王玲娟
(宿遷學(xué)院,江蘇宿遷223800)
由于材料老化、環(huán)境加載、疲勞、過載等因素的影響,結(jié)構(gòu)不可避免地產(chǎn)生損壞,所以對結(jié)構(gòu)進行健康監(jiān)測及對其受到的損傷進行評價是非常必要的。裂紋是一種重要的結(jié)構(gòu)損傷形式,因此,對裂紋進行實時監(jiān)測,對保證結(jié)構(gòu)的安全使用具有重要意義。目前,對結(jié)構(gòu)裂紋的無損檢測主要有聲發(fā)射法、振動診斷法、射線診斷法、超聲波診斷法、渦流診斷法、光學(xué)診斷法、漏磁診斷法和紅外診斷法等[1-3]。其中基于結(jié)構(gòu)動力學(xué)的振動診斷法信號非常易于提取,探測器可安裝在人們不易接近的結(jié)構(gòu)部位。
文中建立了裂紋懸臂梁的有限元模型,針對裂紋位置和深度對固有頻率及模態(tài)振型的影響進行了深入研究,并依據(jù)懸臂梁的實測數(shù)據(jù)進行了對比驗證。
為了測量懸臂梁(如圖1所示)自由橫向振動的模態(tài)響應(yīng)[4-5],設(shè)計了如圖2所示的實驗裝置,測量不同深度和不同位置的裂紋懸臂梁的固有頻率。懸臂梁的上方用磁鐵固定了一個壓電式加速度計,通過加速度計振動信號被轉(zhuǎn)換為電信號,然后被放大傳輸?shù)絼恿W(xué)分析儀。信號經(jīng)過分析和處理后可獲得懸臂梁的固有頻率。實驗開始時,給懸臂梁一個快速的擾動來滿足初始自由振動的條件。
圖1 裂紋懸臂梁
圖2 實驗裝置示意圖
某受損懸臂梁的模型如圖1所示,采用大型有限元分析軟件ABAQUS分析不同裂紋深度和不同位置裂紋梁的固有頻率和振型。表1為完整梁和裂紋深度為10 mm、距固定端距離為30 mm的損傷梁的前20階固有頻率。從表中可以看出:損傷梁的固有頻率小于完整梁的固有頻率;較低階的固有頻率下降率大于較高階的下降率。因此可以通過對比結(jié)構(gòu)的固有頻率來監(jiān)測結(jié)構(gòu)的受損情況。
表1 完整梁和損傷梁的前20階固有頻率
圖3為距固定端30 mm、裂紋深10 mm的懸臂梁的第六階振型圖,圖4為完整梁第六階振型圖,圖5為損傷梁第二十階振型圖,圖6為完整梁第二十階振型圖。由圖3和4可知:由于裂紋的影響,懸臂梁的最大振幅由1.049 m 增加到1.107 m,增幅為5.5%。且振動形態(tài)發(fā)生了較大的變化。由圖中各階振型可以直觀地看出懸臂梁上各點的三維振幅的大小,梁上的局部裂紋對整個梁的振型影響不大,但對裂紋附近的局部振動形態(tài)影響較大,尤其是高階時振型發(fā)生突變。由圖5和6可知:損傷梁裂紋左側(cè)節(jié)點振幅為0.962 044 m,而完整梁相同部位節(jié)點振幅為0.271 189 m,兩者相差近2.55倍,所以即使小裂紋也很容易使懸臂梁的局部受到損傷和破壞。這對齒輪的動態(tài)設(shè)計有著重要意義。當裂紋深1.25 mm時,損傷梁的固有頻率為224.56 Hz,僅比完整梁減少0.56%,同時懸臂梁的最大振幅從1.049 m 增加到1.050 m,增幅僅為0.095%,這說明當梁損傷程度較低時,損傷梁的固有頻率、模態(tài)及振型與完整梁非常接近,即從固有頻率和模態(tài)振型的變化無法判斷懸臂梁是否有損傷,更無法判斷損傷的具體位置。隨著裂紋的逐漸加深,懸臂梁的最大振幅逐漸加大,固有頻率逐漸減小,當裂紋深為17.5 mm時,懸臂梁的固有頻率為99.931 Hz,同比減少55.75%,最大振幅為1.161 mm,同比增加10.68%。此時根據(jù)損傷與完整懸臂梁模態(tài)振幅的峰值可明顯地判斷出損傷位置,峰值隨模態(tài)階數(shù)的增大而增大。受損懸臂梁的固有頻率較低,這是因為受損懸臂梁的剛度較小。
