姜英軍,鄒蒔珺
(長沙理工大學(xué)數(shù)學(xué)與計算科學(xué)學(xué)院,湖南長沙 410114)
帶非連續(xù)解橢圓問題的3次Hermite配點方法*
姜英軍,鄒蒔珺
(長沙理工大學(xué)數(shù)學(xué)與計算科學(xué)學(xué)院,湖南長沙 410114)
使用3次Hermite配點方法,對一類帶有非連續(xù)解的橢圓問題進行數(shù)值求解,將其解的不連續(xù)點取作網(wǎng)格節(jié)點,解在不連續(xù)點的左右極限作為未知量,結(jié)合解在不連續(xù)點的“跳躍”信息對原問題進行離散.數(shù)值實驗表明此方法的收斂階為O(h4).
橢圓問題;Hermite插值;配點方法
考慮求解一維橢圓問題[1-2]
(1)式的唯一解在除去x=α點外是光滑函數(shù),文獻[1]給出了對其求解的2階收斂性算法.文中將使用文獻[3]中所提出的求解偏微分方程的埃爾米特配點算法對(1)式進行數(shù)值求解.
對[-1,1]剖分為-1=x0<x1<...<xm=μ<...<xN=1,使用一個分段三次多項式v(x)作為u(x)的近似,v(x)的定義為
在[xi,xi+1]上將(3)式中u換成v,并對區(qū)間[xi,xi+1]的2個半?yún)^(qū)間進行積分可得
(6),(7)式即為(1),(2)式的離散問題.
求解下面問題:
此問題精確解為
表1中列出實驗結(jié)果,其中eN表示近似解的無窮范數(shù)誤差,即eN=‖u-v‖∞,r=log(eN/eN-4)/log(N/(N-4)).實驗結(jié)果表明,該算法具有4階收斂性.
表1 數(shù)值實驗結(jié)果
設(shè)計了一種有效的數(shù)值方法求解帶不連續(xù)解的橢圓型問題,并將解的不連續(xù)點作為網(wǎng)格節(jié)點,解在不連續(xù)點的左右極限作為未知量,結(jié)合解在不連續(xù)點的“跳躍”信息得到了原問題的離散格式.實驗表明這種方法是有效的,具有4階收斂性.應(yīng)用此方法求解帶有非連續(xù)解的拋物問題[4-5].
[1] LEVEQUE R J,LI Zhi-lin.The Immersed Interface Method for Elliptic Equations with Discontinuous Coefficients and Singular Sources[J].SIAM Journal on Numerical Analysis,1994,31:1 019-1 044.
[2] TIKHONOV A N,SAMARSKII A A.Homogeneous Difference Schemes[J].USSR Computational Mathematics and Mathematical Physics,1962(1):5-67.
[3] HUANG W Z,RUSSELL R D.A Moving Collocation Method for the Numerical Solution of Time Dependent Differential Equations[J].Applied Numerical Mathematics,1996,20:101-116.
[4] MA Jing-tang,JIANG Ying-jun.Moving Mesh Methods for Blow up in Reaction-Diffusion Equations with Traveling Heat Source[J].Journal of Computational Physics,2009,228:6 977-6 990.
[5] 馬敬堂,姜英軍.帶插值的自適應(yīng)網(wǎng)格重構(gòu)算法求解帶移動熱源的反應(yīng)擴散方程的理論分析[J].中國科學(xué),2011,41:235-251.
(責(zé)任編輯 向陽潔)
Cubic Hermite Collocation Method for Solving the Elliptic Problem with a Discontinuous Solution
JIANG Ying-jun,ZOU Shi-jun
(Department of Mathematics and Computing Science,Changsha University of Science and Technology,Changsha 410114,China)
The cubic Hermite collocation method is used in discretization of an elliptic problem with a discontinuous solution.The discontinuous points of the solution are taken as grid points,the left and right limits of the solution at the discontinuous points as unknowns.The jumpings of the solution at the discontinuous points are combined to dicrete the original problem.The test indicates that the method has the convergence of order O(h4).
elliptic problem;Hermite interpolation;collocation method
O175.26
A
10.3969/j.issn.1007-2985.2013.03.004
1007-2985(2013)03-0016-03
2013-03-14
國家自然科學(xué)基金資助項目(10901027)
姜英軍(1975-),男,湖南長沙人,長沙理工大學(xué)數(shù)學(xué)與計算科學(xué)學(xué)院副教授,博士,主要從事微分方程數(shù)值解研究.