劉士鋒, 馮衛(wèi)華, 徐文堅(jiān)
青島大學(xué)醫(yī)學(xué)院附屬醫(yī)院放射科,青島 266003
2012年度北美放射年會(huì)(RSNA)共有骨關(guān)節(jié)系統(tǒng)影像學(xué)研究論文約500余篇,其中關(guān)節(jié)影像學(xué)研究論文達(dá)200余篇,關(guān)于髖、膝、踝、肩、腕等關(guān)節(jié)軟骨、周圍韌帶、肌腱損傷、關(guān)節(jié)病變術(shù)前評(píng)估及術(shù)后隨訪等方面研究較多,其中關(guān)節(jié)軟骨研究主要集中于應(yīng)用MRI新技術(shù)對(duì)損傷后軟骨改變、軟骨修復(fù)等進(jìn)行定性和定量研究。對(duì)于四肢末端小關(guān)節(jié)及關(guān)節(jié)微結(jié)構(gòu)研究相對(duì)較少,主要為診斷RA的新技術(shù)的研究。此外,對(duì)關(guān)節(jié)US的研究較以前增多。筆者對(duì)以上方面進(jìn)行簡(jiǎn)要綜述,以期對(duì)今后關(guān)節(jié)影像學(xué)研究提供幫助。
髖關(guān)節(jié)作為人體較大和較為重要的關(guān)節(jié)之一,一直以來(lái)都是影像學(xué)家關(guān)注的重要部位,尤其是對(duì)髖關(guān)節(jié)病變術(shù)前影像學(xué)評(píng)估及術(shù)后影像學(xué)隨訪更是研究的熱點(diǎn)。目前髖關(guān)節(jié)的影像學(xué)研究以MRI為主,MR關(guān)節(jié)造影多用于關(guān)節(jié)周圍韌帶及髖關(guān)節(jié)盂唇病變的顯示。
股骨髖臼撞擊綜合征(femoroacetabu lar impingement,F(xiàn)AI)是股骨頸部或髖臼邊緣異常、在髖關(guān)節(jié)旋轉(zhuǎn)活動(dòng)時(shí)引起反復(fù)創(chuàng)傷,導(dǎo)致的髖臼盂唇和關(guān)節(jié)軟骨損傷。Tishi等[1]回顧了導(dǎo)致FAI的髖臼和股骨頸的解剖變異及診斷FAI常用的影像學(xué)方法,(如單線圖、平片、CT、MRI等)。Hwang等[2]回顧性分析了82例FAI和非FAI患者的髖關(guān)節(jié)3D-CT關(guān)節(jié)造影成像,結(jié)果顯示FAI患者的關(guān)節(jié)周圍的纖維囊性改變率(46.3%)大于對(duì)照組(20.3%),且FAI 組的關(guān)節(jié)周圍纖維囊性改變平均直徑為6.0 mm,而非FAI組僅為5.5 mm,表明,與未患FAI的髖關(guān)節(jié)相比,F(xiàn)AI 患者的髖關(guān)節(jié)更易發(fā)生纖維囊性變,尤其是Cam型FAI患者。Long[3]對(duì)25例患有股骨頸壓力骨折的影像進(jìn)行研究,結(jié)果示股骨頸壓力性骨折與Pincer型FAI有很大關(guān)聯(lián),其中部分也與Cam型FAI有關(guān)聯(lián)。
常規(guī)MRI在髖臼盂唇成像方面具有局限性,故常用MR關(guān)節(jié)造影及其他先進(jìn)影像學(xué)技術(shù)以更好顯示盂唇病變。Michael等[4]研究了腿部牽引MR關(guān)節(jié)造影診斷Cam型FAI的準(zhǔn)確性,其對(duì)70例Cam型或Cam-Pincer混合型FAI患者在腿部牽引和未牽引兩種情況下進(jìn)行1.5 T MRI關(guān)節(jié)造影,結(jié)果顯示在腿部牽引情況下髖關(guān)節(jié)關(guān)節(jié)造影可清楚地顯示Cam型FAI患者髖關(guān)節(jié)的髖臼軟骨分離和其他病理學(xué)改變。Riccardo等[5]對(duì)19例FAI患者的髖關(guān)節(jié)在術(shù)前行3.0 T dDEMRIC徑向平面成像和關(guān)節(jié)鏡檢查,結(jié)果示單純MRI很難顯示髖臼軟骨病變的形態(tài)學(xué)改變,但3.0 T dDEMRIC 可有效預(yù)測(cè)軟骨異常,從而改善FAI患者髖臼軟骨的術(shù)前評(píng)估。
