趙 昕,王淑玲,白 杰
(1.吉林農(nóng)業(yè)大學(xué) 信息技術(shù)學(xué)院,長(zhǎng)春 130118;2.東北師范大學(xué)人文學(xué)院,長(zhǎng)春 130117)
脈沖時(shí)滯微分方程理論已成為微分方程理論的重要組成部分[1].具有脈沖效應(yīng)的泛函微分方程邊界問(wèn)題解的存在性研究目前已受到人們廣泛關(guān)注,并得到了許多有意義的結(jié)果[2-9].多參數(shù)泛函系統(tǒng)的研究對(duì)生物種群的研究具有重要意義,對(duì)于參數(shù)化邊界值問(wèn)題解的存在性研究近年已取得一些進(jìn)展[10-17].但關(guān)于帶參數(shù)二階脈沖時(shí)滯微分方程邊值問(wèn)題的研究目前報(bào)道較少.本文考慮如下邊界值問(wèn)題(BVP):
(1)
其中:f∈C(J××D×n,);gi∈C(×,);D=L1([-τ,0],×n,);0≤t1≤t2≤…≤tm≤T;J0=[-τ,T];ΔΔk=1,2,…,m;常數(shù)τ>0.
定義1如果(α0,γ0)滿足下列條件,則(α0,γ0)稱為問(wèn)題(1)的上解:
定義2如果(β0,ζ0)滿足下列條件,則(β0,ζ0)稱為問(wèn)題(1)的下解:
令J-=J{t1,t2,…,tm},PC(J0,)={u:J0;當(dāng)t≠tk時(shí)u(t)連續(xù),存在,且(J,)={u:J;當(dāng)t≠tk時(shí)u′(t)連續(xù),u′(存在,且k=1,2,…,m}.顯然E={u∈PC′(J,)}為Banach空間,其范數(shù)為‖u‖PC′=max{‖u(t)‖PC,‖u′(t)‖PC′},其中‖u(t)‖PC=max{|u(t)|:t∈J0},‖u′(t)‖PC=max{|u′(t)|:t∈J}.
先考慮線性邊值問(wèn)題(BVP):
(2)
仿照文獻(xiàn)[12,14]主要結(jié)果的證明, 可得下列3個(gè)引理.
引理1u∈E∩C2(J-,)是方程(2)的解,當(dāng)且僅當(dāng)u∈PC(J,)滿足脈沖積分方程
則方程(2)有唯一解u∈E.
定義J0=(t0,t1],J1=(t1,t2],…,Jm=(tm,tm+1],a=max{tk-tk+1,k=0,1,…,m},t0=0,tm+1=T.
引理3假設(shè)p∈E∩C2(J-,)滿足:
(4)
假設(shè)條件:
(H1) (α0,γ0),(β0,γ1)是方程(1)的上下解,且(α0,γ0)≤(β0,γ1);
其中α0≤v(tk)≤u(tk)≤β(tk),k=1,2,…,m;
定理1假設(shè)條件(H1)~(H6)成立,且
(5)
則在[α0,β0]×[γ0,ζ0]上必存在單調(diào)序列{(αn(t),γn)}和{(βn(t),ζn)}?(E∩C2(J-,))×n,并分別收斂于邊值問(wèn)題(1)的極值解.
證明: 對(duì)于任意的(η,γ)∈[α0,β0]×[γ0,ζ0],考慮如下線性邊值問(wèn)題:
(6)
其中σ(t)=f(t,η(t),ηt,γ)+Mη(t)+Nηt.
由引理2可知,線性邊值問(wèn)題(6)有唯一解(u,μ)∈E×n.定義算子A,使得A(η,γ)=(u,μ).易證: 1) (α0,γ0)≤A(α0,γ0),(β0,ζ0)≥A(β0,ζ0);2)A在[α0,β0]×[γ0,ζ0]是增算子.
為證明1),設(shè)A(α0,γ0)=(α1,a),A(β0,ζ0)=(β1,b).先證明(α0,γ0)≤(α1,a).
