亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        高階中立型偏微分系統(tǒng)的振動(dòng)性分析

        2013-10-10 03:24:42羅李平羅振國(guó)曾云輝
        關(guān)鍵詞:科學(xué)系振國(guó)衡陽(yáng)

        羅李平,羅振國(guó),曾云輝

        (衡陽(yáng)師范學(xué)院 數(shù)學(xué)與計(jì)算科學(xué)系,湖南 衡陽(yáng) 421002)

        0 Introduction

        The oscillation study of partial functional differential equations(PFDE)are of both theoretical and practical interest.Some applicable examples in such fields as population kinetics,chemistry reactors and control system can be found in the monograph of Wu[1].There have been some results on the oscillations of solutions of various types of partial functional differential equations.We mention here the literatures of Yu et al.[2],Liu and Fu[3],Wang and Yu[4],Wang and Feng[5],Luo et al.[6],Kiguradze et al.[7],Saker[8],Li and Debnath[9],Wang and Teo[10],Wang and Wu[11],Yang[12],Wang et al.[13]and the references cited therein.In addition,several authors including Li[14],Guan and Yang[15],Li and Cui[16],Li[17],Deng et al.[18],Li and Meng[19],Li et al.[20],Wang and Wu[21],Deng and Mu[22]have studied the oscillation problems of partial functional differential systems of different types.In spite of the above studies,hardly any attention was given to the problem of oscillation of high-order PFDE with continuous delay,especially the systems of high-order PFDE with continuous delay.However,we note that in many areas of their actual application,models describing these problems are often effected by such factors as seasonal changes.Therefore it is necessary,either theoretically or practically,to study a type of PFDE in a more general sense——PFDE with continuous delay.The main objective of this paper is to studythe oscillation of a class of systems of high-order neutral PFDE with continuous delay and nonlinear diffusion term.Some sufficient conditions are proved for the oscillation of such systems.It should be noted that in the proof we do not use the results of Dirichlet's eigenvalue problem.

        1 Formulation of the Problem

        In this paper,we study the oscillation of the following even order neutralpartial functional differential systems with continuous delay and nonlinear diffusion term

        where n≥2is even,Ωis a bounded domain in Rmwith a piecewise smooth boundary?Ω,Δis the Laplacian inRm,R+= (0,∞),the integral in(E)are Stieltjes ones.

        Consider the Dirichlet's boundary condition:

        Throughout this paper,we assume that the following conditions hold:

        (H7)τ(η),μ(ξ)is nondecreasing on[c,d]and[a,b],respectively.

        Definition1.1A vector function u(x,t)= {u1(x,t),u2(x,t),…,um(x,t)}Tis said to be a solution of the boundary value problems(E),(B)if it satisfies(E)in Gand boundary condition(B)in?Ω×R+.

        Definition1.2A numeral function v(x,t)is said to be oscillatory in Gif for anyβ>0,there exists a point(x0,t0)∈ Ω× [β,∞)such that v(x0,t0)=0.A vector function u(x,t)of the boundary value problems(E),(B)is said to be oscillatory in Gif u(x,t)has at least one component as a numeral function to be oscillatory.We call a vector function u(x,t)of the boundary value problems(E),(B)to be nonoscillatory in Gif each component of u(x,t)is nonoscillatory.

        The objective of this paper is to derive some newoscillatory criteria of solutions of the boundary value problems(E),(B).

        To prove the main results of this paper,we need the following lemmas.

        Lemma1.1(Kiguradze[23])Let y(t)∈Cn(I,R)be of constant sign,y(n)(t)≠0and y(n)(t)y(t)≤0on I,then

        (?。﹖here exists a t1≥t0,such that y(i)(t)(i=1,2,…,n-1)is of constant sign on[t1,∞);

        (ⅱ)there exists an integer l∈ {0,1,2,…,n-1},with n+l odd,such that

        Lemma1.2(Philos[24])Suppose that y(t)satisfies the conditions of Lemma 1.1,and y(n-1)(t)y(n)(t)≤0,t≥t1,then for everyθ∈ (0,1),there exists a constant N >0satisfying

        2 Main Results

        Theorem2.1Suppose that there exists a functionρ(t)∈C1(I,R+),such that

        Whereλ=1-P ,the definitions of Pand Q(t)see(H1)and(H2),then all solutions of the boundary value problems(E),(B)are oscillatory in G.

        Integrating(E)with respect to xover the domainΩ,we have

        It is easy to see that

        Therefore,

        TheGreen's formula,(B)and(D)yield

        whereνis the unit exterior normal vector to?Ω,dSis the surface element on?Ω.

        Combining(2.3)—(2.4),noting that(H2)and(H5),we have

        Let Vi(t)=∫ΩZi(x,t)φ(x)dx ,t≥t1,i∈Im,it is obvious that Vi(t)>0,t≥t1,i∈Im.Then,from(2.5),we have

        Noting that

        Then,from (2.6),we have

        Setting

        Noting that the assumption of p(t,η)and q(t,ξ),from (2.7)and(2.8),we have z(t)≥V(t)>0and

        Thus,from Lemma 1.1,there exists a t2≥t1,such that

        By choosing“l(fā)=1”and“l(fā)=n-1”,respectively,we have“z′(t)>0and z(n-1)(t)>0,t≥t2”.Form(2.8),we have

        whereλ=1-P.

