唐莉莉, 劉 杰, 黃瑞歡, 孫豐強(qiáng), 張秋云
(華南師范大學(xué)化學(xué)與環(huán)境學(xué)院,廣東廣州 510006)
Fe/MCM-41催化臭氧氧化水中對(duì)氯苯甲酸的研究
唐莉莉, 劉 杰, 黃瑞歡, 孫豐強(qiáng), 張秋云*
(華南師范大學(xué)化學(xué)與環(huán)境學(xué)院,廣東廣州 510006)
利用水熱法合成介孔材料MCM-41及Fe負(fù)載的MCM-41(Fe/MCM-41),并通過催化臭氧氧化水中對(duì)氯苯甲酸(p-CBA),考察其催化性能.經(jīng)過X射線粉末衍射(XRD)、紫外可見漫反射光譜(DR UV-Vis)、傅立葉紅外光譜(FT-IR)及比表面(BET)表征,表明所合成的MCM-41及Fe/MCM-41具有較規(guī)則的六方孔道結(jié)構(gòu)及較大的比表面積.MCM-41與Fe/MCM-41的加入有利于p-CBA和TOC的去除,其中Fe/MCM-41與O3具有協(xié)同效應(yīng),表現(xiàn)出較好的催化活性.
MCM-41; Fe/MCM-41; 對(duì)氯苯甲酸; 催化臭氧氧化
對(duì)氯苯甲酸(p-CBA)廣泛用于有機(jī)合成的中間體、農(nóng)藥、醫(yī)藥等工業(yè),易在生物體內(nèi)累積且難以生物降解,對(duì)環(huán)境和人類健康的危害不能忽視[1].非均相催化臭氧氧化技術(shù)是近年來發(fā)展起來的一種新型的高級(jí)氧化技術(shù),在常溫、常壓下產(chǎn)生強(qiáng)氧化性的羥基自由基(HO·),能夠氧化或降解難以用臭氧單獨(dú)氧化或降解的有機(jī)物,提高臭氧氧化效率[2-3].催化劑的選擇對(duì)非均相催化臭氧氧化技術(shù)至關(guān)重要.20世紀(jì)90年代美國Mobil公司首次合成具有規(guī)整孔道結(jié)構(gòu)的M41S系列介孔分子篩以來[4],MCM-41因其具有較大的比表面積、均勻的孔徑分布、較高的吸附容量等優(yōu)點(diǎn)而成為研究熱點(diǎn)[5-6].近年來,圍繞介孔MCM-41分子篩的改性及應(yīng)用展開了大量研究,改性方法主要有過渡金屬負(fù)載[7]、摻雜[8]和有機(jī)官能團(tuán)的接枝[9]等,應(yīng)用領(lǐng)域包括化工、能源、環(huán)境等,但在催化臭氧氧化處理水中有機(jī)污染物方面尚缺乏研究.本研究以p-CBA為模型化合物,探討Fe/MCM-41在催化臭氧氧化過程中的催化活性.
1.1 催化劑合成
將9.8 g十六烷基三甲基溴化銨和1.08 g氫氧化鈉加入155 mL去離子水中攪拌溶解,待溶液澄清后,緩慢滴加20 mL正硅酸乙酯,繼續(xù)攪拌30 min,然后將反應(yīng)物轉(zhuǎn)入聚四氟乙烯內(nèi)襯高壓釜,于110 ℃水熱晶化1 d,產(chǎn)物經(jīng)過濾、洗滌、干燥,于550 ℃焙燒5 h得到MCM-41介孔分子篩;將制備的MCM-41浸漬于一定濃度的硝酸鐵溶液中,在磁力攪拌器上攪拌8 h后干燥、焙燒得Fe/MCM-41.
1.2 催化劑表征
X-射線粉末衍射(XRD)表征采用日本理學(xué)D-MAX 2200 VPC型X-射線衍射儀進(jìn)行.測(cè)試條件:Cu靶Kα射線,=0.154 18 nm,管電壓40 kV,管電流30 mA,2θ=1.5°~9°;紅外光譜分析采用IRPrestige-21(Shimadzu, Janpan)型傅立葉紅外光譜儀掃描,KBr壓片法,掃描波長(zhǎng)范圍為2 500~400 cm-1;樣品的BET比表面積采用ASAP-2020型(Micromeritics, USA)低溫氮吸附比表面分析儀測(cè)定.紫外-可見漫反射光譜(DR UV-vis)采用UV-3150(Shimadzu)紫外可見分光光度計(jì)掃描,掃描波長(zhǎng)范圍為200~800 nm.
