趙俊剛,任開(kāi)明,湯雋,張磊
上調(diào)mir-7表達(dá)后肺腺癌細(xì)胞對(duì)吉非替尼敏感性的變化及其機(jī)制研究
趙俊剛,任開(kāi)明,湯雋,張磊
目的觀察上調(diào)人肺腺癌A549細(xì)胞中mir-7的表達(dá)水平后,細(xì)胞對(duì)吉非替尼敏感性的變化及其可能機(jī)制。方法取對(duì)數(shù)生長(zhǎng)期A549細(xì)胞,隨機(jī)分為對(duì)照組(NC組)、轉(zhuǎn)染組(mir-7組)、吉非替尼組(吉非替尼處理細(xì)胞,G組)、聯(lián)合組(轉(zhuǎn)染mir-7后用吉非替尼處理細(xì)胞,G+mir-7組)。MTT法檢測(cè)吉非替尼對(duì)A549細(xì)胞的半數(shù)抑制濃度(IC50),Realtime PCR及Western blotting檢測(cè)表皮生長(zhǎng)因子受體(EGFR)、胰島素樣生長(zhǎng)因子受體1(IGF-1R)、Raf1、細(xì)胞外信號(hào)調(diào)節(jié)激酶(ERK)的mRNA和蛋白表達(dá)水平。結(jié)果G+mir-7組吉非替尼對(duì)A549細(xì)胞的IC50(8.57±0.61μmol/L)明顯低于G組(15.63±0.82μmol/L,P<0.01)。Real-time PCR及Western blotting檢測(cè)結(jié)果顯示,G+mir-7組EGFR、IGF-1R、Raf1、ERK的mRNA及蛋白表達(dá)水平明顯低于mir-7組、G組和NC組(P<0.05)。結(jié)論上調(diào)mir-7表達(dá)可增加肺腺癌細(xì)胞對(duì)吉非替尼的敏感性,其機(jī)制可能與mir-7抑制EGFR及IGF-1R通路有關(guān)。
癌,非小細(xì)胞肺;吉非替尼;微小RNAs
非小細(xì)胞肺癌(non-small cell lung cancer,NSCLC)是臨床常見(jiàn)的腫瘤之一。吉非替尼是一種表皮生長(zhǎng)因子受體酪氨酸激酶抑制劑(EGFR-TKI),常用于NSCLC治療,其作用機(jī)制為抑制有絲分裂原活化蛋白激酶的活化,促進(jìn)細(xì)胞凋亡,抑制腫瘤血管生成,但臨床上有部分患者對(duì)EGFR-TKI治療不敏感,或?qū)υ擃?lèi)藥物最終產(chǎn)生耐藥。因此,研究如何增強(qiáng)腫瘤細(xì)胞對(duì)吉非替尼的敏感性具有重要的臨床意義。小RNA是一種短小的內(nèi)源性非編碼RNA分子,可以通過(guò)與對(duì)應(yīng)的靶向mRNA的3'端非翻譯區(qū)完全或非完全配對(duì)結(jié)合,導(dǎo)致靶向基因的翻譯抑制及靶向mRNA的降解[1-3]。本研究將mir-7轉(zhuǎn)染至肺腺癌A549細(xì)胞,采用MTT法檢測(cè)吉非替尼對(duì)A549細(xì)胞半數(shù)抑制濃度(IC50)的變化,Real-time PCR及Western blotting檢測(cè)表皮生長(zhǎng)因子受體(EGFR)、胰島素樣生長(zhǎng)因子受體1(IGF-1R)、Raf1、細(xì)胞外信號(hào)調(diào)節(jié)激酶(ERK)的mRNA和蛋白表達(dá)改變,觀察上調(diào)mir-7表達(dá)水平后A549細(xì)胞對(duì)吉非替尼敏感性的改變,并對(duì)其可能的作用機(jī)制進(jìn)行探討。
1.1主要材料及試劑 人類(lèi)肺腺癌A549細(xì)胞由中國(guó)醫(yī)科大學(xué)中心實(shí)驗(yàn)室提供,采用RPMI 1640培養(yǎng)基(Gibco公司)培養(yǎng),并加入10%熱滅活小牛血清(Gibco公司)。mir-7序列從mirBase數(shù)據(jù)庫(kù)(www. mirbase.com)檢索獲得。mir-7模擬物、小RNA陰性對(duì)照、熒光小RNA購(gòu)自上海吉瑪(Genephama)公司。mRNA和microRNA提取及反轉(zhuǎn)錄試劑盒、Real-time PCR試劑盒購(gòu)自TaKaRa公司。吉非替尼(Iressa)購(gòu)自Astrazeneca公司,溶解于二甲亞砜(DMSO)中,濃度為10mmol/L,-20℃長(zhǎng)期保存,使用前用培養(yǎng)基稀釋到所需濃度。MTT購(gòu)自Sigma公司。鼠抗人EGFR(sc-377229)、鼠抗人IGF-1R(sc-81464)、兔抗人Raf1(sc-227)、鼠抗人ERK(sc-271291)單克隆抗體均購(gòu)自Santa Cruz公司。
