趙振東,李嘉誠,馮玉紅,孟曉靜,金彪
(海南大學(xué)材料與化工學(xué)院,???570228)
超高效液相色譜-串聯(lián)質(zhì)譜法鑒別十字花科植物中硫代葡萄糖苷*
趙振東,李嘉誠,馮玉紅,孟曉靜,金彪
(海南大學(xué)材料與化工學(xué)院,???570228)
建立超高效液相色譜-串聯(lián)質(zhì)譜法鑒別十字花科植物中硫代葡萄糖苷的分析方法。采用70%甲醇水溶液提取白芥種子中的硫代葡萄糖苷,通過反相C18柱分離,電噴霧-離子阱-飛行時間質(zhì)譜測定。利用硫代葡萄糖苷二級質(zhì)譜裂解產(chǎn)生的m/z 195,241,259,275,291特征離子和伴隨產(chǎn)生的80,162,163,196,242 Da中性分子丟失規(guī)律,共鑒別出5種硫代葡萄糖苷。
硫代葡萄糖苷;十字花科;液相色譜;質(zhì)譜
硫代葡萄糖苷(簡稱硫苷)是廣泛存在于十字花科植物中的含硫次級代謝產(chǎn)物,主要分布于植物的根、莖和葉中。當(dāng)植物細(xì)胞受到破壞(如擠壓、蟲咬等)后,硫苷與植物內(nèi)生的黑芥子酶接觸,降解產(chǎn)生異硫氰酸酯、惡唑烷酮和硫氰酸酯等化合物[1],其中異硫氰酸酯具有良好的生物活性,而且對人畜無害。因此硫苷及其降解產(chǎn)物的研究引起了科學(xué)工作者的濃厚興趣。根據(jù)側(cè)鏈R基團的不同,目前已發(fā)現(xiàn)約120種硫苷,其中有多種具有抗癌、抗腫瘤、殺菌和殺蟲活性的異硫氰酸酯,如吳華等[2]比較幾種異硫氰酸酯的殺線蟲活性,發(fā)現(xiàn)烯丙基和丙烯?;惲蚯杷狨ゾ哂辛己玫臍⒕€蟲活性。大量研究表明甲硫基己基異硫氰酸酯等具有良好的抗腫瘤活性,是非常具有潛力的抗癌藥物[3-6]。
硫苷的檢測方法主要是傳統(tǒng)的化學(xué)方法和現(xiàn)代的儀器分析手段。化學(xué)方法耗時、誤差大、操作繁瑣,只能測定硫苷總量。液相色譜法具有很高的分離效率,但對于硫苷單體鑒別需要對照品,無法滿足快速鑒別硫苷的需要。筆者采用超高效液相色譜-離子阱-飛行時間質(zhì)譜聯(lián)用技術(shù),既能高效分離硫苷,又能準(zhǔn)確、快速鑒別硫苷。對于硫苷及降解產(chǎn)物的研究具有重要意義,同時又能夠提高工作效率。
1.1 主要儀器與試劑
超高效液相色譜-離子阱-飛行時間質(zhì)譜儀:LCMS-IT-TOF型,日本島津公司;
數(shù)顯恒溫水浴鍋:HH-6型,常州澳華儀器有限公司;
真空干燥箱:VD23型,德國BINDER公司;電子天平:AUY220型,日本島津公司;
超聲波清洗器:KS-120EI型,寧波海曙科生超聲設(shè)備有限公司;
旋轉(zhuǎn)蒸發(fā)儀:R-216型,瑞士BUCHI公司;臺式高速離心機:H-1650型,長沙湘儀離心機儀器有限公司;
研磨機:A11基本型,德國IKA公司;
白芥種子:產(chǎn)地為湖北武漢;
正己烷、氯仿、乙酸銨、甲酸:分析純,廣州化學(xué)試劑廠;
甲醇:色譜純,美國Fisher公司;
實驗用水為美國Pall公司Purelab Ultra超純水系統(tǒng)制備的超純水,電阻率為18.2 MΩ·cm。
1.2 硫代葡萄糖苷提取[7-8]
白芥種子在105℃干燥3 h,以滅活黑芥子酶保護(hù)硫苷。干燥種子經(jīng)粉碎后,過420 μm篩。稱取粗粉約50 g于錐形瓶中,依次用正己烷50 mL,氯仿50 mL 各3次除脂。殘渣經(jīng)真空干燥,用300 mL沸騰的70%甲醇水溶液浸泡,超聲提取30 min,連續(xù)2次,合并提取液,靜置至室溫。提取液經(jīng)離心分離,將清液真空下濃縮至原體積的20%。取1 mL濃縮液經(jīng)石墨化碳脫色,濾液供超高效液相色譜-串聯(lián)質(zhì)譜分析。
1.3 流動相配制
用電子天平準(zhǔn)確稱量乙酸銨0.385 g,置于1 L量瓶中,加入1 mL甲酸,用水溶解定容后,經(jīng)0.22 μm微膜過濾,超聲波脫氣后使用。
1.4 液質(zhì)聯(lián)用分析條件
(1)UPLC條件