        Combining(2.9)and(2.10)yields

        where Q(t)is defined by(H2).

        Letting

        Then W(t)>0for t≥t2.Because z(t)is increasing,g(t,ξ)is nondecreasing with respect tot andξ,there exists a t3≥t2,such that

        Thus,from (2.11)—(2.13),we have

        Taking

        From the fact that X2-2 XY+Y2≥0for any X,Y∈R,we obtain

        Thus,form (2.14)—(2.15),we have

        Integratingboth sides of(2.16)fromt4to t(t>t4),we have

        The proof of Theorem 2.1is complete.

        Hereinbelowwe consider the sets

        Theorem2.2Assume that there exists functionρ(t),φ(t)∈C(I,R+),H(t,s)∈C(D,R),h(t,s)∈C(D0,R),such that

        (?。〩(t,t)=0,t≥t0,H(t,s)>0, (t,s)∈D0;

        (ⅱ)H(t,s)φ(s)exists a continuous and nonpositive partial derivative on D0with respect to the variable s and satisfies the equality

        If

        for any T≥t0,whereλ=1-Pand

        then all solutions of the boundary value problems(E),(B)are oscillatory in G.

        Proof.Proceeding as in the proof of theorem 2.1,we have still(2.14)holds.Multiplying both sides of(2.14)by H(t,s)φ(s)for t≥T ≥t4,integrating fromTto t,we have

        Therefore,

        Taking

        From the fact that X2-2 XY+Y2≥0for any X,Y∈R,we obtain

        Combining(2.19)—(2.20),we get

        The above formula yields

        This contradicts(2.18).The proof of Theorem 2.2is complete.

        Corollary2.3If condition(2.18)of Theorem 2.2is replaced by

        and

        then the conclusions of Theorem 2.2remain true.

        If the condition(2.18)don't hold,we have the following result.

        Theorem2.4Assume that the other conditions of Theorem 2.2remain unchanged,the condition(2.18)of Theorem 2.2is replaced by

        and

        If there exists a functionψ(t)∈C(I,R)such that

        and

        whereψ+(s)= max{ψ(s),0},the definitions of A(t,T)and B(t,T)see(2.18),then all solutions of the boundary value problems(E),(B)are oscillatory in G.

        Proof.Proceeding as in the proof of theorem 2.2,for any t≥T≥t4,we have still(2.21)holds,then

        From(2.25)—(2.26),we have

        and

        From(2.24)and(2.27),we obtain

        To complete the proof of this theorem,we merely need to prove that(2.29)is impossible.For this purpose,we definite

        From(2.19)and(2.28),we have

        From(2.22)and(2.29),we obtain

        From(2.31),we have

        Combining(2.32)and(2.33),we get

        and

        namely,

        Fromthe above formula and(2.34),we have

        On the other hand,by using the Schwarz's inequality,we obtain

        Thus,we have

        Noting that(2.35),we obtain

        [1]Wu J H.Theory and applications of partial functional differential equations[M].New York:Springer-Verlag,1996.

        [2]Yu Y H,Liu B,Liu Z R.Oscillation of solutions of nonlinear partial differential equations of neutral type[J].Acta Math.Sini.,1997,13(4):563-570.

        [3]Liu X Z,F(xiàn)u X L.Oscillation criteria for high order delay partial differential equations[J].J.Appl.Math.Stochastic A-nal.,1998,11(2):193-208.

        [4]Wang P G,Yu Y H.Oscillation criteria for a nonlinear hyperbolic equations boundary value problem [J].Appl.Math.Lett.,1999,12(1):91-98.

        [5]Wang P G,F(xiàn)eng C H.Oscillation of solutions for parabolic equation[J].Comput.Appl.Math.,2000,126(2):111-120.

        [6]Luo J W,Liu Z R,Yu Y H.Oscillation theorems for hyperbolic equations of neutral type[J].Bull.Inst.Math.Acad.Sinica,2001,29(1):135-145.

        [7]Kiguradze I T,Kusano T,Yoshida N.Oscillation criteria for a class of partial functional-differential equations of higher order[J].J.Appl.Math.Stochastic Anal.,2002,15(3):255-267.

        [8]Saker S H.Oscillation criteria of hyperbolic equations with deviating arguments[J].Publ.Math.Debrecen,2003,62(1):165-185.

        [9]Li W N,Debnath L.Oscillation of higher order neutral partial functional differential equations[J].Appl.Math.Lett.,2003,16:525-530.

        [10]Wang P G,Teo K L.Oscillation of solutions of parabolic differential equations of neutral type[J].J.Math.Anal.Appl.,2005,311(2):616-625.

        [11]Wang P G,Y.H.Wu Y H.Forced oscillation of a class of neutral hyperbolic differential equations[J].J.Comput.Appl.Math.,2005,177(2):301-308.