1.2MTT法檢測(cè)吉非替尼對(duì)A549細(xì)胞的IC50變化 取狀態(tài)良好的對(duì)數(shù)生長(zhǎng)期細(xì)胞,0.25%胰酶消化后制成細(xì)胞懸液,接種于96孔板中,每孔(0.5~1.0)×104個(gè)細(xì)胞(體積100μl)。培養(yǎng)24h后,使用50nmol/L濃度的mir-7 mimics及小RNA陰性對(duì)照進(jìn)行轉(zhuǎn)染,每組5個(gè)復(fù)孔。轉(zhuǎn)染24h后,加入不同濃度(0、2.5、5、12.5、25μmol/L)的吉非替尼,48h后每孔加入新鮮配制的5mg/ml MTT 20μl,繼續(xù)培養(yǎng)4h,棄去培養(yǎng)液,每孔加入150μl DMSO,37℃低速震蕩10min,采用酶聯(lián)免疫檢測(cè)儀測(cè)定490nm處的吸光度(A)值。按公式計(jì)算細(xì)胞增殖抑制率(IR):IR=(A對(duì)照組-A實(shí)驗(yàn)組)/A對(duì)照組×100%。繪制細(xì)胞增殖抑制率曲線,并計(jì)算吉非替尼的IC50。實(shí)驗(yàn)重復(fù)3次。
1.3Real-time PCR檢測(cè)EGFR、IGF-1R、Raf1、ERK mRNA表達(dá)水平的變化 取對(duì)數(shù)生長(zhǎng)期A549細(xì)胞,隨機(jī)分為對(duì)照組(NC)、轉(zhuǎn)染組(50nmol/L的mir-7轉(zhuǎn)染,mir-7組)、吉非替尼組(12.5μmol/ L吉非替尼處理細(xì)胞,G組)、聯(lián)合組(50nmol/ L的mir-7轉(zhuǎn)染后用12.5μmol/L吉非替尼處理細(xì)胞,G+mir-7組)。各組進(jìn)行相應(yīng)處理后,用Trizol一步法提取細(xì)胞總RNA,采用TaKaRa試劑盒進(jìn)行反轉(zhuǎn)錄(20μl反應(yīng)體系),反轉(zhuǎn)錄條件:37℃ 15min,85℃ 15s。引物序列:EGFR正義5'-GCGTTCGGCACGGTGTATAA-3',反義5'-GGCTTTCGGAGATGTTGCTTC-3';IGF-1R正義5'-ACGCCAATAAGTTCGTCCAC-3',反義5'-GGCTTTCGGAGATGTTGCTTC-3';Raf1正義5'-GCACTGTAGCACCAAACC-3',反義5'-CTGGGACTCTATCACCAATA-3';ERK正義5'-ACCTGCTCATCAACACCACC-3',反義5'-CGTAGCCACATACTCCGTCA-3';β-actin正義5'-ATGATATCGCCGCGCTCGTC-3',反義5'-CGCTCGGTGAGGATCTTCA-3'。采用羅氏LightCycler實(shí)時(shí)熒光定量PCR儀進(jìn)行Real-time PCR反應(yīng)。各目的mRNA表達(dá)量采用2-ΔΔCt法表示。
1.4Western blotting檢測(cè)EGFR、IGF-1R、Raf1、ERK蛋白表達(dá)水平的變化 實(shí)驗(yàn)分組同1.3。處理后的各組細(xì)胞在4℃下使用RIPA裂解液(含PMSF,1:100)進(jìn)行處理,離心提取上清,采用BCA法進(jìn)行總蛋白定量。SDS-PAGE電泳(濃縮膠20mA、分離膠35mA)并轉(zhuǎn)膜后,使用含有5%牛奶的TBST(含0.05% Tween 20)進(jìn)行封閉,然后分別加入EGFR、Raf1、IGF-1R、ERK抗體(1:200稀釋)后進(jìn)行孵育(4℃、12h),再加入辣根過(guò)氧化物酶標(biāo)記的二抗(1:5000稀釋)孵育2h,ECL化學(xué)發(fā)光法顯色,使用ECL發(fā)光儀采集圖像,并用GENE SNAP軟件進(jìn)行分析。
1.5統(tǒng)計(jì)學(xué)處理 采用SPSS 13.0軟件進(jìn)行統(tǒng)計(jì)分析。數(shù)據(jù)結(jié)果以±s表示,組間比較采用單因素方差分析,進(jìn)一步兩兩比較采用LSD-t法。P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2.1吉非替尼對(duì)A549細(xì)胞的IC50MTT法檢測(cè)顯示,吉非替尼對(duì)mir-7轉(zhuǎn)染的A549細(xì)胞的IC50為8.57±0.61μmol/L,明顯低于未轉(zhuǎn)染的對(duì)照細(xì)胞(15.63±0.82μmol/L,P<0.01)。