髖關(guān)節(jié)置換為髖關(guān)節(jié)疾病的常用手術(shù),因此術(shù)后影像學(xué)評(píng)估和術(shù)后減少成像偽影方面都有很大的臨床價(jià)值。Jan等[6]和Eric等[7]利用先進(jìn)的可減少金屬偽影的MRI序列(MARS、SEMAC、MAVRIC和UTE-MSI等),回顧分析了全髖關(guān)節(jié)置換術(shù)后的一般影像表現(xiàn)和潛在并發(fā)癥的表現(xiàn),從而給臨床骨科醫(yī)師以幫助。Imran等[8]描述了髖關(guān)節(jié)置換術(shù)后疼痛的超聲表現(xiàn),并將其與MARS MRI進(jìn)行比較,證實(shí)超聲為髖關(guān)節(jié)置換術(shù)后髖關(guān)節(jié)融合的金標(biāo)準(zhǔn)。Napoleon[9]等描述了CT在評(píng)估全髖置換術(shù)(THA)中的影像學(xué)價(jià)值,并回顧了THA并發(fā)癥的CT表現(xiàn)。Shiraz等[10]用多種影像學(xué)方法(平片、MARS MRI、SPECT-CT)評(píng)估了金屬-金屬(MOM)髖關(guān)節(jié)置換術(shù)以避免漏診。
在髖關(guān)節(jié)置換術(shù)后假體周圍的反應(yīng)方面,Shiraz等[11]和Eric等[12]分別對(duì)179例髖關(guān)節(jié)置換患者(200個(gè)MOM髖關(guān)節(jié))、175例ASR XLMOM全髖置換患者(192個(gè)髖關(guān)節(jié))行MRS,結(jié)果均顯示,假瘤在髖關(guān)節(jié)置換術(shù)后患者中有高發(fā)生率,即使患者髖關(guān)節(jié)功能良好。Iris等[13]對(duì)54例MOM髖關(guān)節(jié)置換患者(61個(gè)髖關(guān)節(jié))行MRI檢查并對(duì)其體內(nèi)進(jìn)行金屬離子濃度測(cè)定,發(fā)現(xiàn)52%的患者體內(nèi)有假瘤,且其平均BMILs升高,認(rèn)為MOM髖關(guān)節(jié)置換患者的MRI信號(hào)改變與金屬沉積導(dǎo)致的順磁性效應(yīng)有關(guān)。Alice[14]對(duì)214例髖關(guān)節(jié)置換術(shù)后疼痛的患者行SPECT掃描,結(jié)果示SPECT有助于查找疼痛病因,排除假體關(guān)節(jié)感染、關(guān)節(jié)松弛和其他關(guān)節(jié)外病變。
相對(duì)于成人,嬰幼兒的髖關(guān)節(jié)影像研究較少,Camilo等[15]對(duì)27例嬰幼兒(平均年齡:3個(gè)月)的髖關(guān)節(jié)行動(dòng)態(tài)MR增強(qiáng)掃描,骺軟骨、長(zhǎng)骨生長(zhǎng)部、干骺端松質(zhì)及骨髓均可清楚顯示,認(rèn)為動(dòng)態(tài)MR增強(qiáng)掃描可清楚顯示嬰幼兒髖關(guān)節(jié)各結(jié)構(gòu),有助于洞察各結(jié)構(gòu)灌注狀況。
膝關(guān)節(jié)損傷研究主要以MRI新技術(shù)評(píng)估軟骨病變,尤其半月板病變?yōu)橹鳎诩s11篇關(guān)于半月板病變的研究中,大部分研究針對(duì)半月板撕裂。
在半月板撕裂的常規(guī)診斷方面,Guilherme等[16]指導(dǎo)放射科醫(yī)師對(duì)于半月板撕裂MRI應(yīng)報(bào)告哪些征象,從而臨床醫(yī)師可根據(jù)此征象和關(guān)節(jié)鏡檢查制定出治療方案。Long[17]、Sung等[18]、Frank等[19]和Maria等[20]分別通過(guò)用MR同容積3D脂肪抑制VISTA 序列、3D同向自旋回波序列(TSESPACE)、MR對(duì)比增強(qiáng)和脂肪抑制3D同向自旋回波序列(TSE-SPACE)成像,對(duì)膝關(guān)節(jié)半月板撕裂進(jìn)行評(píng)估,認(rèn)為上述新技術(shù)更有助于顯示半月板撕裂及類型,有助于指導(dǎo)手術(shù)。Park等[21]關(guān)于半月板MRI的L/T比值(半月板擠壓與內(nèi)側(cè)半月板的最大橫徑長(zhǎng)度之比)的研究有助于半月板撕裂的診斷,半月板撕裂的L/T比值約為13%。