ODS C18柱(100 mm×2.1 mm,3.5 μm,日本島津公司);柱溫:30℃;流動相A:5 mmol/L乙酸銨-1‰甲酸溶液;流動相B:甲醇;流動相流速:0.2 mL/min;進(jìn)樣體積:20 μL;梯度洗脫:0~3 min,98% A;3~25 min,98%~20% A;25~30 min,20%~20 % A;30~35 min,20%~98% A。
(2)MS條件
ESI負(fù)離子模式;電壓:-3.5 kV;霧化氣:N2,流量為1.5 L/min;干燥氣壓力:100 kPa;碰撞氣:Ar;檢測器電壓:1.7 kV;Heat Block溫度:200℃;CDL溫度:200℃;一級質(zhì)譜掃描范圍:m/z 300~700;母離子掃描范圍:m/z 315~650;二級質(zhì)譜掃描范圍:m/z 50~700;離子累積時間:10 ms;CID碰撞能量:100%;碰撞氣能量:100%。
2.1 分析條件選擇
硫苷在水溶液中是親水性陰離子化合物,在反相色譜柱中,保留時間短。優(yōu)化實驗發(fā)現(xiàn),在ODS-C18柱上采用流動相A(5 mmol/L的乙酸銨+0.1%甲酸)和流動相B(甲醇)能夠很好分離,并且有很好的質(zhì)譜響應(yīng)。質(zhì)譜Heat Block和CDL溫度采用200℃,溫度過高會造成硫苷裂解,過低則影響離子化和脫溶劑化效果。為獲得比較豐富的二級離子碎片信息,CID碰撞能量和碰撞氣能量均采用100%。
2.2 分析結(jié)果
按照1.4分析條件檢測白芥種子提取液,獲取硫苷提取離子流色譜圖及其一、二級質(zhì)譜圖(見圖1~圖11)。根據(jù)裂解機理,并參考文獻(xiàn)[9-12],共鑒定出5種硫苷,結(jié)果見表1。
圖1 白芥種子中硫代葡萄糖苷的提取離子流色譜圖
圖2 progoitrin一級質(zhì)譜圖(MS1)
圖3 progoitrin二級質(zhì)譜圖(MS2)
圖4 Sinigrin一級質(zhì)譜圖(MS1)
圖5 Sinigrin二級質(zhì)譜圖(MS2)
圖6 Gluconapin一級質(zhì)譜圖(MS1)
圖7 Gluconapin二級質(zhì)譜圖(MS2)
圖8 Glucobrassicanapin一級質(zhì)譜圖(MS1)
圖9 Glucobrassicanapin二級質(zhì)譜圖(MS2)
圖10 Gluconasturtiin一級質(zhì)譜圖(MS1)
圖11 Gluconasturtiin二級質(zhì)譜圖(MS2)
2.3 質(zhì)譜碎片離子裂解機理
二級質(zhì)譜特征離子,對于鑒別硫苷具有重要意義。在MS2中,母離子先后失去SO3(80 Da)和C6H10O5(162 Da)后產(chǎn)生242 Da中性分子丟失,氫重排后出現(xiàn)相對應(yīng)的R—C(SH)=N—O—離子。另一裂解途徑是硫苷上的氫發(fā)生重排后,失去C6H11O5(163 Da)和C6H12O5S(196 Da)中性碎片。與此同時,二級質(zhì)譜中還能觀察到m/z 195,241,259,275,291的特征離子,這些離子是由于硫與相鄰碳原子發(fā)生斷裂,并伴有氫重排形成的。
硫代葡萄糖苷負(fù)離子模式下主要特征二級碎片離子裂解機理見圖12[13-14]。
利用液相色譜-串聯(lián)質(zhì)譜技術(shù)快速、高效、準(zhǔn)確的分離與鑒定十字花科植物中硫代葡萄糖苷,對硫代葡萄糖苷二級質(zhì)譜80,162,163,196,242 Da中性分子丟失和m/z 195,241,259,275,291特征離子裂解機理進(jìn)行了闡述和總結(jié),能夠準(zhǔn)確推測硫代葡萄糖苷化學(xué)結(jié)構(gòu),對于十字花科植物的開發(fā)與利用具有重要意義。
[1]Luca Lazzeri,Giovanna Curto,Onofrio Leoni,et al. Effects of glucosinolates and their enzymatic hydrolysis products via myrosinase on the root-knot nematode meloidogyne incognita (kofoid et white)chitw[J]. J Agric Food Chem,2004,52: 6 703-6 707.