2.2各組EGFR、IGF-1R、ERK和Raf1的mRNA表達(dá)水平 G+mir-7組A549細(xì)胞中EGFR、IGF-1R、ERK、Raf1 mRNA表達(dá)量明顯低于G組、mir-7組及NC組(P<0.05),G組明顯低于mir-7組、NC組,mir-7組明顯低于NC組,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05,圖1)。
2.3各組EGFR、IGF-1R、ERK和Raf1的蛋白表達(dá)水平 Western blotting檢測(cè)顯示,G+mir-7組A549細(xì)胞中EGFR、IGF-1R、ERK、Raf1蛋白表達(dá)量明顯低于G組、mir-7組及NC組(P<0.05),G組明顯低于mir-7組、NC組,mir-7組明顯低于NC組,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05,圖2)。
圖1 各組中EGFR、IGF-1R、Raf1、ERK mRNA的表達(dá)Fig. 1 mRNA expression of EGFR, IGF-1R, Raf1 and ERK in different groups
圖2 不同處理組中EGFR、IGF-1R、Raf1、ERK蛋白的表達(dá)Fig. 2 Protein expression of EGFR, IGF-1R, Raf1 and ERK in different groups
肺癌為臨床常見(jiàn)的惡性腫瘤之一,其中NSCLC約占80%[4-5]。手術(shù)切除是治療NSCLC的有效方法,但通常只有30%左右的患者有手術(shù)機(jī)會(huì)?;瘜W(xué)治療是NSCLC的常規(guī)治療手段,但有部分患者對(duì)化療不敏感或存在耐藥,因此靶向治療藥物成為臨床上一種新的選擇。EGFR與腫瘤生長(zhǎng)密切相關(guān),在多種惡性腫瘤中呈高表達(dá),EGFR-TKI為針對(duì)EGFR較有代表性的靶向藥物,臨床常用的EGFRTKI包括吉非替尼和厄洛替尼,其作用機(jī)制是通過(guò)與ATP或底物競(jìng)爭(zhēng)性結(jié)合胞外的配體結(jié)合位點(diǎn),阻斷EGFR分子內(nèi)酪氨酸的自身磷酸化及酪氨酸激酶活化,抑制EGFR激活,阻止下游信號(hào)轉(zhuǎn)導(dǎo),從而抑制細(xì)胞周期進(jìn)程、加速細(xì)胞凋亡、抑制血管生成、抑制浸潤(rùn)和轉(zhuǎn)移[6]。但在臨床中,有些患者對(duì)EGFR-TKI的治療并不敏感,或?qū)υ擃?lèi)藥物最終產(chǎn)生耐藥。所以,研究EGFR-TKI類(lèi)耐藥機(jī)制并尋找增強(qiáng)腫瘤細(xì)胞對(duì)此類(lèi)藥物敏感性的方法具有重要的臨床意義。
小RNA的異常表達(dá)與腫瘤發(fā)生有關(guān)[7]。mir-7是一種古老的小RNA[8],Li等[9]研究發(fā)現(xiàn),mir-7在果蠅體內(nèi)參與了幾條反饋環(huán),這幾條反饋環(huán)的作用是緩沖外界環(huán)境變化對(duì)生物體的沖擊,幫助維持生物體內(nèi)的穩(wěn)定性。有研究表明,在神經(jīng)系統(tǒng)中,mir-7在大腦、晶狀體、垂體及丘腦的表達(dá)都在正常水平[10-12],但在垂體腺瘤及多種中樞神經(jīng)系統(tǒng)腫瘤中的表達(dá)明顯下降[13-14]。Webster等[15]的研究表明,mir-7與EGFR通路關(guān)系密切,可抑制EGFR信號(hào)通路上的多個(gè)靶點(diǎn),如直接調(diào)控EGFR及Raf1 mRNA的生成,以及間接調(diào)節(jié)分裂原活化抑制劑(MEK)、ERK、蛋白激酶B(AKt)等的表達(dá)。同時(shí),Rusch等[16]研究發(fā)現(xiàn),IGF1R通路激活是導(dǎo)致EGFR-TKI類(lèi)耐藥的重要機(jī)制。Jiang等[17]的研究顯示,在舌癌中,mir-7可以抑制IGF-1R下游信號(hào)通路。Zhong等[18]也發(fā)現(xiàn)let-7a、has-miR-126、has-miR-145等小RNA可以增強(qiáng)吉非替尼對(duì)NSCLC細(xì)胞的毒性。為此,我們?cè)O(shè)想mir-7可用于增強(qiáng)NSCLC細(xì)胞對(duì)EGFR-TKI類(lèi)藥物的敏感性。一方面mir-7可直接抑制EGFR及其下游通路,這與EGFR-TKI類(lèi)本身的作用目的是相同的,同時(shí),mir-7可抑制IGF-1R等信號(hào)通路引起的EGFR-TKI類(lèi)藥物耐藥,從另一方面加強(qiáng)藥物的敏感性。
