崔春艷,李奎,李兵,付超,郭佳
(1.河北工業(yè)大學(xué)電磁場與電器可靠性省部共建重點(diǎn)實(shí)驗(yàn)室,天津300130;2.河北工程大學(xué)信息與電氣工程學(xué)院,河北邯鄲056038)
感應(yīng)電機(jī)自適應(yīng)滑模增益控制器的設(shè)計
崔春艷1,2,李奎1,李兵2,付超1,郭佳1
(1.河北工業(yè)大學(xué)電磁場與電器可靠性省部共建重點(diǎn)實(shí)驗(yàn)室,天津300130;2.河北工程大學(xué)信息與電氣工程學(xué)院,河北邯鄲056038)
針對傳統(tǒng)滑模控制系統(tǒng)中擾動信號的臨界值難獲得且計算量大的問題,提出了一種新型的自適應(yīng)滑模增益的感應(yīng)電機(jī)矢量控制技術(shù),以便對感應(yīng)電機(jī)進(jìn)行快速準(zhǔn)確調(diào)速.這種方法不需要大量的計算,消弱了對于各種擾動信號邊界的依賴,實(shí)現(xiàn)了滑模增益隨系統(tǒng)中的電機(jī)參數(shù)和負(fù)載轉(zhuǎn)矩的擾動而進(jìn)行自動調(diào)整的目的.并利用李亞普諾夫穩(wěn)定定理,證明了該調(diào)速控制系統(tǒng)的穩(wěn)定性.Matlab Simulink仿真結(jié)果表明:自適應(yīng)滑模增益的變結(jié)構(gòu)控制方法對于電機(jī)參數(shù)和負(fù)載轉(zhuǎn)矩的不確定性均能呈現(xiàn)很好的調(diào)速性能,計算量小,魯棒性好.
感應(yīng)電機(jī);自適應(yīng)滑模增益;矢量控制;滑模變結(jié)構(gòu)
感應(yīng)電機(jī)是一個具有非線性、時變、多變量、強(qiáng)耦合等特性的復(fù)雜系統(tǒng),并且電機(jī)在運(yùn)行過程中還會由于繞組升溫等因素,導(dǎo)致繞組參數(shù)發(fā)生不同程度的攝動,特別是轉(zhuǎn)子電阻發(fā)生變化.因此,如何借助恰當(dāng)有效的控制方法,克服參數(shù)變化和不確定因素的影響,提高電機(jī)控制的魯棒性是當(dāng)前重要的研究課題.在當(dāng)前的各種無速度傳感器的矢量控制方案中,多利用測量的定子電壓和電流值來估計轉(zhuǎn)子速度.但是這項(xiàng)矢量控制技術(shù)同樣依賴于電機(jī)參數(shù)和負(fù)載轉(zhuǎn)矩等一些不穩(wěn)定因素.由于滑模變結(jié)構(gòu)控制具有對外部參數(shù)變化不敏感、抗干擾性高、外部動態(tài)響應(yīng)迅速的優(yōu)點(diǎn),因此,近年來采用滑模變結(jié)構(gòu)控制克服參數(shù)擾動和不確定性因素的影響受到越來越多的重視.文獻(xiàn)[1]研究了一類不確定性非線性擾動算子系統(tǒng)的滑模控制器的觀測器,系統(tǒng)魯棒性較好.文獻(xiàn)[2]在頻域內(nèi)對于不同滑模觀測器的參數(shù)精度和寬度進(jìn)行了分析,并根據(jù)給定的電樞電流估計了直流電機(jī)的速度.文獻(xiàn)[3]將滑??刂萍夹g(shù)應(yīng)用在混合動力汽車的無傳感器矢量控制系統(tǒng)中,結(jié)果顯示在較寬的速度范圍內(nèi),感應(yīng)電機(jī)均具有快速精確的轉(zhuǎn)矩軌跡.文獻(xiàn)[4-5]研究了二階滑??刂破?,用于消弱傳統(tǒng)滑??刂破鞯亩秳訂栴}.文獻(xiàn)[6]設(shè)計了自適應(yīng)的二階滑模觀測器,用來估計速度、轉(zhuǎn)子磁鏈、負(fù)載轉(zhuǎn)矩和轉(zhuǎn)子時間常數(shù).