [11] 王延平, 王華田. 植物根分泌的化感物質(zhì)及其在土壤中的環(huán)境行為. 土壤通報(bào), 2010, 41(2): 501- 507.

        [13] 梁春?jiǎn)? 甄文超, 張承胤, 尹寶重. 玉米秸稈腐解液中酚酸的檢測(cè)及對(duì)小麥土傳病原菌的化感作用. 中國(guó)農(nóng)學(xué)通報(bào), 2009, 25(2): 210- 213.

        [14] 張承胤. 玉米秸稈還田對(duì)小麥根部病害的化感作用研究 [D]. 河北: 河北農(nóng)業(yè)大學(xué), 2007.

        [15] 周寶利, 孫傳齊, 韓琳, 武建霞, 雷斌. 鄰苯二甲酸二丁酯對(duì)茄子根際土壤黃萎菌數(shù)量及土壤微生物組成的影響. 華北農(nóng)學(xué)報(bào), 2010, 25(6): 150- 153.

        [16] 周寶利, 陳豐, 劉娜, 吳瓊, 魯博. 鄰苯二甲酸二異丁酯對(duì)茄子黃萎病及其幼苗生長(zhǎng)的化感作用. 西北農(nóng)業(yè)學(xué)報(bào), 2010, 19(4): 179- 183.

        [17] 李軼修, 周寶利, 劉娜, 付亞文. 鄰苯二甲酸二丁酯對(duì)3種蔬菜作物種子萌發(fā)及幼苗生長(zhǎng)的影響. 西北農(nóng)業(yè)學(xué)報(bào), 2009, 18(2): 217- 220, 224- 224.

        [19] 李亮亮, 李天來(lái), 張恩平, 陳彬, 劉文娥, 吳正超. 碳化玉米芯緩解鄰苯二甲酸對(duì)番茄幼苗生長(zhǎng)和酶活性的抑制作用. 中國(guó)蔬菜, 2011, 16: 50- 55.

        [20] 王丙文, 遲淑筠, 田慎重, 寧堂原, 陳國(guó)慶, 趙紅香, 李增嘉. 不同留茬高度秸稈還田冬小麥田甲烷吸收及影響因素. 農(nóng)業(yè)工程學(xué)報(bào), 2013, 29(5): 170- 178.

        [21] 龐緒, 何文清, 嚴(yán)昌榮, 劉恩科, 劉爽, 殷濤. 耕作措施對(duì)土壤水熱特性和微生物生物量碳的影響. 生態(tài)學(xué)報(bào), 2013, 33(4): 1308- 1316.

        [22] 沈?qū)W善, 屈會(huì)娟, 李金才, 黃鋼, 陳尚洪, 劉定輝. 玉米秸稈還田和耕作方式對(duì)小麥養(yǎng)分積累與轉(zhuǎn)運(yùn)的影響. 西北植物學(xué)報(bào), 2012, 32(1): 143- 149.

        [23] 葛立立, 馬義虎, 卞金龍, 王志琴, 楊建昌, 劉立軍. 玉米秸稈還田與實(shí)地氮肥管理對(duì)水稻產(chǎn)量與米質(zhì)的影響. 中國(guó)水稻科學(xué), 2013, 27(2): 153- 160.

        [24] 王學(xué)奎. 植物生理生化實(shí)驗(yàn)原理和技術(shù) (第二版). 北京: 高等教育出版社, 2006.

        [25] 楊建昌. 水稻根系形態(tài)生理與產(chǎn)量、品質(zhì)形成及養(yǎng)分吸收利用的關(guān)系. 中國(guó)農(nóng)業(yè)科學(xué), 2011, 44(1): 36- 46.

        [26] 宋亮, 潘開文, 王進(jìn)闖, 馬玉紅. 酚酸類物質(zhì)對(duì)苜蓿種子萌發(fā)及抗氧化物酶活性的影響. 生態(tài)學(xué)報(bào), 2006, 26(10): 3393- 3403.

        [27] 張恩平, 張文博, 張淑紅, 李亮亮, 李天來(lái). 苯甲酸和肉桂酸對(duì)番茄幼苗根部保護(hù)酶及膜質(zhì)過(guò)氧化的影響. 西北農(nóng)業(yè)學(xué)報(bào), 2010, 19(1): 186- 190.

        [28] 吳鳳芝, 黃彩紅, 趙鳳艷. 酚酸類物質(zhì)對(duì)黃瓜幼苗生長(zhǎng)及保護(hù)酶活性的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2002, 35(7): 821- 825.