1.3 實(shí)驗(yàn)方法
實(shí)驗(yàn)裝置如圖1所示,反應(yīng)器為玻璃柱,內(nèi)徑60 mm,高700 mm.臭氧由DHX-SS-03C 型臭氧發(fā)生器(哈爾濱久久電化學(xué)工程技術(shù)有限公司)產(chǎn)生,氣源為氧氣,臭氧混合氣體經(jīng)多孔砂板(位于反應(yīng)器底部)布?xì)膺M(jìn)入反應(yīng)器,尾氣用Na2S2O3溶液吸收.實(shí)驗(yàn)所用的p-CBA(CP,上海國藥集團(tuán)化學(xué)試劑有限公司)溶液用去離子水配制.
1:氧氣瓶;2:臭氧發(fā)生器;3:采樣點(diǎn);4:多孔玻璃板;5:催化劑;6:臭氧反應(yīng)器;7:Na2S2O3吸收瓶
1.4 分析方法
所有水樣均經(jīng)過0.45 μm的濾膜(上海興亞凈化材料廠)過濾.p-CBA的濃度通過帶UV檢測(cè)器(SPD-10AV)的高效液相色譜儀(LC-10A, Shimadzu)測(cè)定,條件為:色譜柱為C18柱(150 mm×4.6 mm),流動(dòng)相V(甲醇)∶V(水)=7∶3,流速1.0 mL/min,檢測(cè)波長(zhǎng)236 nm.總有機(jī)碳(TOC)采用TOC分析儀(TOC-Vwp, Shimadzu)測(cè)定.
2.1 催化劑表征
圖2是MCM-41及Fe/MCM-41 小角度XRD圖譜,得出2θ=2.5°出現(xiàn)了MCM-41特征的衍射峰,表明合成的MCM-41及負(fù)載Fe/MCM-41具有MCM-41的孔道結(jié)構(gòu)[10],沒有受到吸水而發(fā)生結(jié)構(gòu)改變,在圖中未出現(xiàn)負(fù)載鐵的峰值,可能與鐵的負(fù)載量較小,分散比較均勻有關(guān).
圖2 MCM-41和Fe/MCM-41的小角度XRD
Figure 2 Low-angle powder X-ray diffraction patterns of MCM-41 and Fe/MCM-41
MCM-41和Fe/MCM-41的紅外圖譜(圖3)基本相似.由MCM-41及Fe/ MCM-41高度發(fā)達(dá)的孔道結(jié)構(gòu)容易吸收空氣中的CO2分子,因此在2 350 cm-1處產(chǎn)生了微弱的吸收峰[11];1 080 cm-1處的吸收峰是Si-O四面體的反對(duì)稱伸縮振動(dòng)的特征峰[12];800 cm-1和475 cm-1附近的吸收峰是[SiO4]四面體Si-O的彎曲振動(dòng)特征峰[13].
圖3 MCM-41和Fe/MCM-41的紅外光譜
圖4 MCM-41和Fe/MCM-41的紫外可見光譜
Figure 4 Diffuse reflectance UV-Vis spectra of MCM-41 and Fe/MCM-41
2.2 催化劑活性評(píng)價(jià)
2.2.1 鐵負(fù)載量對(duì)Fe/MCM-41催化臭氧氧化p-CBA的影響 從圖5看出,p-CBA的去除和TOC去除不同步(反應(yīng)條件為pH 4.54、25 ℃),可知臭氧氧化p-CBA的過程中生成了有機(jī)中間產(chǎn)物,中間產(chǎn)物的礦化仍需一段過程;p-CBA的去除主要以臭氧氧化為主,因此鐵負(fù)載量對(duì)p-CBA影響較小、對(duì)TOC影響較大. 隨著鐵負(fù)載量的增加,TOC去除率先升高,后降低,可能是隨著鐵負(fù)載量的增加,增加了催化活性位點(diǎn),同時(shí)也堵塞了孔道、造成改性MCM-41介孔分子篩比表面的減小.由此可知,F(xiàn)e/MCM-41的最佳鐵負(fù)載量為1.00%.