文獻(xiàn)[7]結(jié)合非奇異終端滑模與高階滑模的優(yōu)點(diǎn),提出一種基于高階終端滑模的感應(yīng)電機(jī)轉(zhuǎn)子磁鏈觀測方法.文獻(xiàn)[8]研究基于龍伯格-滑模觀測器的感應(yīng)電機(jī)時變參數(shù)自適應(yīng)辨識新算法.文獻(xiàn)[9]設(shè)計了滑模速度控制器,采用模糊控制方法,設(shè)計了模糊切換函數(shù),形成連續(xù)控制形式,代替?zhèn)鹘y(tǒng)的滑模符號切換函數(shù),從而將其抖動降到最低點(diǎn).為了克服滑??刂浦械淖畲髥栴}——滑模面附近的抖動,許多學(xué)者研究了高階滑模.然而在高階滑模中,為了獲得高性能和高效率的控制方案,電機(jī)的定子磁鏈?zhǔn)顷P(guān)鍵因素,這樣就必然要求精確系統(tǒng)參數(shù)或者用估計器來估計系統(tǒng)參數(shù),因此高階滑??刂剖抢幂^大的計算量來換取減弱抖動的優(yōu)點(diǎn).文獻(xiàn)[10-11]指出,之所以普通的滑模控制系統(tǒng)具有魯棒性好的優(yōu)點(diǎn),均是基于已知干擾信號邊界的前提,因?yàn)橹挥兄懒烁蓴_信號的邊界才能計算滑模控制中的開關(guān)增益.但是,由于實(shí)際感應(yīng)電機(jī)系統(tǒng)的復(fù)雜性,干擾系統(tǒng)的邊界并不能簡單的獲得.也就是說滑模變結(jié)構(gòu)控制方法只是在滑模面上才對系統(tǒng)的不確定性和擾動具有較大的不敏感,在滑模面以外的到達(dá)過程中仍然要受到不確定性的影響.為了克服這一缺點(diǎn),目前感應(yīng)電機(jī)控制系統(tǒng)中的一般做法有兩種:一是采用高增益控制來加速到達(dá)速度,使到達(dá)過程縮短,但是這又可能加大滑模抖動和激發(fā)高頻不穩(wěn)定動態(tài);二是通過高階滑模來減弱抖動,但是這也同樣需要付出更大的計算量.針對一般滑模變結(jié)構(gòu)控制中為消除抖動而計算量大的問題,本文研究了一種自適應(yīng)滑模增益的變結(jié)構(gòu)電流控制器,不需要計算干擾系統(tǒng)的邊界,當(dāng)系統(tǒng)參數(shù)和負(fù)載轉(zhuǎn)矩變動時,滑模增益在線自動調(diào)整,使得電機(jī)調(diào)速準(zhǔn)確、快速,并且計算量小.
根據(jù)測量的靜止參考坐標(biāo)系中的定子電壓和電流,可以方便地得到轉(zhuǎn)子速度的估計模型.根據(jù)靜止參考坐標(biāo)系中的轉(zhuǎn)子磁鏈方程,可以得到[12]:
轉(zhuǎn)子磁通矢量相對于α軸的角度記為θ.
在利用(6)式估計轉(zhuǎn)子速度時,需要用到轉(zhuǎn)子磁鏈.轉(zhuǎn)子磁鏈可以根據(jù)兩相靜止參考坐標(biāo)系中的電壓方程得到[12]:
在兩相靜止坐標(biāo)系中,上述模型中所用的參數(shù)分別為:ψαr、ψβr為轉(zhuǎn)子磁鏈;uαs、uβs為定子電壓;iαs、iβs為定子電流;Rs、Rr分別為定子和轉(zhuǎn)子電阻;Ls、Lr、Lm分別為定子電感、轉(zhuǎn)子電感和互感為轉(zhuǎn)子時間常數(shù)為漏磁系數(shù);ωr為轉(zhuǎn)子電角速度;
在按轉(zhuǎn)子磁鏈定向的矢量控制系統(tǒng)中,由于規(guī)定d軸與轉(zhuǎn)子的磁鏈重合,且d軸與q軸相互正交,所以:
所以感應(yīng)電機(jī)的電磁轉(zhuǎn)矩方程、磁鏈方程和機(jī)械運(yùn)動方程可簡化[13]為:
顯然(18)式中的第1項(xiàng)是誤差調(diào)整信號;第2項(xiàng)是控制信號;第3項(xiàng)包含了所有的擾動信號.
