亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        廣義信息集博弈Nash平衡的本質(zhì)連通區(qū)

        2013-10-25 03:23:22孫修勇
        銅仁學(xué)院學(xué)報 2013年5期
        關(guān)鍵詞:多重性諾貝爾經(jīng)濟(jì)學(xué)獎局中人

        孫修勇

        ( 凱里學(xué)院 數(shù)學(xué)科學(xué)學(xué)院,貴州 凱里 556011 )

        1.引言

        近年來,博弈論的研究及應(yīng)用非?;钴S,一直是學(xué)界關(guān)注的焦點。從1994年諾貝爾經(jīng)濟(jì)學(xué)獎授予三位博弈論專家至今,一共有六屆諾貝爾經(jīng)濟(jì)學(xué)獎與博弈論的研究有關(guān)。一方面,博弈論在不斷地拓展其應(yīng)用領(lǐng)域,另一方,面博弈論的研究者們正致力于解決博弈理論本身不斷出現(xiàn)的嚴(yán)峻問題。

        Nash平衡是非合作博弈理論的核心概念。每一局中人如何通過個人的理性預(yù)測到共同的平衡點,是實際問題中Nash平衡能否真正產(chǎn)生的關(guān)鍵。近年來,Nash平衡的多重性成為博弈論本身,及其應(yīng)用研究中最為棘手的問題。作為以解釋實際現(xiàn)象和解決現(xiàn)實問題為己任的重要理論,博弈論面臨的最大困惑是:平衡點不止一個,甚至有無窮多個。在實際問題中,不同的局中人如何通過個人的理性一致地預(yù)期到同一個平衡點?也就是說,平衡能否真正意義上實現(xiàn)?

        多個Nash平衡帶來的這一重大缺陷,一直是博弈論研究者關(guān)注的焦點。從20世紀(jì)60年代開始,尋求改進(jìn)和精煉Nash平衡的機(jī)制和方法一直是博弈論研究最活躍的領(lǐng)域。這其中包括了1994 年Selten和 Harsanyi獲得諾貝爾獎的成果---“子博弈精煉Nash平衡”、“顫抖的手的均衡”和“貝葉斯Nash平衡”等,也包括2007年度諾貝爾經(jīng)濟(jì)學(xué)獎獲得者M(jìn)yerson提出的“恰當(dāng)平衡”,Kreps和Wilson提出的“序貫平衡”等精煉Nash平衡的概念。[1]2005年度諾貝爾經(jīng)濟(jì)學(xué)獎獲得者Aumann和Schelling也曾分別提出過“強(qiáng)均衡”和“聚點均衡”的概念。

        圍繞平衡的精煉,1986年Kohlberg與Mertens[2]建立的KM平衡概念(即策略穩(wěn)定集(Strategic Stable Set))是Nash平衡精煉的標(biāo)志性成果。KM平衡可以歸結(jié)為穩(wěn)定性的方法,即策略集擾動(顫抖)意義下Nash平衡點集的極小本質(zhì)集。KM平衡之所以成為Nash平衡選擇和精煉的一個重要里程碑,是因為它總結(jié)了眾多精煉Nash平衡的概念,并由此提出公理化的框架。令人遺憾的是,Kohlberg和Mertens提出的穩(wěn)定集無法完全滿足他們所給出的KM條件。之后,Mertens、Hillas等人曾經(jīng)圍繞穩(wěn)定集的概念作過一些修正和改進(jìn)[3-6],甚至加上了拓?fù)渫瑐惖纫恍嶋H意義不十分明朗的數(shù)學(xué)化條件。因為平衡的多重性是博弈論不得不正視的缺陷,圍繞平衡的選擇和精煉,新的結(jié)果在不斷地涌現(xiàn)[7-15],但多重 Nash平衡所帶來的問題始終未能得到很好的解決。

        針對Nash平衡的多重性,尋求一種普遍認(rèn)可的機(jī)制,尤其是實際意義較為明朗的精煉機(jī)制(不完全是純數(shù)學(xué)意義的),是決定博弈理論能否更加合理地解釋實際問題的關(guān)鍵。本文將通過對廣義信息集的方法研究Nash平衡的本質(zhì)連通區(qū)問題。

        2.預(yù)備知識

        局中人的策略集:對于每一iN∈,非空集合iX為局中人i的策略集,記

        也可將此廣義博弈簡記為ΓG= N;X;G;f 。

        則稱*x為廣義博弈GΓ的Nash平衡點。

        3.廣義博弈Nash平衡的本質(zhì)連通區(qū)

        (?。τ诿恳籭N∈,iX為線性拓?fù)淇臻g中緊凸子集;

        (ⅱ)對于每一iN∈,if在X上連續(xù);

        則廣義博弈GΓ存在Nash平衡點。

        其中h為 K (X)上的Hausdorff度量,則ρ1為M1上的度量。

        證明:由Φ關(guān)于一致度量的完備性及1ψ關(guān)于一致Hausdorff度量的完備性即可給出證明。

        設(shè)廣義博弈

        由上述定義,不難驗證下面的引理。

        引理 2*xX∈為廣義信息博弈的Nash平衡點當(dāng)且僅當(dāng) x*為最優(yōu)反應(yīng)映射的不動點。

        定理2 設(shè)廣義博弈

        關(guān)于M的強(qiáng)本質(zhì)連通區(qū),設(shè)為 c(f, IG,θ)。于是,對任意的0ε﹥,存在0δ﹥,使得對于所有滿足)的,有

        [1]D.Fudenberg,J.Tirole, Game Theory, MIT Press, 1998.

