6 邊坡加固方法研究
圖6-1 土釘支護結構極限分析示意圖
設土釘支護采取等傾角、等間距支護方式,土釘傾角為α,水平間距和垂直間距分別為Sh和Sv。設第i層土釘釘頭距地面距離為Si,與坡面交點為D,與對數(shù)螺旋線滑裂面(潛在的)交點為Ei,如圖6-1所示。Ei點在直角坐標系的坐標為(xEi,yEi),在極坐標系中對應的極角為θEi;D點在直角坐標系的坐標為(xD,yD),在極坐標系中對應的極角為θD。由圖6-1中的幾何關系(秦四清,等,1999),可得
由式(6-4)可得
因為Ei點在對數(shù)螺旋線上,因此Ei點的坐標也滿足如下的關系:
將式(6-6)代入式(6-5)中,整理后得
Ei點處的塑性應變速度vEi為
第i層土釘?shù)耐饬β蕿?/p>
式中:θEi為第i層土釘與對數(shù)螺旋線交點Ei的極角,Sh為土釘水平間距,pRi為第i層土釘抗拔力。設第i層土釘總長度為li,DE長度為lai(滑動體內部的長度),則第i層土釘在穩(wěn)定區(qū)內的長度為lbi=li-lai。因為,應變速度vEi(Ei點處)沿土釘分量的矢量方向與抗拔力pRi的方向相反,因此,土釘抗拔力沿應變速度場做負功。所有土釘外力功率和為
令
則有
根據(jù)極限分析上限定理,將式(6-10)~式(6-14)代入到虛功率方程中,得
整理為
式(6-16)即為土釘支護結構的極限分析上限法虛功率方程,可以通過Powell 所建議的數(shù)學規(guī)劃方法(Powell,1964)確定參數(shù)θ0/θh的臨界值,所對應的強度折減系數(shù)即為土釘支護后最危險滑裂面的穩(wěn)定系數(shù)或安全系數(shù)(梁仕華,等,2005;Juran,等,1990;John,1990)。
圖6-2 抗滑樁加固邊坡穩(wěn)定性問題
當采用抗滑樁增加邊坡穩(wěn)定性時,如圖6-2所示,可以假定一個側向力F和力矩M作用于潛在對數(shù)螺旋線滑面以上的抗滑樁上。在這種假定條件下,抗滑樁作用于滑體的外力功率計算公式為
式中:tanφ'=tanφ/K,K為邊坡的設計安全系數(shù);θF為抗滑樁與滑裂面的交點所確定的位置(極角),F(xiàn)為抗滑樁提供的單位寬度土體阻滑力;M為滑裂面以上阻滑力F產(chǎn)生的力矩,其計算公式為
式中:h是滑裂面以上抗滑樁的長度;m是抗滑樁側向有效阻滑力合力作用點和樁頂之間的距離與滑裂面以上的抗滑樁長度h之比,是一個經(jīng)驗系數(shù),一般小于1。M的取值取決于樁側阻滑力的分布模式,對于抗力線性分布情況,m=1/3;對于均勻分布情況,m=1/2;若m=0,則相當于僅考慮抗滑樁與滑裂面的剪力效應?;衙嬉陨系目够瑯堕L度h可以用以下的公式表達(Αusilio,等,2001;年廷凱,等,2004,2005):
式中:
令
則有
根據(jù)極限分析上限定理,將式(6-17)代入到虛功率方程中,得
進一步可以整理為阻滑力F的函數(shù)關系:
式(6-26)即為設計安全系數(shù)條件下,單排抗滑樁所需要提供的單位寬度土體的阻滑力。多排抗滑樁的情況,阻滑力可以通過疊加的原理求解。為了獲得作用于抗滑樁適合的阻滑力,相鄰抗滑樁的“土拱效應”應被考慮。
當土坡布置抗滑樁后,穩(wěn)定系數(shù)和潛在破壞機構都會發(fā)生相應的變化,因此,會出現(xiàn)更多的臨界滑動面的情況。最危險的滑動面位置,對應給定設計安全系數(shù)條件下,抗滑樁發(fā)揮阻滑作用最大情況,即F值最大。從計算的角度出發(fā),最危險滑動面的位置可以通過函數(shù)F=F(θ0, θh, θF, β')的極值條件得到。當然,前提條件是抗滑樁的位置要預先給定。極值條件及臨界狀態(tài)條件的方程為