膝關(guān)節(jié)前、后交叉韌帶是維持膝關(guān)節(jié)穩(wěn)定性的重要結(jié)構(gòu),而對(duì)交叉韌帶的影像學(xué)研究不僅包括韌帶受損的病因,更多研究關(guān)注于交叉韌帶損傷所引起的周圍結(jié)構(gòu)改變和韌帶損傷術(shù)后組織結(jié)構(gòu)的影像學(xué)表現(xiàn)。Joseph等[22]回顧性分析了100例急性前交叉韌帶(anterior cruciate ligament tears,ACL)撕裂患者的MRI ,并根據(jù)撕裂位置將其分為6類。John等[23]發(fā)現(xiàn)雙源CT (dual energy computed tomography,DECT)可減弱骨影像,增強(qiáng)骨髓水腫影像,從而有利于ACL損傷的診斷。
對(duì)ACL損傷再造術(shù)后的研究亦引起較多關(guān)注。Ha[24]的研究表明關(guān)節(jié)鏡ACL再造術(shù)后常出現(xiàn)關(guān)節(jié)內(nèi)鈣化。Long[25]對(duì)50例ACL再造術(shù)后患者(24例膝關(guān)節(jié)臨床上表現(xiàn)穩(wěn)定,26例不穩(wěn)定)行平片、MRI和關(guān)節(jié)鏡檢查,結(jié)果示ACL再造術(shù)成功與失敗病例之間的股管后壁和股管的方向之間存在差異。Amin等[26]對(duì)45例ACL雙束重建術(shù)后患者行MRI檢查,結(jié)果示ACL雙束重建術(shù)后移植物前內(nèi)側(cè)和后外側(cè)信號(hào)強(qiáng)度增強(qiáng)常與部分撕裂有關(guān),前內(nèi)側(cè)移植物撞擊綜合征時(shí)常表現(xiàn)為部分撕裂和信號(hào)強(qiáng)度增強(qiáng)。
后交叉韌帶(posterior cruciate ligament,PCL)在屈膝時(shí)緊張,可防止脛骨后移。Long[27]回顧性研究了45例PCL慢性損傷患者的MR圖像,結(jié)果顯示約1/3患者的MRI表現(xiàn)正常,這就提示診斷PCL慢性損傷僅靠MRI 是不夠的,必須要結(jié)合臨床。
腘肌是膝關(guān)節(jié)中相對(duì)較小但較重要的肌肉,可使膝關(guān)節(jié)屈曲并使小腿內(nèi)旋。腘肌病變往往不像半月板和韌帶那樣受到重視,但可以為膝關(guān)節(jié)的其他損傷提供診斷線索。診斷不及時(shí)可導(dǎo)致膝關(guān)節(jié)功能退化,其炎性改變可引起膝關(guān)節(jié)疼痛,故在影像學(xué)研究中應(yīng)加強(qiáng)對(duì)其認(rèn)識(shí)。Davide等[28]描述了MR-US融合成像技術(shù)對(duì)腘肌的正常解剖的顯示和對(duì)腘肌損傷診斷的重要性。Saboeiro[29]回顧性分析了100例腘肌肌腱損傷患者的MR圖像,認(rèn)為腘肌肌腱與坐骨結(jié)節(jié)不連接時(shí),其遠(yuǎn)端收縮程度減弱。
髕骨參與膝關(guān)節(jié)構(gòu)成,具有保護(hù)膝關(guān)節(jié),避免股四頭肌對(duì)股骨髁軟骨面摩擦,且可維持膝關(guān)節(jié)穩(wěn)定性和防止膝關(guān)節(jié)過(guò)度活動(dòng)。膝前疼痛及髕骨對(duì)合不良是臨床行X線和CT檢查最常見(jiàn)的原因之一,盡管髕骨定比測(cè)量在X線上研究較多,但在CT和MRI上關(guān)于髕骨高度的參照尺度尚無(wú)統(tǒng)一結(jié)論。Luis等[30]回顧性分析了50例急性髕骨錯(cuò)位患者的MR圖像,認(rèn)為MRI表現(xiàn)為滑車發(fā)育不良常提示繼發(fā)于急性髕骨錯(cuò)位的髕骨內(nèi)側(cè)的骨軟骨損傷。
踝關(guān)節(jié)韌帶和肌腱損傷易導(dǎo)致關(guān)節(jié)不穩(wěn),但顯示及辨認(rèn)困難。Susanna等[31]評(píng)估CT在診斷踝關(guān)節(jié)創(chuàng)傷內(nèi)的肌腱或韌帶損傷的作用。David等[32]介紹了與踝關(guān)節(jié)內(nèi)翻相關(guān)的9種骨折。Albert等[33]回顧了足和踝關(guān)節(jié)夏科氏關(guān)節(jié)病的術(shù)前和術(shù)后影像學(xué)評(píng)估,夏科氏關(guān)節(jié)病的早期診斷和及時(shí)治療可防止嚴(yán)重并發(fā)癥如足畸形、潰瘍和截肢等的發(fā)生。
踝關(guān)節(jié)疾病治療較前有較大進(jìn)展。Angthong等[34]介紹了治療頑固性足和踝關(guān)節(jié)疾病的新技術(shù)-熒光和超聲強(qiáng)烈刺激下的富血小板血漿注射療法的指征、禁忌證和并發(fā)癥等。Collette等[35]介紹了治療踝關(guān)節(jié)關(guān)節(jié)內(nèi)感染的新技術(shù),即US引導(dǎo)下的關(guān)節(jié)內(nèi)注射。