圖5 鐵負(fù)載量對(duì)催化降解p-CBA(A)和TOC(B)的影響
2.2.2 O3、MCM-41/O3、Fe/MCM-41/O3催化臭氧氧化p-CBA的比較 圖6為MCM-41及Fe/MCM-41(Fe/MCM-41=2.50%)催化臭氧氧化p-CBA溶液與單獨(dú)臭氧氧化工藝的比較(反應(yīng)條件為pH 4.25、24 ℃). Fe/MCM-41的加入有利于p-CBA的降解和礦化過程,60 min時(shí)TOC的去除率由單獨(dú)臭氧氧化的37.7%提高到56.5%.由表1得知MCM-41對(duì)p-CBA吸附率為7.9%,而Fe/MCM-41對(duì)p-CBA的吸附率僅為4.7%.Fe/MCM-41的加入有利于p-CBA的臭氧氧化和礦化過程,對(duì)p-CBA的降解和礦化具有協(xié)同效應(yīng)(表1),F(xiàn)e/MCM-41具有較好的催化活性.
圖6 不同工藝對(duì)p-CBA(A)和TOC(B)去除率的影響
表1 60 min時(shí)不同工藝對(duì)TOC去除率的比較
Table 1 TOC removal in different processes at 60 min %
CatalystCatalyticozonationOzonationaloneAdsorptionΔMCM-4139.435.47.9-3.9Fe/MCM-4156.537.74.714.1
Δ=catalytic ozonation-ozonation alone-adsorption
在強(qiáng)堿性溶液中成功制備了MCM-41和Fe/MCM-41.XRD、DR UV-Vis、FT-IR的表征結(jié)果表明,所合成的分子篩具有較規(guī)則的六方孔道結(jié)構(gòu)及較大的比表面積,且Fe成功進(jìn)入了分子篩骨架.通過催化臭氧氧化p-CBA的實(shí)驗(yàn)表明,MCM-41與Fe/MCM-41的加入有利于p-CBA和TOC的去除.MCM-41/O3過程對(duì)p-CBA和TOC去除率的提高主要源于MCM-41的吸附作用,F(xiàn)e/MCM-41/O3過程在反應(yīng)60 min 后,對(duì)TOC的去除率由單獨(dú)O3氧化的37.7%提高到56.5%,其中Fe/MCM-41對(duì)p-CBA的吸附去除率小于4%,因此Fe/MCM-41與O3存在協(xié)同效應(yīng),具有較好的催化活性.
[1] LI X K, ZHANG Q Y, TANG L L, et al. Catalytic ozonation ofp-chlorobenzoic acid by activated carbon and nickel supported activated carbon prepared from petroleum coke[J]. J Hazard Mater, 2009, 163(1): 115-120.
[2] HISAHIRO E, SHIGERU F. Catalytic oxidation of benzene with ozone over alumina-supported manganese oxides[J]. J Catal, 2004, 227(2): 304-312.
[3] ZHAO L, MA J, SUN Z Z, et al. Catalytic ozonation for the degradation of nitrobenzene in aqueous solution by ceramic honeycomb-supported manganese[J]. Appl Catal B: Environ, 2008, 83(3/4): 256-264.
[4] BECK J S, VARTULI J C, ROTH W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates[J]. J Am Chem Soc, 1992, 114(27): 10834-10843.
[5] QIN Q D, MA J, LIU K. Adsorption of nitrobenzene from aqueous solution by MCM-41[J]. J Colloid and Interf Sci, 2007, 315(1): 80-86.
[6] KWONG C W, CHAO Y H, HUI K S, et al. Catalytic ozonation of toluene using zeolite and MCM-41 materials[J]. Environ Sci Technol, 2008, 42(22): 8504-8509.
[7] YANG H M, DENG Y H, DU C F. Synthesis and optical properties of mesoporous MCM-41 containing doped TiO2nanoparticles[J]. Colloid Surface A: Physicochemical and Engineering Aspects, 2009, 339(1/2/3): 111-117.