又由引理3可知,p0(t)≤0,t∈J0,i.e.,α(t)≤α1(t).再根據(jù)式(6),得
由引理3可知,p1(t)≤0,t∈J0,i.e.,u1(t)≤u2(t).再根據(jù)式(6)和假設(shè)條件(H4),有
令(αn,γn)=A(αn-1,γn-1),(βn,ζn)=A(βn-1,ζn-1),n=1,2,…,可構(gòu)造序列{(αn(t),γn)}和{(βn(t),ζn)},使得
顯然,(αi,γi),(βi,ζi)(i=1,2,…)滿足:
根據(jù)引理3,有p(t)≤0,i.e.,αn+1(t)≤u(t),?t∈J.由條件(H4)可知
同理可以證明u(t)≤βn+1(t)(t∈J),μ≤ζn+1(t∈J).從而(αn+1,γn+1)≤(u,μ)≤(βn+1,ζn+1),所以(α*,γ*)≤(u,μ)≤(β*,ζ*).證畢.
注1實(shí)際上,同理也可以證明下列線性邊值問(wèn)題極值解的存在性:
(7)
其中:fi∈C(J××D×n,);gi∈C(×,);D=L1([-τ,0],×n,);0≤t1≤t2≤…≤tm≤T;J0=[-τ,T];ΔΔk=1,2,…,m;τ>0;cj(j=1,2,…,n1)為常數(shù).
[1] Lakshmikantham V,Bainov D,Simeonov P S.Theory of Impulsive Differential Equations [M].Singapore: World Scientific Publishing Company,1989.
[2] Anokhin A,Berezansky L,Braverman E.Exponential Stability of Linear Delay Impulsive Differential Equations [J].Journal of Mathematical Analysis and Applications,1995,193(3): 923-941.
[3] Berezansky L,Braverman E.Exponential Boundedness of Solutions for Impulsive Delay Differential Equations [J].Applied Mathematics Letters,1996,9(6): 91-95.
[4] Berezansky L,Braverman E.On Oscillation of a Second Order Impulsive Linear Delay Differential Equation [J].Journal of Mathematical Analysis and Applications,1999,233(1): 276-300.
[5] DING Wei,HAN Mao-an.Periodic Boundary Value Problem for the Second Order Impulsive Functional Differential Equations [J].Applied Mathematics and Computation,2004,155(3): 709-726.
[6] LIANG Rui-xi,SHEN Jian-hua.Periodic Boundary Value Problem for Second-Order Impulsive Functional Differential Equations [J].Applied Mathematics and Computation,2007,193(2): 560-571.
[7] Franco D,Nieto J J.First-Order Impulsive Ordinary Differential Equations with Anti-periodic and Nonlinear Boundary Conditions [J].Nonlinear Analysis: Theory Methods &Applications,2000,42(2): 163-174.
[8] Nieto J J.Basic Theory for Nonresonance Impulsive Periodic Problems of First Order [J].Journal of Mathematical Analysis and Applications,1997,205(2): 423-433.
[9] Nieto J J.Periodic Boundary Value Problems for First-Order Impulsive Ordinary Differential Equations [J].Nonlinear Analysis: Theory,Methods &Applications,2002,51(7): 1223-1232.
[10] Jankowski T,Lakshmikantham V.Monotone Iterations for Differential Equations with a Parameter [J].Journal of Applied Mathematics and Stochastic Analysis,1997,10(3): 273-278.
[11] Feckan M.Parametrized Singular Boundary Value Problem [J].Journal of Mathematical Analysis and Applications,1994,188(2): 417-425.
[12] Stanek S.On a Class of Functial Boundary Value Problems for the Equationx″=f(t,x,x′,x″,λ) [J].Ann Polon Math,1994,59(1): 225-237.
[13] Jankowski T.Monotone Iterations for First Order Differential Equations with a Parameter [J].Acta Mathematica Hungarica,1999,84(1/2): 65-80.
[14] ZHANG Feng-qin,MA Zhi-en,Jurang Y.Boundary Value Problems for First Order Impulsive Delay Differential Equations with a Parameter [J].Journal of Mathematical Analysis and Applications,2004,290(1): 213-223.
[15] ZHANG Yu.Robust Exponential Stability of Uncertain Impulsive Delay Difference Equations with Continuous Time [J].Journal of the Franklin Institute,2011,348(8): 1965-1982.
[16] XU Deng-guo,HUANG Ying,LIANG Lin.Existence of Positive Periodic Solution of an Impulsive Delay Fishing Model [J].Bull Math Anal Appl,2011,3(2): 89-94.
[17] LI Xiao-di,Bohner M.An Impulsive Delay Differential Inequality and Applications [J].Computers &Mathematics with Applications,2012,64(6): 1875-1881.