肩關(guān)節(jié)結(jié)構(gòu)復(fù)雜,MRI可清晰顯示骨質(zhì)、盂唇、韌帶、肌肉、肌腱等結(jié)構(gòu)及病變,已被公認(rèn),而常規(guī)X線檢查可發(fā)現(xiàn)病變伴發(fā)征象,從而起輔助診斷作用。
肩袖病變?nèi)匀皇羌珀P(guān)節(jié)影像學(xué)研究中的焦點(diǎn)問(wèn)題。Ha[36]回顧性研究了200例肩袖撕裂患者的MR圖像,其中51例為肩袖完全撕裂,認(rèn)為肩袖脂肪萎縮隨撕裂范圍增大而程度增強(qiáng),因此,肩袖撕裂應(yīng)及時(shí)治療。Long[37]對(duì)59例肩袖修復(fù)術(shù)后患者行1.5 T和3.0 T MR檢查,認(rèn)為肩袖修復(fù)術(shù)后可出現(xiàn)肩袖再損傷,肩袖厚度缺陷和收縮可提示肩袖再損傷。
在肢體大關(guān)節(jié)中,肘關(guān)節(jié)影像學(xué)研究較少。Filippo等[38]回顧了40例棒球投手的3.0 T MR 圖像,認(rèn)為肘關(guān)節(jié)損傷主要為急慢性內(nèi)側(cè)副韌帶疾病、肌腱炎、肌腱撕裂和尺神經(jīng)病變等。Koo等[39]回顧性研究了13例手術(shù)證實(shí)的肘關(guān)節(jié)橫向皺襞綜合征的患者的MR圖像,把正常人群的肘關(guān)節(jié)MRI作為對(duì)照,結(jié)果示實(shí)驗(yàn)組皺襞寬度在冠狀面和矢狀面上分別為6.2 mm、6.5 mm,而對(duì)照組分別為3.6 mm、4.8 mm,認(rèn)為橫向皺襞綜合征的患者的皺襞寬度和皺襞寬度與橈骨頭比值均比對(duì)照組大,有利于橫向皺襞綜合征的術(shù)前診斷。
腕關(guān)節(jié)體積小而結(jié)構(gòu)復(fù)雜,顯示及辨認(rèn)同樣存在困難。Luis[40]回顧了尺側(cè)腕關(guān)節(jié)疼痛的病因,包括三角纖維軟骨(triangular fibrocartilage complex,TFCC)損傷,尺側(cè)腕伸肌病變、遠(yuǎn)側(cè)尺橈關(guān)節(jié)松弛、神經(jīng)纖維瘤、尺骨撞擊綜合征、尺腕撞擊、鉤月撞擊等,并指出MRI是診斷尺側(cè)腕關(guān)節(jié)病變的主要工具,但其在診斷Palmer B型TFCC損傷和腕管不穩(wěn)定方面存在局限性,CT關(guān)節(jié)造影和MRI關(guān)節(jié)造影可克服這些局限性而更有利于腕關(guān)節(jié)疾病的診斷。但Torriani[41]對(duì)10名健康志愿者的腕關(guān)節(jié)(4男,6女)用3.0 T MR 3D FSE 和3D FFE 序列與常規(guī)2D FSE 脂肪飽和序列對(duì)比,證實(shí)在評(píng)估腕關(guān)節(jié)內(nèi)在病變方面3D個(gè)向同性成像的圖像質(zhì)量還不足以和2D FSE 序列相抗衡。
為克服傳統(tǒng)MRI在診斷腕關(guān)節(jié)疾病中的缺點(diǎn),出現(xiàn)了一些新的診斷技術(shù)。Josep等[42]用320層MDCT四維成像觀察了運(yùn)動(dòng)的腕關(guān)節(jié)腕管的活動(dòng)情況和關(guān)節(jié)間隙變化,從而從動(dòng)態(tài)上發(fā)現(xiàn)關(guān)節(jié)不穩(wěn)定的原因。Bruno等[43]指出關(guān)節(jié)造影不僅可診斷三角纖維軟骨、舟月背側(cè)韌帶、月三角背側(cè)韌帶病變,還可診斷其他少見(jiàn)的韌帶病變?nèi)缤庠陧g帶和其他內(nèi)在韌帶的病變。Torriani[44]對(duì)53例腕關(guān)節(jié)痛的患者的腕關(guān)節(jié)用傳統(tǒng)PDW序列和GRE序列與MR關(guān)節(jié)造影對(duì)比,證實(shí),MR關(guān)節(jié)造影在診斷TFCC損傷、舟月背側(cè)韌帶和月三角背側(cè)韌帶損傷方面均比 PDW和3D GRE序列敏感。