本研究結(jié)果顯示,轉(zhuǎn)染mir-7可增強(qiáng)A549細(xì)胞對(duì)吉非替尼的敏感性。從PCR及Western blotting檢測(cè)結(jié)果可以看出,轉(zhuǎn)染mir-7后EGFR-Raf1-ERK信號(hào)通路上的靶點(diǎn)表達(dá)均明顯下降,表明mir-7無(wú)論是在mRNA水平還是蛋白水平都可以協(xié)助吉非替尼進(jìn)一步抑制EGFR信號(hào)通路。同時(shí)ERK也是IGF-1R的下游信號(hào),在吉非替尼與mir-7轉(zhuǎn)染共同作用下ERK及IGF-1R表達(dá)下降也表明IGF-1R信號(hào)通路受到了明顯抑制,從而避免了因旁路IGF-1R信號(hào)通路激活導(dǎo)致的NSCLC對(duì)吉非替尼的耐藥。后續(xù)將采用耐吉非替尼的NSCLC細(xì)胞進(jìn)行研究,觀察上調(diào)mir-7表達(dá)能否逆轉(zhuǎn)其耐藥。
總之,本研究發(fā)現(xiàn)mir-7可增強(qiáng)A549細(xì)胞對(duì)吉非替尼的敏感性,其機(jī)制可能與mir-7抑制EGFR及IGF-1R通路有關(guān),為NSCLC的靶向治療提供了新的思路。
[1]Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2): 281-297.
[2]Mattick JS, Makunin IV. Small regulatory RNAs in mammals[J]. Hum Mol Genet, 2005, 14(1): 121-132.
[3]Humphreys DT, Westman BJ, Martin DI, et al. MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function[J]. Proc Natl Acad Sci USA, 2005, 102(47): 16961-16966.
[4]Jemal A, Tiwari RC, Murray T, et al. Cancer statistics[J]. CA Cancer J Clin, 2004, 54(1): 8-29.
[5]Rusch V, Baselga J, Cordon-Cardo C, et al. Differential expression of the epidermal growth factor receptor and its ligands in primary non-small cell lung cancers and adjacent benign lung[J]. Cancer Res, 1993, 53(10 Suppl): 2379-2385.
[6]Jiang L, Liu X, Chen Z, et al. MicroRNA-7 targets IGF1R (insulin-like growth factor 1 receptor) in tongue squamous cell carcinoma cells[J]. Biochem J, 2010, 432(1): 199-205.
[7]Kumar MS, Lu J, Mercer KL, et al. Impaired microRNA processing enhances cellular transformation and tumorigenesis[J]. Nat Genet, 2007, 39(39): 673-677.
[8]Prochnik SE, Rokhsar DS, Aboobaker AA. Evidence for a microRNA expansion in the bilaterian ancestor[J]. Dev Genes Evol, 2007, 217(1): 73-77.
[9]Li X, Cassidy JJ, Reinke CA, et al. A microRNA imparts robustness against environmental fluctuation during development[J]. Cell, 2009, 137(2): 273-282.