        [12]Yang Q G.On the oscillation of certain nonlinear neutral partial differential equations[J].Appl.Math.Lett.,2007,20:900-907.

        [13]Wang P G,Wu Y H,Caccetta L.Oscillation criteria for boundary value problems of high-order partial functional differential equations[J].J.Comput.Appl.Math.,2007,206(1):567-577.

        [14]Li Y K.Oscillations of systems of hyperbolic differential equations with deviating arguments[J].Acta Math.Sinica 1997,40(1):100-105.

        [15]Guan X P,Yang J.Oscillation of systems of nonlinear hyperbolic partial functional differential equations of neutral type[J].J.Sys.Sci.&Math.Scis.,1998,18(2):239-246.

        [16]Li W N,Cui B T.Oscillation for systems of neutral delay hyperbolic differential equations[J].Indian J.Pure Appl.Math.,2000,31:933-948.

        [17]Li W N.Oscillation properties for systems of hyperbolic differential equationsof neutral type[J].J.Math.Anal.Appl.,2000,248:369-384.

        [18]Deng L H,Ge W G,Yu Y H.Oscillation of systems of quasilinear parabolic functional differential equations about boundary value problems[J].Acta Math.Appl.Sinica,2001,24(2):295-301.

        [19]Li W N,Meng F W.Oscillation for systems of neutral partial differential equations with continuous distributed deviating arguments[J].Demonstratio Math.,2001,34:619-633.

        [20]Li W N,Cui B T,Debnath L.Oscillation of systems of certain neutral delay parabolic differential equations[J].J.Appl.Math.Stochastic Anal.,2003,16(1):83-94.

        [21]Wang P G,Wu Y H.Oscillation of solutions for systems of hyperbolic equations of neutral type[J].Electronic of Differential Equations,2004,2004(80):1-8.

        [22]Deng L H,Mu C L.Oscillation of solutions of the systems of quasilinear hyperbolic equations under nonlinear boundary condition[J].Acta.Math.Scientia,2007,27B(3):656-662.

        [24]Philos Ch G.A new criterion for oscillatory and asymptofic behavior of delay differential equations[J].Bull.Acad.Pol.Sci.Ser.Sci.Mat.,1981,29:367-370.

        猜你喜歡
        科學(xué)系振國(guó)衡陽(yáng)
        衡陽(yáng)師范學(xué)院美術(shù)學(xué)院作品選登
        致力草學(xué),推進(jìn)草業(yè),共創(chuàng)輝煌
        ——慶祝湖南農(nóng)業(yè)大學(xué)草業(yè)科學(xué)系建系20 周年
        作物研究(2021年2期)2021-04-26 09:34:40
        愛(ài)在拉薩
        我和繼父13 年
        文苑(2019年23期)2019-12-05 06:50:22
        Enhanced spin-dependent thermopower in a double-quantum-dot sandwiched between two-dimensional electron gases?
        我和繼父的13年
        37°女人(2019年6期)2019-06-10 08:48:11
        大城衡陽(yáng)
        樂(lè)在其中 研我自由——記清華大學(xué)數(shù)學(xué)科學(xué)系助理教授宗正宇
        完善我國(guó)人大選舉監(jiān)督機(jī)制的思路——以衡陽(yáng)破壞選舉案為例
        創(chuàng)新(2014年5期)2014-03-20 13:20:06
        中油桃4號(hào)在衡陽(yáng)種植表現(xiàn)及栽培技術(shù)要點(diǎn)
        作物研究(2014年6期)2014-03-01 03:39:13
        久久综合九色综合久99| 日本高清一区二区不卡视频| 国产不卡一区二区三区视频| 国语对白精品在线观看| 亚洲av成人片色在线观看高潮| 越南女子杂交内射bbwbbw| 在线av野外国语对白| 精品日韩在线观看视频| 精品亚洲国产成人蜜臀av| 先锋影音av最新资源| AV成人午夜无码一区二区| 亚洲精品女同在线观看| 国产婷婷色一区二区三区深爱网| 亚洲国产精品无码专区影院| 亚洲色图在线观看视频| 日本一区二区三区的免费视频观看| 午夜一区二区视频在线观看| 美女张开腿让男人桶爽| 麻豆AV免费网站| 久久这黄色精品免费久| 日日碰狠狠添天天爽超碰97久久 | 国产主播无套内射一区| 精品黑人一区二区三区久久hd| 日本一区二区三区爆乳| 中文字幕精品无码一区二区| 无码AV无码免费一区二区| 在线视频观看一区二区| 久久久亚洲av成人网站| 日本免费不卡一区| 亚洲中文有码一区二区| 未满十八18禁止免费无码网站| 国产亚洲人成a在线v网站| 久久久久久无中无码| 久久精品国产亚洲av一般男女| 亚洲精品成人片在线观看精品字幕| 无码国产亚洲日韩国精品视频一区二区三区| 麻美由真中文字幕人妻| 国产精品女主播福利在线| 欧美日韩中文国产一区发布 | 色一情一区二| 日韩av在线不卡一区二区三区|