表1 白芥種子中硫苷主要二級質(zhì)譜離子表
圖12 硫代葡萄糖苷質(zhì)譜裂解規(guī)律示意圖
[2]Hua Wu,Chao-Jun Wang,Xiao-Wei Bian,et al. Nematicidal efficacy of isothiocyanates against root-knot nematode eloidogyne javanica in cucumber[J]. Crop Protection,2011,30: 33-37.
[3]Adarsh Pal Vig,Geetanjali Rampal,Tarunpreet Singh Thind,et al. Bio-protective effects of glucosinolates-a review[J]. Food Science and Technology,2009,42: 1 561-1 572.
[4]Al-Gendy A A,El-gindi O D,Hafez Al S,et al. Glucosinolates,volatile constituents and biological activities of Erysimum corinthium boiss.(brassicaceae)[J]. Food Chemistry,2010,118: 519-524.
[5]Steven F Vaughn,Debra E Palmquist,Sandra M Duval,et al. Herbicidal activity of glucosinolate-containing seedmeals[J]. Weed Science,2006,54: 743-748.
[6]Luisa M Manici,Luca Lazzeri,Sandro Palmieri. In vitro fungitoxic activity of some glucosinolates and their enzyme-derived products toward plant pathogenic fungi[J]. J Agric Food Chem,1997,45: 2 768-2 773.
[7]Steven F Vaughn,Mark A Berhow. Glucosinolate hydrolysis products from various plant sources pH effects,isolation,and purification[J]. Industrial Crops and Products,2005,21: 193-202.
[8]Lijiang Song,Renato Iori,Paul J Thornalley. Purification of major glucosinolates from Brassicaceae seeds and preparation of isothiocyanate and amine metabolites[J]. J Sci Food Agric,2006,86: 1 271-1 280.
[9]Kim-Chung Lee,Wan Chan,Zhitao Liang,et al. Rapid screening method for intact glucosinolates in Chinese medicinal herbs by using liquid chromatography coupled with electrospray ionization ion trap mass spectrometry in negative ion mode[J]. Rapid Commun Mass Spectrom,2008,22: 2 825-2 834.
[10]Nicolas Fabre,Véréna Poinsot,Laurent Debrauwer,et al. Characterisation of glucosinolates using electrospray ion trap and electrospray quadrupole time-of-flight mass spectrometry[J]. Phytochem Anal,2007,18: 306-319.
[11]Simone J Rochfort,V Craige Trenerry,Michael Imsic,et al. Class targeted metabolomics: ESI ion trap screening methods for glucosinolates based on MSnfragmentation[J]. Phytochemistry,2008,69: 1 671-1 679.
[12]Jason B Bialecki,Josef Ruzicka,Carl S Weisbecker,et al. Collision-induced dissociation mass spectra of glucosinolate anions[J]. J Mass Spectrom,2010,45: 272-283.
[13]Filomena Lelario,Giuliana Bianco,Sabino A Bufo,et al. Establishing the occurrence of major and minor glucosinolates in Brassicaceae by LC-ESI-hybrid linear ion-trap and Fouriertransform ion cyclotron resonance mass[J]. Phytochemistry,2012,73(1): 74-83.
[14]Tommaso R I Cataldi,Alessandra Rubino,F(xiàn)ilomena Lelario,et al. Naturally occurring glucosinolates in plant extracts of rocket salad (Eruca sativa L.) identified by liquid chromatography coupled with negative ion electrospray ionization and quadrupole ion-trap mass spectrometry[J]. Rapid Commun Mass Spectrom,2007,21: 2 374-2 388.
Separation and Identification of Glucosinolates in the Cruciferae Crops by UPLC-MS/MS
Zhao Zhendong,Li Jiacheng,F(xiàn)eng Yuhong,Meng Xiaojing,Jin Biao
(Materials and Chemical Engineering of Hainan University,Haikou 570228, China)
A method for precise identification of glucosinolates in the Cruciferae Crops by UPLC-MS/MS was established. The glucosinolates were extracted with methanol-water (volume ratio 70∶30),while the separation and qualitative determination of the individual glucosinolates was achieved using RP-UPLC-ESI-IT-TOF. The glucosinolates was confirmed with the use of product ions at m/z 195,241,259,275,291 in MS2. Further identification of the five glucosinolates was based on the detection of compounds with a constant neutral loss of 80, 162, 163, 196, 242 Da in collision-induced dissociation.
glucosinolate; cruciferae; liquid chromatography; mass spectrometry
O657.63
A
1008-6145(2013)02-0012-04
10.3969/j.issn.1008-6145.2013.02.003
*“十二五”科技支撐計劃(2011BAE06B06-7,2011BAE06B04-7);海南大學(xué)青年基金項目(qnjj1220)
聯(lián)系人:馮玉紅;E-mail: ljcfyh@263.net
2012-12-12