[10]Sempere LF, Freemantle S, Pitha-Rowe I, et al. Expression profiling of mammalian microRNAs uncovers a subset of brainexpressed microRNAs with possible roles in murine and human neuronal differentiation[J]. Genome Biol, 2004, 5(3): R13.
[11]Farh KK, Grimson A, Jan C, et al. The widespread impact of mammalian MicroRNAs on mRNA repression and evolution[J]. Science, 2005, 310(5755): 1817-1821.
[12]Landgraf P, Rusu M, Sheridan R, et al. A mammalian microRNA expression atlas based on small RNA library sequencing[J]. Cell, 2007, 129(7): 1401-1414.
[13]Bottoni A, Zatelli MC, Ferracin M, et al. Identification of differentially expressed microRNAs by microarray: a possible role for microRNA genes in pituitary adenomas[J]. J Cell Physiol, 2007, 210(2): 370-377.
[14]Gaur A, Jewell DA, Liang Y, et al. Characterization of microRNA expression levels and their biological correlates in human cancer cell lines[J]. Cancer Res, 2007, 67(6): 2456-2468.
[15]Webster RJ, Giles KM, Price KJ, et al. Regulation of epidermal growth factor receptor signaling in human cancer cells by microRNA-7[J]. J Biol Chem, 2009, 284(9): 5731-5741.
[16]Rusch V, Baselga J, Cordon-Cardo C, et al. Differential expression of the epidermal growth factor receptor and its ligands in primary non-small cell lung cancers and adjacent benign lung[J]. Cancer Res, 1993, 53(10 Suppl): 2379-2385.
[17]Jiang L, Liu X, Chen Z, et al. MicroRNA-7 targets IGF1R (insulin-like growth factor 1 receptor) in tongue squamous cell carcinoma cells[J]. Biochem J, 2010, 432(1): 199-205.
[18]Zhong M, Ma X, Sun C, et al. MicroRNAs reduce tumor growth and contribute to enhance cytotoxicity induced by gefitinib in non-small cell lung cancer[J]. Chem Biol Interact, 2010, 184 (3): 431-438.
Change in sensitivity of A549 cells to gefitinib after up-regulation of mir-7 expression and its mechanism
ZHAO Jun-gang, REN Kai-ming, TANG Jun, ZHANG Lei
Department of Thoracic Surgery, Shengjing Hospital, China Medical University, Shenyang 110004, China
This work was supported by the Doctoral Research Foundation of Liaoning Province (20091108)
ObjectiveTo observe the change in sensitivity of human lung adenocarcinoma A549 cells to gefitinib after upregulation of mir-7 expression and its underlying mechanism.MethodsThe logarithmic growth phase A549 cells were harvested and randomly divided into 4 groups: normal control group (NC group), transfection group (mir-7 group), gefitinib group (G group), and G+mir-7 group (A549 cells were treated with gefitinib after mir-7 transfection). The MTT assay was used to determine the 50% inhibitory concentration (IC50) of gefitinib for A549 cells. Real-time PCR and Western blot were used to determine the mRNA and protein expression of epidermal growth factor receptor (EGFR), insulin-like growth factor 1 receptor (IGF-1R), Raf1 and extracellular signal-regulated kinase (ERK).ResultsThe IC50of gefitinib to A549 cells was significantly lower in G+mir-7 group (8.57±0.61μmol/L) than in gefitinib group (15.63±0.82μmol/L,P<0.01). The results of real-time PCR and Western blot showed that the mRNA and protein expressions of EGFR, IGF-1R, Raf1 and ERK were significantly lower in G+mir-7 group than in NC group, mir-7 group and gefitinib group (P<0.01).ConclusionThe up-regulation of mir-7 expression may enhance the sensitivity of A549 cells to gefitinib, and its mechanism may be related to the inhibitory effect of mir-7 on signal pathway of EGFR and IGF-1R.
carcinoma, non-small-cell lung; gefitinib; microRNAs
R734.2
A
0577-7402(2013)06-0481-04
2012-12-10;
2013-04-25)
(責(zé)任編輯:胡全兵)
遼寧省博士科研啟動(dòng)基金(20091108)
趙俊剛,副教授。主要從事胸外科的基礎(chǔ)與臨床研究
110004 沈陽(yáng) 中國(guó)醫(yī)科大學(xué)附屬盛京醫(yī)院胸外科(趙俊剛、任開(kāi)明、湯雋、張磊)