定義一個帶有積分單元的滑模面:
采用具有自調(diào)整增益的指數(shù)趨近率u(t)
將(20)式代入(16)式,則可以得到自適應(yīng)滑模變結(jié)構(gòu)電流控制器的控制模型.
根據(jù)李亞普諾夫穩(wěn)定定理,定義Lyapunov函數(shù)為:
由式(25)可以證明,V˙(t)<0,因此上述滑模變結(jié)構(gòu)電流控制器是穩(wěn)定的.
根據(jù)(19)式、(21)式和(23)式構(gòu)建滑模變結(jié)構(gòu)電流控制器,根據(jù)(6)式和(4)式構(gòu)建速度估計器,根據(jù)(15)式計算定子電流,自適應(yīng)滑模變結(jié)構(gòu)的控制模型如圖1所示,電機(jī)參數(shù)如表1所示.仿真模型中給定轉(zhuǎn)速為:0~1 s 250 r/min,1~2.5 s 150 r/min,2.5~3 s 100 r/min.負(fù)載轉(zhuǎn)矩在2.0 s時發(fā)生突變.
圖1 自適應(yīng)滑模變結(jié)構(gòu)的控制模型圖Fig.1 System diagram of adaptive sliding mode control
轉(zhuǎn)速、滑模復(fù)量、自適應(yīng)增益、電磁轉(zhuǎn)矩隨時間變化的軌跡如圖2—圖5所示.
由圖2可以看出,滑模變結(jié)構(gòu)算法調(diào)速性能快速、精確,魯棒性好.由圖3可以看出,在初始時刻,電機(jī)速度為零,因此滑模變量沒有到達(dá)滑模面;當(dāng)速度調(diào)整后,處于恒速區(qū)時,滑模變量也已經(jīng)到達(dá)滑模面上;在t=1 s和t=2.5 s時,滑模變量遠(yuǎn)離滑模面,處于系統(tǒng)調(diào)速狀態(tài).由圖4可以看出,在系統(tǒng)開始和t= 1.0 s、t=2.5 s時刻,由于系統(tǒng)中的轉(zhuǎn)速發(fā)生改變,所以為了迅速調(diào)整電機(jī)轉(zhuǎn)速,調(diào)整增益隨著擾動自動調(diào)整,進(jìn)而使得滑模變量可以迅速到達(dá)滑模面.由圖5可知,在初始的加速區(qū)域,為了使電機(jī)獲得較大的速度,電機(jī)轉(zhuǎn)矩有一個非常高的初始值.在恒速區(qū)域時,電機(jī)轉(zhuǎn)矩下降;在t=1.0 s和t=2.5 s時,為了減小轉(zhuǎn)子速度,電機(jī)轉(zhuǎn)矩再次增加;在t=2.0 s時,為了補(bǔ)償負(fù)載轉(zhuǎn)矩的增加,電機(jī)轉(zhuǎn)矩增加.
表1 電機(jī)參數(shù)Tab.1Motor parameters
圖2 轉(zhuǎn)速隨時間變化軌跡Fig.2 Trajectory of speed changing with time
圖3 滑模變量軌跡Fig.3 Trajectory of sliding model variable
圖4 自適應(yīng)增益隨時間變化軌跡Fig.4 Trajectory of adaptive gain changing with time
圖5 電磁轉(zhuǎn)矩隨時間變化軌跡Fig.5 Trajectory of electromagnetic torque changing with time
本文研究了一種基于自適應(yīng)滑模增益的感應(yīng)電機(jī)控制方案.通過自適應(yīng)的算法計算滑模增益,避免了計算擾動信號的界限,計算量小.利用李亞普諾夫穩(wěn)定定理證明系統(tǒng)的穩(wěn)定性,通過Matlab Simulink仿真顯示了上述控制方案在外界擾動下能夠自動調(diào)節(jié)滑模增益系數(shù),快速精確的實(shí)現(xiàn)電機(jī)調(diào)速,抗干擾性好,魯棒性強(qiáng).