[8] LI X K, JI W J, ZHAO J, et al. Ammonia decomposition over Ru and Ni catalysts supported on fumed SiO2, MCM-41, and SBA-15[J]. J Catal, 2005, 236(2): 181-189.
[9] ZANJANCHI M A, EBRAHIMIAN A, ARVAND M. Sulphonated cobalt phthalocyanine-MCM-41: An active photocatalyst for degradation of 2,4-dichlorophenol [J]. J Hazard Mater, 2010, 175(1/2/3): 992-1000.
[10] CHATTERJEE M, HAYASHI H, SAITO N. Role and effect of supercritical fluid extraction of template on the Ti(IV) active sites of Ti-MCM-41[J]. Micropor Mesopor Mat, 2003, 57(2): 143-155.
[11] UPHADE B S, YAMADA Y, AKITA T, et al. Synthesis and characterization of Ti-MCM-41 and vapor-phase epoxidation of propylene using H2and O2over Au/Ti-MCM-41[J]. Appl Catal A: General, 2001, 215(1/2): 137-148.
[12] POPOVA M, SZEGEDI, NéMETH P, et al. Titanium modified MCM-41 as a catalyst for toluene oxidation[J]. Cata Commun, 2008, 10(3): 304-308.
[13] JUANG L C, WANG C C, LEE C K. Adsorption of basic dyes onto MCM-41[J]. Chemosphere, 2006, 64(11): 1920-1928.
[14] LEGUBE B, LEITNER N, KARPEL V. Catalytic ozonation: A promising advanced oxidation technology for water treatment[J]. Catal Today, 1999, 53: 61-72.
[15] CHANG C C, CHIU C Y, CHANG C Y, et al. Combined photolysis and catalytic ozonation of dimethyl phthalate in a high-gravity rotating packed bed[J]. J Hazard Mater, 2008, 161(1): 287-293.
[16] LI L S, ZHU W P, CHEN L, et al. Photocatalytic ozonation of dibutyl phthalate over TiO2film[J]. J Photoch Photobio A: Chemistry, 2005, 175(2/3): 172-177.
[17] ROBERTO A V C, AMEDEO I, RAFFAELE M. Advanced oxidation processes (AOP) for water purification and recovery[J]. Catal Today, 1999, 53(1): 51-59.
[18] COOPER C, BURCH R. An investigation of catalytic ozonation for the oxidation of halocarbons in drinking water preparation[J]. Water Res, 1999, 33(18): 3695-3700.
[19] ZHANG Y H, GAO F, WAN H Q, et al. Synthesis, characterization of bimetallic Ce-Fe-SBA-15 and its catalytic performance in the phenol hydroxylation[J]. Micropor Mesopor Mat, 2008, 113(1/2/3): 393-401.
Keywords: MCM-41; Fe/MCM-41;p-CBA; catalytic ozonation
CatalyticOzonationofp-ChlorobenzoicAcidinAqueousSolutionbyFe/MCM-41
TANG Lili, LIU Jie, HUANG Ruihuan, SUN Fengqiang, ZHANG Qiuyun*
(School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China)
The catalytic activity of MCM-41 and Fe loaded MCM-41 (Fe/MCM-41) for ozonation ofp-chlorobenzoic acid (p-CBA) in aqueous solution was investigated. MCM-41 and Fe/MCM-41 were synthesized by a direct hydrothermal method and characterized by XRD, DR UV-Vis and FT-IR. The results showed that MCM-41 and Fe/MCM-41 presented mesoporous hexagonal structure with large surface area. The presence of MCM-41 and Fe/MCM-41 improved thep-CBA and TOC removal in the ozonation process, while Fe/MCM-41 showed better catalytic activity because of its synergistic effect with O3. The TOC (p-CBA) removal efficiency in Fe/MCM-41/O3process was 51.4% (86.6%) at 60 (30) min, 39.4 % (79.4%) using MCM-41 as catalyst, only 35.4% (72.1%) with ozone alone.
2012-06-17
廣東省科技計(jì)劃項(xiàng)目(2011B030800010)
*通訊作者:張秋云,高級(jí)工程師,Email:hnsdhks@163.com.
1000-5463(2013)02-0074-05
X131.2
A
10.6054/j.jscnun.2013.01.015
【中文責(zé)編:成文 英文編輯:李海航】