        [2]E. Kohlberg and J. F. Mertens, On the strategic stability of equilibria,Econometrica,54 (1986),1003-1037.

        [3]J.F.Mertens,Stable equilibria-A reformulation,Part I:Definition and Basic Properties, Mathematics of Operations Research,14(1989), 575-625.

        [4]J.F.Mertens,Stable Equilibria - A Reformulation,Part II:Discussion of the Definition and Further Results.Mathematics of Operations Research,16(1991),694-753.

        [5]J.F,Mertens,Ordinality in non cooperative games,International Journal of Game Theory,32(2003),387-430.

        [6]J.Hillas,On the definition of the strategic stability of equilibria,Econometrica,58(1990), 1365-1390.

        [7]J.Hillas,M.Jansen,J.Potters and D.Vermeulen,On the Relation Among Some Definitions of Strategic Stability,Mathematics of Operations Research,26:3(2002).

        [8]E.Van Damme,Strategic Equilibrium,in R. Aumann and S.Hart (eds.) HANDBOOK OF GAME THEORY,Vol.3,Chapter 41,Amsterdam:Elsevier,2002.

        [9]S.Govindan and J.F.Mertens,An equivalent definition of stable equilibria,Intenational Journal of Game Theory,32(2003),339-357.

        [10]S.Govindan and R.Wilson,Maximal Stable Sets of Two-Player Games,International Journal of Game Theory,30:4(2001),557-566.

        [11]S.Govindan and R.Wilson, Axiomatic Justification of Stable Equilibria, Econometrica.

        [12]S.Govindan and R.Wilson, Characterization of Hyperstability, Econometrica.

        [13]J.Yu.Essential quilibria for n-person Noncooperative Games,Journal of Mathematical Economics,1999,31:361-372.

        [14]Yu,S.W.Xiang,On essential component of the set of Nash equilibrium points,Nonlinear Analysis,1999,38:259-264.

        [15]S.W.Xiang,Gui-dong Liu and Yong-hui Zhou.On the strongly essential components of Nash equilibria of infinite n-person games with quasiconcave payoffs,Nonlinear Analysis,2005,63:e2639- e2647.

        猜你喜歡
        多重性諾貝爾經(jīng)濟(jì)學(xué)獎局中人
        達(dá)龍·阿西莫格魯對宏觀經(jīng)濟(jì)學(xué)和勞動經(jīng)濟(jì)學(xué)的貢獻(xiàn)
        電報方程的正雙周期解:存在性、唯一性、多重性和漸近性
        一類二階Duffing方程反周期解的存在性和多重性
        含Hardy位勢的非線性Schr?dinger-Poisson方程正規(guī)化解的多重性
        非線性Schr?dinger-Bopp-Podolsky系統(tǒng)解的多重性及集中現(xiàn)象
        班納吉、迪弗洛和克雷默:2019年諾貝爾經(jīng)濟(jì)學(xué)獎獲得者
        中國外匯(2019年21期)2019-05-21 03:04:08
        2×2型博弈決策均衡的歸一化解法
        超對策模型中多形式結(jié)局偏好認(rèn)知信息融合的0—1規(guī)劃方法
        議諾貝爾經(jīng)濟(jì)學(xué)獎探討經(jīng)濟(jì)發(fā)展課題
        具有失真認(rèn)知信息的兩層沖突環(huán)境建模與分析
        日日碰狠狠添天天爽无码| 日本一区二区三区爱爱视频| 综合色免费在线精品视频| 亚洲av无码专区亚洲av伊甸园 | 亚洲国产av一区二区不卡| 欧洲乱码伦视频免费| 夜夜欢性恔免费视频| 日本一区二区三区激情视频| 精品女人一区二区三区| 久久精品99国产精品日本| 国内精品久久久久影院一蜜桃| 久久精品无码专区东京热 | 国产免费一区二区在线视频| 日本19禁啪啪吃奶大尺度| 久久福利青草精品免费| 国产高潮精品一区二区三区av| 丰满的少妇av一区二区三区| 久久国产精品99精品国产| 国产无线乱码一区二三区| 大红酸枝极品老料颜色| 亚洲国产精品久久久av| 男人扒开女人下面狂躁小视频| 精品在免费线中文字幕久久| 亚洲精品在线97中文字幕| 97色偷偷色噜噜狠狠爱网站| 久久成人麻豆午夜电影| 精品少妇后入一区二区三区| 黄片视频免费观看蜜桃| 亚洲精品92内射| 青春草在线视频精品| 亚洲禁区一区二区三区天美| 日本大片免费观看视频| 国产成人精品午夜福利在线| 激情网色图区蜜桃av| 邻居少妇张开腿让我爽了一夜| 亚洲国产精品特色大片观看完整版 | 高清无码一区二区在线观看吞精| 国产一区二区av男人| 尹人香蕉久久99天天拍| 性一乱一搞一交一伦一性| 亚洲熟伦在线视频|