式中:xF表示抗滑樁的位置,為抗滑樁與坡腳的水平距離。式(6-27)中未知量包括θ0,θh,β' 和θF。角θ0,θh和β' 指出了潛在極限狀態(tài)滑裂面的位置,將這三個量值代入到式(6-26)中,可以計算得到阻滑力F的最大值。
對第4章第4.4小節(jié)典型算例進行加抗滑樁后的穩(wěn)定性分析計算。當沒有抗滑樁時,穩(wěn)定系數(shù)K=1.11,需要布置抗滑樁提高邊坡的整體穩(wěn)定性??紤]在xF=13.7m處設置抗滑樁,加固后設計安全系數(shù)K=1.50。假定樁側阻滑力按照三角形分布,即取m=1/3,則按照上述方法所確定的樁側極限有效滑坡推力為517.5 kN·m-1。通過公式(6-19)計算得到滑裂面以上抗滑樁長度為12.7m,因此,抗滑樁的全長可以取為Lp≈2h=25m。如圖6-3所示,采用抗滑樁加固邊坡后,潛在滑裂面深度增大,并且剪出口超出坡腳一定的范圍。
圖6-3 無抗滑樁和有抗滑樁兩種情況下的土坡極限滑裂面(Ausilio,等,2001)
圖6-4 加筋土質邊坡剛體旋轉破壞機制
對于加筋土質邊坡(見圖6-4),土工格柵所產(chǎn)生的外力功率計算是重點。假定土工格柵在加筋土工結構中只承受拉力,并且土工格柵具有足夠的長度,那么筋材只能產(chǎn)生拉伸變形與拉破裂。如圖6-5所示,速度間斷面單位面積上筋材的能量耗散率為(王釗,等,2005;喬麗平,等,2006;肖成志,等,2005;崔新壯,等,2007)
式中:T為筋材拉伸強度(kN·m-1);s為筋材層間距(m);n為加筋層數(shù)。
圖6-5 速度不連續(xù)面上的筋材破壞
筋材沿著整個對數(shù)螺旋線滑裂面的外力功率可以通過單位面積上的能量耗散率公式(6-28)積分計算得到:
筋材拉力沿應變速度場做負功,所以總的筋材能量耗散率為負值??紤]到dl=rdθ/cosφ,ψ=π/2-θ+φ,式(6-30)經(jīng)積分求和得到:
式(6-31)代入到虛功率方程中,消除掉角速度項,得
整理后,得到加筋土坡的臨界高度計算公式為
式中:φ'=arctan(tanφ/K),Α=sinθhexp[(θh-θ0)tanφ']-sinθ0。特別注意,Α,f1,f2,f3和f4的表達式中隱含有φ'。
假定加筋土坡處于極限平衡狀態(tài)即K=1時,由式(6-33)可確定土坡的臨界自穩(wěn)高度Hmin=Hcr。當給定坡高時,強度折減系數(shù)K是兩個待定變量θ0、θh的非線性隱式函數(shù),可以利用式(6-33)的極值條件確定強度折減系數(shù)的臨界值(整體穩(wěn)定系數(shù))及其相應的臨界破壞機構。極值條件及臨界狀態(tài)條件的方程為:
采用迭代的方法,逐步折減土的強度參數(shù)(c與φ)直至獲得的極限坡高等于加筋土坡的實際高度,則此時的強度折減系數(shù)K為加筋邊坡的穩(wěn)定系數(shù)解,與之相應的參數(shù)θ0、θh確定加筋土坡的臨界失穩(wěn)機構。