        [29] 譚周進(jìn), 李倩, 陳冬林, 周清明, 肖啟明, 李建國(guó). 稻草還田對(duì)晚稻土微生物及酶活性的影響. 生態(tài)學(xué)報(bào), 2006, 26(10): 3385- 3392.

        [30] 耿廣東, 張素勤, 程智慧. 鄰苯二甲酸對(duì)萵苣的化感作用及其作用機(jī)理. 湖南農(nóng)業(yè)大學(xué)學(xué)報(bào): 自然科學(xué)版, 2008, 34(6): 656- 659.

        [31] 陳紹莉, 周寶利, 藺姍姍, 李夏, 葉雪凌. 肉桂酸和香草醛對(duì)嫁接茄子根系生長(zhǎng)及生理特性的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2010, 21(6): 1446- 1452.

        [32] 楊梅, 林思祖, 黃燕華, 草光球. 鄰羥基苯甲酸脅迫對(duì)不同杉木無(wú)性系葉片膜質(zhì)過(guò)氧化及滲透調(diào)節(jié)物質(zhì)的化感效應(yīng). 西北植物學(xué)報(bào), 2006, 26(10): 2088- 2093.

        [33] 岳建建, 張軍林, 慕小倩, 袁龍剛, 張蓉, 徐敏. 澤漆化感機(jī)理的初步研究. 西北農(nóng)業(yè)學(xué)報(bào), 2007, 16(5): 246- 249.

        [34] 劉曉燕, 何萍, 金繼運(yùn). 氯化鉀對(duì)玉米根系糖和酚酸分泌的影響及其與莖腐病菌生長(zhǎng)的關(guān)系. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2008, 14(5): 929- 934.

        [35] 侯永俠, 周寶利, 吳曉玲. 不同作物秸稈對(duì)辣椒的化感效應(yīng). 生態(tài)學(xué)雜志, 2009, 28(6): 1107- 1111.

        [36] 鄭皓皓, 胡曉軍, 賈敬業(yè), 吳萼, 邢建軍. 麥秸還田耕層酚酸變化及其對(duì)夏玉米生長(zhǎng)的影響. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2001, 9(4): 79- 81.

        Effectsofphthalicacidonseedgermination,membranelipidperoxidationandosmoregulationsubstanceofradishseedlings

        YANG Yanjie, WANG Xiaowei, ZHAO Kang, CHEN Ning, LIN Duo*

        HorticulturalCollege,QingdaoAgriculturalUniversity,Qingdao266109,China

        The return of maize straw back to the soil is one way to achieve sustainable development in agriculture in North China, one of the major maize producing areas. This method can not only improve the soil′s physical, chemical and effective bioavailability properties but also release phenolic acids recognized as allelochemicals during the decomposition process of maize straw. Phthalic acid is one of the phenolic acid decomposition products. In order to provide the basis of allelopathic effects to quantify the amount of maize straw to the field and to aid the construction of Vegetable-Maize rotation systems, the allelopathic effects of the main maize straw decomposition product (phthalic acid) on the vegetable crop used for follow-up cultivation were studied. In order to simulate the condition of maize straw returned to the field, the effects of different concentrations(0.05、0.5、1.0、2.0 mmol/L)of phthalic acid on the seed germination, seedling growth, membrane lipid peroxidation and osmoregulation substance of radish (RaphanussativusL.) were studied in this paper, using distilled water as a control. The results showed that: (1) The degree of the allelopathy response of radish to phthalic acid was different at different growth stages. In the concentration range of 0.05—1 mmol/L, phthalic acid promoted the seed germination of radish, but the effect gradually decreased with an increased concentration of phthalic acid. When the concentration reached 2.0 mmol/L, phthalic acid had an inhibitory effect on the radish seeds′germination. (2) Phthalic acid, with 0.05 mmol/L treatment, promoted fresh biomass, dry matter accumulation and root growth of radish seedlings. The root length and root surface area of radish were significantly increased by 42.03% and 38.36%, respectively, when compared to those of the control. Compared with the control, the activity of superoxide dismutase (SOD) increased, but activities of peroxidase (POD) and catalase (CAT) decreased in the radish seedlings. There were no significant differences in the malondialdehyde (MDA) content between the treated and control radish seedlings. (3) When the concentration of phthalic acid was higher than 0.5mmol/L, the degree of damage to the membrane lipid peroxidation of the radish seedlings increased and MDA contents sharply increased. Metabolic and physiological function disorder was found, and the plant growth and matter accumulation of radish seedlings were significantly inhibited. When the concentration of phthalic acid was 2 mmol/L, leaf and root tip numbers, root length and root surface area of the radish reduced by 36.51%, 41.28%, 64.46% and 40.20%, respectively, when compared with the control. (4) The influence on osmotic adjustment substance showed that phthalic acid with different concentrations in the four treatments all promoted the accumulation of soluble sugar content in radish seedling leaves, but the promotion effect gradually decreased with an increased concentration of phthalic acid. With an increasing concentration of phthalic acid, the soluble protein content gradually decreased by 12.82%, 14.88%, 21.58% and 24.73%, over the four treatments, respectively, when compared to the control. If only considering the allelopathic effects to ensure the best implementation of Maize-Vegetable rotation and quantization of returning maize straw to the field in North China, the phthalic acid concentration should be less than 0.5mmol/L to prevent the negative influences of high concentrations of phthalic acid on the growth of radish seedlings.

