陳 嬌
(重慶師范大學(xué) 數(shù)學(xué)學(xué)院,重慶 401331)
帶有q距離的廣義Ekeland變分原理的應(yīng)用*
陳 嬌
(重慶師范大學(xué) 數(shù)學(xué)學(xué)院,重慶 401331)
研究了廣義Ekeland變分原理在分離賦范空間中的一些重要應(yīng)用.利用廣義Ekeland變分原理證明了函數(shù)f滿足關(guān)于?的Takahashiε-條件當(dāng)且僅當(dāng)f滿足關(guān)于相同的?的Hamelε-條件.
Ekeland變分原理;q距離;Takahashi-ε條件;Hemal-ε條件
基于Ekeland變分原理在非線性分析、優(yōu)化控制論、動(dòng)力系統(tǒng)等各方面都有廣泛應(yīng)用,許多作者從不同的角度進(jìn)行了推廣[1-9].特別地,Z.L.Wu[3]在完備度量空間中利用Ekeland變分原理證明了Takahashi-ε條件的等價(jià)定理,以及在弱尖極小及不動(dòng)點(diǎn)等中的應(yīng)用.J.H.Qiu[9]在分離賦范空間上建立了具有q距離的廣義Ekeland變分原理,并利用其推導(dǎo)出廣義Caristi不動(dòng)點(diǎn)定理、廣義Takahashi非凸最小化定理, 并證明其等價(jià)性等相關(guān)給論.
此處在分離賦范空間下引入q距離分別建立Takahashi-ε條件及Hemal-ε條件, 并利用廣義Ekeland變分原理證明其等價(jià)性及一些相關(guān)結(jié)論.
為了得到主要結(jié)果,首先引進(jìn)下面的定義和引理.
定義1[9]設(shè)X是一個(gè)分離賦范空間,映射P:X×X→[0,+∞)滿足:
(p1) ?x,y,z∈X,p(x,z)≤p(x,y)+p(y,z).
(p2) 對任意序列{yn}∈X,滿足p(yn,ym)→0(m>n→∞)是一個(gè)柯西列,p(yn,y)→0與yn→y等價(jià).
(p3) 對每個(gè)x,y,z∈X,p(z,x)=0且p(z,y)=0,則x=y.
則稱p是p距離.如果條件(p2)用下面更弱的條件:
(q2) 對任意序列{yn}∈X,滿足p(yn,ym)→0(m>n→∞)是柯西列,p(yn,y)→0蘊(yùn)含了yn→y.
則稱p是q距離.
定義2 設(shè)(X,μ)是賦范空間,p是q距離.稱真函數(shù)f:X→(-∞,+∞]關(guān)于p序列下單調(diào)的,如果對任意序列{xn}滿足
定義3 設(shè)(X,μ)是分離賦范空間P:X×X→[0,+)為q距離,φ:(-∞,+∞]→(0,+∞)為非減函數(shù).f:X→R∪{+}為序列下單調(diào)、下有界的真函數(shù).稱f滿足關(guān)于?的Takahashiε-條件,如果存在ε,α,x∈X分別滿足0<ε≤+∞,?>0,infXf 稱f滿足關(guān)于相同的?的Hamelε-條件,如果存在ε,α,x∈X分別滿足0<ε≤+∞,?>0,infXf 定理1 設(shè)(X,U)是分離賦范空間P:X×X→[0,+)為q距離,f:X→R∪{+}為關(guān)于p序列下單調(diào),下有界的真函數(shù).設(shè)(X,U)是關(guān)于(p,f)是序完備的,φ:(-,+]→(0,+)為非減函數(shù).假設(shè)f滿足下列條件: (A1) 對任意u∈X,f(u)>infx∈Xf(x),存在v∈X,v≠u,滿足 定理2 設(shè)(X,U)是分離賦范空間P:X×X→[0,+)為q距離,φ:(-,+]→(0,+)為非減函數(shù).f:X→R∪{+}為序列下單調(diào)、下有界的真函數(shù).設(shè)(X,U)是關(guān)于(p,f)是序完備的,則對任意0<ε≤+,?>0,f滿足關(guān)于?的Takahashiε-條件當(dāng)且僅當(dāng)f滿足關(guān)于相同的?的Hamelε-條件. 證明″?″對任意u∈X,設(shè) 則對任意的0<ε<+,只需證明對任意滿足infXf 即x∈S?(u). 下面證明z∩S?(x)≠?. 由前面的證明方法,有f(xn+1)≤f(xn).顯然{f(xn)}是一個(gè)不減的下有界的實(shí)數(shù)列. 當(dāng)n>m時(shí),有xm∈S(xm-1)?S(xn),即 αp(xn,xm)≤φ(f(xn))(f(xn)-f(xm))≤φ(f(xn))(f(xn)-β)≤φ(f(x0)(f(xn)-β)→0,n→ 設(shè)m→,有則?S(xn),?n=0,1,2,…. 注1 當(dāng)X為完備度量空間,p(x,y)=d(x,y),φ(x)=1,f為有下界的真下半連續(xù)函數(shù)時(shí), 定理2退化為文獻(xiàn)[3]中的定理2.2. [1] ZHANG S S, CHEN Y Q,GUO J L. Ekeland’s variational principle and Caristi’s-xed point theorem in probabilistic metric space[J]. Acta Mathemeticae Applicatae Sinica, 1991,7(3):217-228 [2] LI Y X,SHI Z S. A Generalization of Ekeland’s2-Variational Principle and Its Borwein-Preiss Smooth Variant[J]. Journal of Mathematical Analysis and Applications, 