文獻(Porbaha,等,1996,2000)給出了加筋土坡臨界高度極限分析上限解和模型試驗的對比結果。已知填土容重γ=17.85 kN·m-3,有關參數(shù)和結果見表6-1。對比分析顯示,由式(6-33)計算得到的臨界高度要比試驗實測值小約10%~15%,可能有如下幾個方面原因:① 理論計算中只考慮了筋材的拉力破壞,而筋材拉力破壞的發(fā)生到模型土坡的完全破壞還有一個漸進的過程,理論計算中忽略了這一漸進過程的能量損耗;② 計算中T采用的由筋材的寬條試驗得到的拉伸強度,其作用并未完全發(fā)揮出來,有關T的取值,有待進一步研究;③ 離心試驗中,箱壁不可能絕對光滑,箱壁與模型間的摩擦力使得試驗結果本身就有一定誤差。
表6-1 加筋土坡臨界高度理論計算與試驗對比(Porbaha,等,2000)
經(jīng)典的庫侖與朗肯土壓力理論概念明確、計算簡單,一直在工程中得到廣泛的應用。但是朗肯土壓力理論要求擋土墻墻背直立、光滑、墻后填土水平并延伸至無窮遠,且不考慮墻背與填土之間的摩擦作用。而庫侖土壓力理論假設墻背填土為無黏性土,要求滑裂面為平面。這些假設和要求都限制了其應用范圍,并影響了其計算結果的準確性(尹宏磊,等,2006)。
基于塑性力學上限定理的極限分析方法,在主動土壓力計算方面也具有一定的代表性。這種方法具有堅實的理論基礎,利用經(jīng)典塑性力學的上限定理從上限方向逼近真實解。在許多簡單的問題中,其計算結果都與工程中廣泛采用的極限平衡法得到的結果相同(陳惠發(fā),1975;Yang,2007)。
傳統(tǒng)的主動土壓力計算,假定滑裂面為平面或組合滑面,但多數(shù)擋土墻支護的土質邊坡破壞實例顯示,破壞面多為近光滑曲面。因此,本節(jié)在推導主動土壓力的極限分析上限解公式時,仍選擇滑裂面為對數(shù)螺旋線。
作用在滑動土體上的外力有滑動土體的重力W和擋土墻對滑動土體的反力——主動土壓力Pa。主動土壓力Pa的作用線與擋土墻墻面的法線成δ角,作用方向指向填土,作用點在墻背高度的2/3處(C點)。主動土壓力Pa可分解為兩部分,即水平分量Pacos(α+δ)和鉛直分量Pasin(α+δ)。如圖6-6所示,B點坐標為(rhcosθh,rhsinθh),Α點坐標為(r0cosθ0-L,r0sinθ0),因此,C點坐標為
圖6-6 主動土壓力計算的極限分析上限法
擋土墻主動土壓力Pa的水平分量Pacos(α+δ)與應變速率v的水平分量方向相反,因此這部分外力功率為負值,計算公式為
擋土墻主動土壓力Pa的鉛直分量Pasin(α+δ)與應變速率v的鉛直分量方向相反,因此這部分外力功率也為負值,計算公式為
擋土墻主動土壓力Pa產(chǎn)生的總外力功率為
式中:
以下將f5(θh,θ0)簡記為f5。根據(jù)極限分析上限定理,將式(6-38)代入到虛功率方程中,消除掉角速度ω項得
整理后,得到主動土壓力計算公式為:
式中:A,f1,f2,f3,f4和f5中隱含φ'=arctan(tanφ/K)的條件。當fs取值為1.0時,可以通過式(6-41)計算得到主動土壓力的值。最危險的滑動面位置,對應給定設計安全系數(shù)K條件下,擋土墻發(fā)揮抗滑作用最大的情況,即Pa值最大。對應主動土壓力Pa即為設計擋土墻應該提供的反力。極值條件方程為
某擋土墻墻高H=10m,墻面水平,填土為黏性土,γ=18 kN·m-3,φ=30°,c=10 kPa,填土表面水平(喻則紅,等,2006)。測得實際所受主動土壓力Pa值為188.08kN;用經(jīng)典的朗肯主動土壓力公式進行計算,得到的主動土壓力Pa值為195.7kN;如果用極限分析上限法得到的公式(6-41)計算,則得到Pa值為189.4kN。對比分析可以發(fā)現(xiàn),利用極限分析上限法推導出的計算擋土墻主動土壓力公式,其計算結果比朗肯法稍小,但與實測值更為接近。