        maize straw returning to soil; allelochemicals; radish; seed germination; membrane lipid peroxidation; osmoregulation substance

        國(guó)家“十二五”科技支撐計(jì)劃項(xiàng)目(2011BAD12B03);國(guó)家公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)經(jīng)費(fèi)項(xiàng)目(201103001);山東省現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系集約化育苗崗位專家資助項(xiàng)目(66210Y8);山東省農(nóng)業(yè)重大應(yīng)用技術(shù)創(chuàng)新項(xiàng)目(66211W2)

        2013- 04- 26;

        2013- 07- 15

        *通訊作者Corresponding author.E-mail: linduo73@163.com

        10.5846/stxb201304260826

        楊延杰,王曉偉,趙康,陳寧,林多.鄰苯二甲酸對(duì)蘿卜種子萌發(fā)、幼苗葉片膜脂過(guò)氧化及滲透調(diào)節(jié)物質(zhì)的影響.生態(tài)學(xué)報(bào),2013,33(19):6074- 6080.

        Yang Y J, Wang X W, Zhao K, Chen N, Lin D.Effects of phthalic acid on seed germination, membrane lipid peroxidation and osmoregulation substance of radish seedlings.Acta Ecologica Sinica,2013,33(19):6074- 6080.

        猜你喜歡
        化感鄰苯二甲酸酚酸
        QuEChERS-氣相色譜-質(zhì)譜法測(cè)定植物油中16種鄰苯二甲酸酯
        雙咖酚酸在小鼠體內(nèi)的藥物代謝動(dòng)力學(xué)與組織分布
        丹參中丹酚酸A轉(zhuǎn)化方法
        中成藥(2018年9期)2018-10-09 07:19:04
        川芎總酚酸提取工藝的優(yōu)化
        中成藥(2018年7期)2018-08-04 06:04:02
        植物化感作用研究進(jìn)展
        青菜對(duì)鄰苯二甲酸酯類物質(zhì)的積累和代謝初探
        植物化感作用研究進(jìn)展
        播娘蒿、豬殃殃對(duì)小麥的化感作用
        鄰苯二甲酸二丁酯的收縮血管作用及其機(jī)制
        鄰苯二甲酸二甲酯-D6的合成
        同位素(2014年2期)2014-04-16 04:57:13
        精品国内自产拍在线观看| 蜜臀av一区二区三区精品| 国内自拍第一区二区三区| 一级做a爱视频在线播放| 午夜精品一区二区三区视频免费看| 国产精品久久婷婷六月| 蜜桃精品免费久久久久影院| 推油少妇久久99久久99久久| 日本午夜国产精彩| 抖射在线免费观看视频网站| 国产色婷亚洲99精品av网站| 国产精品毛片一区二区三区| 婷婷色精品一区二区激情| 国产91清纯白嫩初高中在线观看| 综合亚洲伊人午夜网| 久久精品国产亚洲av麻豆图片| 成人综合网站| 美女高潮无遮挡免费视频| 日韩爱爱视频| 人妻少妇精品视频中文字幕国语| 女同性恋看女女av吗| 成人爽a毛片在线播放| av免费在线免费观看| 国产熟人精品一区二区| 国产av无码专区亚洲a∨毛片 | 国产精品亚洲综合久久系列| 亚洲一二三四区免费视频| 制服丝袜一区二区三区| 久久综合九色综合久99| 国产成人精品综合在线观看| 亚洲国产精品特色大片观看完整版| 亚洲日韩一区二区一无码| 波多野结衣一区二区三区免费视频 | 香港三级欧美国产精品| 国产三级视频一区二区| 亚洲hd高清在线一区二区| 亚洲一区二区三区2021| 欧美xxxxx在线观看| 在线观看精品视频网站| 欧美激情内射喷水高潮| 亚洲国产另类久久久精品小说 |