相對(duì)于大關(guān)節(jié)影像學(xué)研究,對(duì)小關(guān)節(jié)的影像學(xué)研究相對(duì)較少。Young等[45]回顧了常發(fā)生在小關(guān)節(jié)的不同疾病的CT和MRI表現(xiàn)。Alok等[46]指出MRI是診斷類風(fēng)濕性關(guān)節(jié)炎(rheumatoid arthritis,RA)的關(guān)鍵。Fessell[47]對(duì)100例關(guān)節(jié)痛、關(guān)節(jié)僵硬和關(guān)節(jié)腫脹的患者行高頻US和3.0 T MRI檢查,分析結(jié)果后認(rèn)為在RA早期進(jìn)展中,軟組織改變?cè)缬谲浌歉淖兒凸歉淖儭atsuya等[48]對(duì)120例疑有RA的患者用MR對(duì)比增強(qiáng)成像與其DWI和T1WI融合成像對(duì)比,證實(shí)DWI和T1WI融合成像可達(dá)到幾乎與MR對(duì)比增強(qiáng)成像幾乎相同的診斷效果。Christian等[49]對(duì)10例RA患者的掌指關(guān)節(jié)同時(shí)行MPH-SPECT和MRI檢查,得出經(jīng)MTX治療后,99Tcm-DPD的吸收頻率越高,滑膜炎和骨髓水腫會(huì)減少,但骨質(zhì)破壞會(huì)增多。Wang等[50]對(duì)15例痛風(fēng)患者以GSI方式行CT 750 HD掃描,數(shù)據(jù)傳往AW 4.4工作站進(jìn)行處理,認(rèn)為GSI成像可檢測(cè)尿酸沉積,計(jì)算尿酸濃度,并可使尿酸沉積呈有色顯示,有助于診斷亞臨床尿酸沉積,此外尿酸的定量分析還可用于對(duì)藥物降低急性痛風(fēng)患者尿酸濃度的有效性進(jìn)行隨訪和評(píng)估。
軟骨在平片和CT中一般不顯示,傳統(tǒng)關(guān)節(jié)軟骨成像為MR成像。Torriani[51]對(duì)81例關(guān)節(jié)鏡證實(shí)的膝關(guān)節(jié)損傷的患者行3.0 T 2D序列和同容積性3D脂肪抑制VISTA序列成像并與關(guān)節(jié)鏡的軟骨損傷分級(jí)進(jìn)行對(duì)比,認(rèn)為與2D序列相比,同容積性3D脂肪抑制VISTA序列成像在軟骨損傷方面有更高的診斷價(jià)值,VISTA序列可被用于評(píng)估軟骨大小和厚度。
Siega[52]對(duì)志愿者的膝關(guān)節(jié)行3.0 T和7.0 T gagCEST成像,并將兩者進(jìn)行比較,認(rèn)為與7.0 T MR gagCEST和3.0 T MR gagCEST結(jié)果的強(qiáng)關(guān)聯(lián)性證實(shí)了3.0 T MR gagCEST可在臨床上用于評(píng)估軟骨內(nèi)黏多糖和監(jiān)測(cè)病變內(nèi)黏多糖含量的變化。
T2 mapping是基于T2弛豫時(shí)間的成像技術(shù),可更直觀地顯示不同體素T2值的后處理圖像。23 Na MRI技術(shù)近年來(lái)也常被用于軟骨損傷的研究。Stefan等[53]用7.0 T MR T2-mapping技術(shù)和23Na成像技術(shù)對(duì)6具新鮮尸體的踝關(guān)節(jié)的進(jìn)行掃描,結(jié)果示36個(gè)ROI有18個(gè)位于脛骨軟骨和距骨軟骨,鈉與黏多糖呈正相關(guān),水與黏多糖呈負(fù)相關(guān),作者認(rèn)為7.0 T MR 23Na成像和T2-mapping成像可作為非侵入性檢查用于踝關(guān)節(jié)內(nèi)脛骨軟骨和距骨軟骨的評(píng)估。
Tiel等[54]對(duì)20例膝關(guān)節(jié)軟骨炎早期患者7 d內(nèi)行2次3.0 T MR 3D FSPGR dGEMRIC掃描,結(jié)果示3.0 T MR 3D dGEMRIC成像可用于早期關(guān)節(jié)炎患者的軟骨的評(píng)估并可取得良好效果,因其對(duì)軟骨具有高度敏感性,故其也可用于對(duì)骨關(guān)節(jié)炎的長(zhǎng)期研究。
縱觀2012年RSNA骨關(guān)節(jié)系統(tǒng)影像學(xué)研究報(bào)道,關(guān)節(jié)影像學(xué)研究約占2/5,研究?jī)?nèi)容以髖、膝、肩、腕等關(guān)節(jié)為主,包括關(guān)節(jié)周圍韌帶、肌腱、關(guān)節(jié)軟骨及關(guān)節(jié)術(shù)后影像學(xué)評(píng)估,成像技術(shù)多以CT及MRI,尤以MRI新技術(shù)應(yīng)用研究為主,包括DWI、DWI-T1WI融合成像、T2 mapping、MR對(duì)比增強(qiáng)、MR關(guān)節(jié)造影、dGEMRIC和USMRI融合成像等,另外關(guān)于US在關(guān)節(jié)病變?cè)\斷和治療方面的研究也有所突破,值得國(guó)內(nèi)學(xué)者借鑒。