2000,246:308-319 [3] WU Z L. Equivalent formulations of Ekeland’s variational principle[J]. Nonlinear Analysis, 2003(55):609-615 [4] BIANCHI M, KASSAY G, PINI R. Existence of equilibria via Ekeland’s principle[J]. Journal of Mathematical Analysis and Applications, 2005(305):502-512 [5] LIN L J, DU W S. Ekeland’s variational principle, minimax theorems and existence of noncon-vex equilibria in complete metric spaces[J]. Journal of Mathematical Analysis and Applications,2006(323):360-370 [6] LIN L J, DU W S. Some equivalent formulations of the generalized Ekeland’s variational principle and their applications[J]. Nonlinear Analysis, 2007(67):187-199 [7] Al-HOMIDAN S, ANSARI Q H, YAO J C. Some generalizations of Ekeland-type variational principle with applications to equilibrium problems and-xed point theory[J]. Nonlinear Analysis, 2008(69):126-139 [8] XIANG S W, YIN W S, WANG C C. Some new results on stability of Ekeland’s εvariational principle[J]. Journal of Mathematical Analysis and Applications, 2008(339):802-810 [9] QIU J H, FEI H. P-Distances,Q-Distances and a Generalized Ekeland’s Variational Principle in Uniform Spaces[J].Acta Mathematics sinica English Senies,2012(2):235-254 [10] EKELAND I.Sur les probemes variationnels[J].Comptes Rendus de l’Académie des Sciences-Series I, 1972(275):1057-1059 [11] EKELAND I. On the variational principle[J]. Journal of Mathematical Analysis and Application,1974(47):324-353 [12] CHEN Y Q, CHO Y J, YANG L. Note on the results with lower semi-continuity[J]. Bulletin of the Korean Mathematical Society, 2002,39(4):535-541 Keywords:Ekeland variational principle;q distance;ε-condition of Takahashi;ε-condition of Hamel Application of Generalized Ekeland Variational Principle with q Distance CHENJiao (School of Mathematics, Chongqing Normal University, Chongqing 401331, China) Some important applications of generalized Ekeland variational principle to separated normed space are studied, the generalized Ekeland variational principle is used to prove that function f satisfiesε-condition of Takahashi with ? if and only if f satisfiesε-condition of Hamel with the same ?. 1672-058X(2013)10-0001-04 2013-04-08; 2013-05-25. 國家自然科學(xué)基金項(xiàng)目(10831009);重慶自然科學(xué)基金項(xiàng)目(2011BA0030);重慶市科委運(yùn)籌學(xué)與系統(tǒng)工程重慶實(shí)驗(yàn)室專項(xiàng)經(jīng)費(fèi)資助(CSTC,2011KLORSE02);重慶市教委科技項(xiàng)目資助(KJ110625). 陳嬌(1988-),女,重慶銅梁人,碩士研究生,從事變分分析及應(yīng)用研究. O176;O177.91 A 責(zé)任編輯:李翠薇2 主要結(jié)果