[1]YANG H,XIA Y,SHI P.Observer-based sliding mode control for a class of discrete systems via delta operator approach [J].Journal of the Franklin Institute,2010,347:1199-1213.
[2]BOIKO I.Frequency domain precision analysis and design of sliding mode observers[J].Journal of the Franklin Institute,2010,347:899-909.
[3]PROCA A B,KEYHANI A,MILLER J M.Sensorless slidingmode control of induction motors using operating condition dependent models[J].IEEE Transactions on Energy Conversion,2003(18):205-212.
[4]BARTOLINI G,PISANO A,PUNTA E,et al.A survey of applications of second-order sliding mode control to mechanical systems[J].International Journal of Control,2003(76):875-892.
[5]RASHED M,GOH K B,DUNNIGAN M W,et al.Sensorless second-order sliding-mode speed control of a voltage-fed in-duction-motor drive using nonlinear state feedback[J].IEE Proceedings Electric Power Applications,2005(152):1127-1136.
[6]AURORA C,F(xiàn)ERRARA A.A sliding mode observer for sensorless induction motor speed regulation[J].International Journal of Systems Science,2007(38):913-929.
[7]史宏宇,馮勇.感應(yīng)電機(jī)高階終端滑模磁鏈觀測器的研究[J].自動化學(xué)報,2012,38(2):288-294
[8]劉艷,齊曉燕.感應(yīng)電機(jī)龍伯格—滑模觀測器參數(shù)辨識方法[J].電機(jī)與控制學(xué)報,2011,15(8):93-100.
[9]沈艷霞,丁輝,紀(jì)志成.感應(yīng)電機(jī)模糊滑??刂破鞯男滦驮O(shè)計方法[J].電機(jī)與控制學(xué)報,2008,12(3):271-276.
[10]XIA Y,ZHU Z,LI C,et al.Robust adaptive sliding mode control for uncertain discrete-time systems with time delay[J]. Journal of the Franklin Institute,2010,47(1):339-357.
[11]PAI M C.Design of adaptive sliding mode controller for robust tracking and model following[J].Journal of the Franklin Institute,2010,347:1838-1849.
[12]謝仕宏,朱曉聰,孟彥京.靜止坐標(biāo)系下交流電機(jī)數(shù)學(xué)模型分析[J].陜西科技大學(xué)學(xué)報,2005,23(1):53-56.
[13]阮毅,陳伯時.電力拖動自動控制系統(tǒng)-運(yùn)動控制系統(tǒng)[M].北京:機(jī)械工業(yè)出版社,2010:179-189.
[14]高為炳.變結(jié)構(gòu)控制的理論及設(shè)計方法[M].北京:科學(xué)出版社,1996:27-30.
Design of adaptive sliding mode gain controller of induction motor
CUI Chun-yan1,2,LI Kui1,LI Bing2,F(xiàn)U Chao1,GUO Jia1
(1.Province-Ministry Joint Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability,Hebei University of Technology,Tianjin 300130,China;2.School of Information and Electric Engineering,Hebei University of Engineering,Handan 056038,China)
Aiming at the problem of the limit value of various disturbance signals not only being difficult to obtain but also needing a large amount of calculation in the traditional sliding mode control system,a novel adaptive sliding mode gain vector control technology of induction motor is proposed,in order to control the speed of induction motor accurately and fast.This method does not require a large amount of calculation and weakens the dependence for the various disturbance signals boundary.The system realizes the automatic adjustment of the gain coefficient of sliding mode according to the motor parameters and load torque disturbance.By using Lyapunov stability theorem,the control system stability is proved.The simulation results of Matlab Simulink show that variable structure control method about adaptive sliding mode gain according motor parameters and load torque uncertainties has good speed performance,small amount of calculation and good robustness.
induction motor;adaptive sliding mode gain;vector control;sliding mode variable structure
TM346.2
A
1671-024X(2013)06-0055-04
2013-06-24
國家自然科學(xué)基金資助項(xiàng)目(11272112);河北省科技支撐計劃項(xiàng)目(12213912D)
崔春艷(1976—),女,博士研究生,講師.
李奎(1965—),男,教授,博士生導(dǎo)師.E-mail:likui@hebut.edu.cn