[References]
[1]Tishi N, Priya S, Mark W, et al.Pictorial review of femoro acetabular impingement.Chicago: RSNA, 2012: LL-MKE4447.
[2]Hwang SY, Yang A, Do KK, et al.Are Fibrocystic changes at femoral head and neck truly more common in hips with femoroacetabular impingement (FAI)? 3D CT assessment in hips with FAI vs hips without FAI.Chicago: RSNA, 2012: SSC10-03.
[3]Long S.The association of femoral neck stress fractures with femoral acetabular impingement.Chicago: RSNA, 2012: LL-MKS-TU1A.
[4]Michael K, Markus R, Petr V, et al.Acetabular Cartilage Delamination in Femoroacetabular Cam Impingement: Diagnostic accuracy of MR arthrography with and without leg traction in comparison to arthroscopy.Chicago: RSNA, 2012: SSC10-05.
[5]Riccardo L, Catherine NP, Daniele A, et al.Effective prediction of cartilage damage in femoroacetabular impingement with standardized dGEMRIC on radial imaging planes at 3 tesla.Chicago: RSNA, 2012:SSC10-06.
[6]Jan F, Theodore M, Stephanie G, et al.MR imaging of hip arthroplasty.Chicago: RSNA, 2012: LL-MKE-4394.
[7]Eric C, Won B, Sheronda S, et al.Imaging of current generation total hip arthroplasty.Chicago: RSNA, 2012: LL-MKE-4432.
[8]Imran S, Keshthra S, Adrian L, et al.Optimizing ultrasound of the painful hip arthroplasty: demonstrating a novel protocolized approach.Chicago: RSNA, 2012: LL-MKE-4443.
[9]Napoleon MR, Xavier T, Sebastian G, et al.CT imaging of total hip replacement complications.Chicago: RSNA, 2012: LL-MKE-4450.
[10]Shiraz S, Keshthra S, Johann H, et al.Multimodality assessment of Metal-on-Metal hip arthroplasties: never miss a diagnosis again on plain radiographs, MARS MRI and SPECT-CT. Chicago: RSNA,2012: LL-MKE-4453.
[11]Shiraz S, Laura G, Keshthra S, et al.MARS MRI of 200 Metal-on-Metal hip arthroplasties: a prospective cohort study.Chicago: RSNA,2012: SSK10-02.