圖3 損傷梁第六階振型圖(固定頻率為3 624.0 Hz)
圖4 完整梁第六階振型圖(固定頻率為3 672.9 Hz)
圖6 完整梁第二十階振型圖(固定頻率為21 003 Hz)
圖7為裂紋深度對裂紋梁的固有頻率影響示意圖(一階模態(tài)),圖8為裂紋位置對梁的固有頻率影響示意圖(一階模態(tài))。從圖7可以看出:當裂紋深度很小時,損傷梁的固有頻率和完整梁的固有頻率很接近;隨著裂紋深度的增加,損傷梁的固有頻率開始下降,且下降率急劇增大,這說明裂紋深度增加導(dǎo)致懸臂梁的整體剛度急劇下降,從而導(dǎo)致固有頻率的下降。從圖8可以看出:裂紋位置同樣對懸臂梁的固有頻率影響較大,特別是裂紋位置靠近固定端時,損傷梁的固有頻率下降非常大;當裂紋逐漸遠離固定端時,損傷梁的固有頻率也急劇增大,當距離遠到一定數(shù)值時,損傷梁和裂紋梁的固有頻率非常接近,這時可認為裂紋對梁的整體剛度影響已經(jīng)非常小。這是因為懸臂梁剛度依靠固定端來維持,故裂紋越靠近固定端,梁的剛度下降越顯著,而靠近自由端時,裂紋對梁的剛度影響很小。由實驗數(shù)據(jù)得知,有限元的分析結(jié)果與實驗結(jié)果非常接近。另外還可以觀察到有限元軟件計算結(jié)果及其變化的規(guī)律。有限元軟件的部分計算結(jié)果與實驗結(jié)果的變化規(guī)律有一些不一致,這是由于實驗時的環(huán)境、儀器等因素影響的,但總的變化趨勢相同。這說明了有限元軟件計算結(jié)果的正確性。
圖7 裂紋深度對梁的固有頻率影響示意圖(一階模態(tài))
圖8 裂紋位置對梁的固有頻率影響示意圖(一階模態(tài))
(1)有限元計算出的懸臂梁固有頻率與實驗結(jié)果很接近,說明使用有限元計算出來的結(jié)果可靠性高;具有裂紋的懸臂梁的各階固有頻率均低于無裂紋懸臂梁,且懸臂梁的前三階固有頻率下降率大于較高階固有頻率下降率。
(2)隨著裂紋深度的增大和裂紋距固定端距離的減小,懸臂梁的固有頻率呈現(xiàn)加速下降趨勢。且隨著裂紋深度的增大,固有頻率的減少量急劇增大。
(3)上述故障特征可有效地識別結(jié)構(gòu)裂紋的存在,對建立結(jié)構(gòu)裂紋在線監(jiān)測具有重要的意義。
【1】邵忍平,張延超,黃欣娜,等.彈性支撐條件下裂紋齒輪體有限元模擬與仿真[J].航空動力學(xué)報,2007,22(6):1018-1024.
【2】FAKHER C,TAHAR F.Analytical Modeling of Spur Gear Tooth Crack and Influence on Gear Mesh stiffness[J].European Journal of Mechanics A/Solids,2009,28:461-468.
【3】WU Siyan,ZUO M J,PAREY A.Simulation of Spur Gear Dynamics and Estimation of Fault Growth[J].Journal of Sound and Vibration,2008,317(3/4/5):608-624.
【4】陳予恕.機械故障診斷的非線性動力學(xué)原理[J].機械工程學(xué)報,2007,43(1):25-34.
【5】傅志方,華宏星.模態(tài)分析理論與應(yīng)用[M].上海:上海交通大學(xué)出版社,2002.