[12]Eric YC, San D, James LM, et al.MRI after ASR XL Metal-on-Metal total hip arthroplasty: does symptomatology correlate with MR imaging findings? Chicago: RSNA, 2012: SSK10-03.
[13]Iris E, Ramat G, Einat S, et al.Metal-on-Metal hip replacement:correlation between blood Metal ions levels and MRI signal intensity of different body tissues.Chicago: RSNA, 2012: SSK10-05.
[14]Alice Ha.The unexplained painful hip arthroplasty: SPECT-CT as a diagnostic tool.Chicago: RSNA, 2012: LL-MKS-WE4C.
[15]Camilo EJ, Philadelphia, Dmitry K, et al.Normal perfusion of the infant hip: evaluation using dynamic gadolinium-enhanced MRI.Chicago: RSNA, 2012: SSQ15-07.
[16]Guilherme N, Thiago C, Conrado C, et al.Meniscal tears: how and what to report? Chicago: RSNA, 2012: LL-MKE-4354.
[17]Long S.Iso-volumetric 3D fat suppressed VISTA sequence in evaluating radial tear and root tear of the meniscus.Chicago: RSNA,2012: LL-MKS-TU4B.
[18]Sung JK, Won HJ, Maria C, et al.Meniscal tears in young adults:comparison of diagnostic performance between 3D isotropic turbo spin-echo MR imaging and 2D conventional MR imaging at 3.0 T.Chicago: RSNA, 2012: VSMK51-04.
[19]Frank W, David TF, Yang TZ, et al.Meniscal damage of the posterior horns is associated with localized synovitis on contrast-enhanced MRI:The MOST Study.Chicago: RSNA, 2012: VSMK51-08.
[20]Maria C, Jee WH, Jung JY, et al.Diagnosis of meniscal tears in discoid meniscus with fat-suppressed 3D isotropic intermediate Turbo spinecho sequence at 3.0 T.Chicago: RSNA, 2012: VSMK51-10.
[21]Park H, Kim JH, Lee SY, et al.Medial meniscal root tears and meniscal extrusion transverse length ratios on MRI.Chicago: RSNA,2012: VSMK51-07.
[22]Joseph CG, Louis WM, Kara L, et al.MR evaluation of location and frequency of anterior cruciate ligament tears.Chicago: RSNA, 2012:SSG11-03.
[23]John H, Katrina GM, Lee B, et al.Usefulness of dual energy computed tomography in the assessment of patients with anterior cruciate ligament tears.Chicago: RSNA, 2012: LL-MKE4390.
[24]Ha A.Intraarticular calcifications following arthroscopic ACL reconstruction: prevalence and significance.Chicago: RSNA, 2012:LL-MKS-WE1C.
[25]Long S.Femoral tunnel position and orientation predict failure of grafts in ACL Reconstruction.Chicago: RSNA, 2012: LL-MKSTU5A.
[26]Amin MF.MRI evaluation of the knee after double bundle acl reconstruction: association of graft findings.Chicago: RSNA, 2012:SSK10-09.
[27]Long S.MRi findings of chronic injury of posterior cruciate ligament.Chicago: RSNA, 2012: LL-MKS-TU5A.
[28]Davide O, Emanuele F, Giulio F, et al.Normal anatomy of hamstring muscles: MR-US fusion imaging detailed didactic approach.Chicago:RSNA, 2012: LL-MKE3155.
[29]Saboeiro G.The sacrotuberous ligament: continuity on MR images with torn hamstring tendons suggesting role in reinforcing ligament attachment site to ischial tuberosity.Chicago: RSNA, 2012: LL-MKSMO7D.
[30]Luis SB, Holly D, James S, et al.Trochlear dysplasia and lateralization of the tibial tubercle on MR imaging: is it associated with acute transient patellar dislocation and osteochondral injuries? Chicago:RSNA, 2012: SSG11-05.
[31]Susanna S, Craig C, Nicholas B, et al.Ankle CT for trauma: did you think there was a tendon, retinacular or ligamentous injury too?Chicago: RSNA, 2012: LL-MKE4401.
[32]David L, Michael R, Hicham M.Even achilles had a weakness: MR imaging of heel pain.Chicago: RSNA, 2012: LL-MKE3157.
[33]Albert S, Hannah K, Laurie L, et al.Review of pre- and post-treatment imaging of charcot arthropathy of the foot and ankle.Chicago: RSNA,2012: LL-MKE4560.
[34]Angthong C, Angthong W.Platelet-rich plasma treatment in the recalcitrant hindfoot and ankle diseases: the novel techniques of injection and abrasive stimulation under fluoroscopy and ultrasonography.Chicago: RSNA, 2012: LL-MKE4357.
[35]Collette E, Matt O, Carol D, et al.Ultrasound guided interventions of the foot and ankle: a review of technique and clinical outcomes.Chicago: RSNA, 2012: LL-MKE4426.
[36]Ha A.Rotator cuff fatty atrophy: is there an association with the location and/or size of full thickness rotator cuff tears? Chicago:RSNA, 2012: LL-MKS-WE1D.
[37]Long S.Diagnosis of retear of rotator cuff after arthroscopic repair with conventional shoulder mr imaging.Chicago: RSNA, 2012: LLMKS-TU6B.
[38]Filippo DG, John C, Avneesh C, et al.Spectrum of elbow injuries in baseball pitchers: 3 tesla mri imaging.Chicago: RSNA, 2012: LLMKE-4480.
[39]Koo JH, Park KJ, Oh YJ, et al.Diagnosis of lateral synovial plica syndrome of the elbow joint: the size criterion of synovial plica on MR imaging.Chicago: RSNA, 2012: SSA13-02.
[40]Luis C, Pi?al FD, Canga A, et al.Ulnar wrist pain: a review of current diagnostic imaging approaches.Chicago: RSNA, 2012: LL-MKE4566.
[41]Torriani M.Qualitative and quantitative assessment of isotropic 3D wrist MR imaging: comparison with 2D intermediate-weighted fastspin-echo with fat saturation.Chicago: RSNA, 2012: LL-MKS-SU2A.
[42]Josep M, Javier A, Juan C, et al.Four-dimensional computed tomography imaging of the wrist: a novel technique to evaluate dynamic instabilities.Chicago: RSNA, 2012: LL-MKE4403.
[43]Bruno BM, Bruna S, Tatiana T, et al.MR-arthography of the wrist:beyond TFCC and ligaments of first row.Chicago: RSNA, 2012:LL-MKE4492.
[44]Torriani M.Comparative evaluation of conventional mr pulse sequences and direct MR arthrography in the evaluation of tears of the triangular fibrocartilage complex (TFCC) and intrinsic ligaments in wrist.Chicago: RSNA, 2012: LL-MKS-SU4B.
[45]Young SL, Jang GC, Jisook Y, et al.What happens in the facet joint?a radiographic review of facet joint pathology.Chicago: RSNA, 2012:LL-MKE4371.
[46]Alok B, Narasimhachar P, Steven M.MR, the window into rheumatoid arthritis.Chicago: RSNA, 2012: LL-MKE3142.
[47]Fessell D.Imaging in early stage rheumatoid arthritis: ultrasound and MRI correlation.Chicago: RSNA, 2012: LL-MKS-MO6B.
[48]Tatsuya M, Kanae T, Shigeki U, et al.Evaluation of synovitis by means of ra (rheumatoid arthritis) using image fusion of DWI (diffusion weighted image) and T1WI (T1-weighted image).Chicago: RSNA,2012: LL-MKE4509.
[49]Christian B, Duesseldorf, Benedikt O, et al.Combined high-resolution single photon emission computed tomography and magnetic resonance imaging for therapy monitoring in early rheumatoid arthritis.Chicago:RSNA, 2012: SSA14-01.
[50]Wang X, Liu B, Li XH, et al.Preliminary study of gemstone spectral imaging(GSI) for detecting uric acid depositing in tophaceous gout with uric acid mapping.Chicago: RSNA, 2012: SSA14-09.
[51]Torriani M.Imaging of the articular cartilage of the knee: diagnostic value of isovolumetric 3D fat-suppressed VISTA sequence imaging at 3.0 T.Chicago: RSNA, 2012: LL-MKS-SU3A.
[52]Siege D.GagCEST imaging of knee cartilage on a clinical 3 T MRI system: assessment of feasibility and clinical relevance.Chicago:RSNA, 2012: LL-MKS-TH7B.
[53]Stefan Z, Sebastian A, Vladimir J, et al.Sodium magnetic resonance(MR) imaging and T2-mapping at 7 T with histological correlation in tibial and talar cartilage of ex-vivo ankle joint.Chicago: RSNA, 2012:SST08-03.
[54]Tiel JV, Rotterdam ZH.Reproducibility of 3D delayed gadolinium enhanced MRI of cartilage of the knee at 3.0 tesla in patients with early-stage osteoarthritis.Chicago: RSNA, 2012: SST08-04.