郝東山
(鄭州華信學(xué)院信息工程系,新鄭451100)
Com pton散射對1維3元未磁化等離子體光子晶體禁帶影響
郝東山
(鄭州華信學(xué)院信息工程系,新鄭451100)
為了研究Compton散射對1維3元未磁化等離子體光子晶體中TE波禁帶影響,采用Compton散射模型和傳輸矩陣法,進(jìn)行了理論分析和實驗驗證,取得了一些重要數(shù)據(jù)。結(jié)果表明,隨著等離子體頻率增大,左旋和右旋極化波禁帶展寬比散射前減小0.09GHz,禁帶主頻率向高頻區(qū)域移動增大0.48GHz。隨著等離子體碰撞頻率增大,兩種極化波禁帶寬度發(fā)生一定變化。隨著等離子體回旋頻率、填充率、光入射角和介質(zhì)相對介電常數(shù)增大,左旋和右旋極化波禁帶明顯調(diào)諧效應(yīng)。這一結(jié)果對等離子體光子晶體應(yīng)用是有幫助的。
非線性光學(xué);禁帶;傳輸矩陣法;等離子體光子晶體
HOJO等人[1]曾提出等離子體光子晶體(plasma photonic crystals,PPC)概念,因其具有許多特性,如調(diào)節(jié)等離子體參量控制光子帶隙[2]、外磁場使等離子體有各向異性等[3],成為人們研究熱點(diǎn)[4-5]。按介質(zhì)空間分布,可將PPC分為1維~3維。雖然2維、3維PPC比1維有較好特性[6],但是1維PPC易制備,對電磁波有禁帶,故研究1維PPC更具現(xiàn)實意義。JOHN[7]和YABLONOVITCH[8]發(fā)現(xiàn)了光子禁帶。SAKAI等人[9]指出,PPC透射波有類似光子晶子(photonic crystals,PC)帶隙特性。ZHANG等人[10-11]指出,改變等離子體溫度與密度可調(diào)控禁帶。LI等人[12-13]指出,Compton散射對1維3元磁化PPC帶隙有影響。但未涉及1維3元未磁化情況下的Compton散射。作者對此進(jìn)行了探索。
若等離子體中發(fā)生Compton散射[14](簡稱散射),散射光與入射光形成的耦合光頻率為[13]:
式中,nc,e=ne+Δne為電子耦合密度,B和Bs,∥分別為入射光和散射光同向磁場強(qiáng)度。此外,εi(i= 1,2)和εp,Δεi和Δεp分別為介質(zhì)A和B及等離子體D的介電系數(shù)及其相應(yīng)增量。a和c,b分別為介質(zhì)A和B厚度和等離子體厚度,如圖1所示。
Fig.1 Physicsmodel
取ωp=7.9π×109rad/s,Δωp=108rad/s;νp= 1.9π×109rad/s,Δνp=π×108rad/s;ωb=11.9× 109rad/s,Δωb=108rad/s;ε1=13.8,Δε1=0.1,ε2=3.8,Δε2=0.1;a=5mm,b=9mm,c=7mm,周期α=20;θ=0°。模電場(transversal electric field,TE)和模磁場(transversalmagnetic field,TM)電場與B和Bs,∥垂直和平行,TE波形成左旋(left-handed circularly polarized,LCP)和右旋(right-handed circularly polarized,RCP)極化波。等離子體介電系數(shù)為:
式中,±分別對應(yīng)LCP波和RCP波。耦合光可表示為[15]:
式中,nc,j=nj+Δnj,dj,θc,j=θj+Δθj及nj和Δni,θj和Δθj分別為j層介質(zhì)耦合折射率、厚度、入射角及散射前折射率和入射角及其增量。推導(dǎo)應(yīng)用了cosΔδj=cosΔθj=1,sinΔδj=0關(guān)系。經(jīng)α個周期后,電、磁場、透射系數(shù)分別為:
式中,E(H)c,1=E(H)1+ΔE(H)1,Mc,A(D,B)= MA(D,B)+ΔMA(D,B),Mc,11(12)=M11(12)+ΔM11(12),Mc,21(22)=M21(22)+ΔM21(22),nc,0=n0+Δn0,E(H)c,(α+1)=E(H)α+1+ΔE(H)α+1。E(H)1和n0,ΔE(H)1和Δn0分別為散射前電場(磁場)、空氣折射率及其相應(yīng)增量。左旋和右旋極化波的透射頻譜如圖2所示,與參考文獻(xiàn)[10]比較可知,位置未變的高頻禁帶變窄,低頻禁帶向高頻移動。
Fig.2 Transmission spectum of LCP and RCP
2.1 等離子體頻率對禁帶影響
ωc,p=1GHz~25GHz的LCP和RCP透射頻譜如圖3所示。與參考文獻(xiàn)[10]比較可知,隨著ωc,p增大,兩禁帶展寬減小約0.1GHz,禁帶頻率向高頻移動約增大0.45GHz。這是因為ωc,p越大,極化電子和等離子體吸收光越多,光衰減效應(yīng)增大而減小了禁帶拓展效應(yīng);ωc,p>>ω,光被截止;ω<10GHz,透射率峰值幾乎減至為0。
Fig.3 Transmission spectrum whenωc,p=1GHz~25GHz
2.2 等離子體碰撞頻率對禁帶影響
νc,p=0.1GHz~85GHz的LCP和RCP透射頻譜如圖4所示。與參考文獻(xiàn)[10]比較可知,隨著νc,p增大,透射率峰值先迅速減小后再逐漸增大。這是因為νc,p增大,電子未完全極化與中性離子碰撞而降低吸收的緣故。
Fig.4 Transmission spectrum whenνc,p=0.1GHz~85GHz
2.3 等離子體回旋頻率對禁帶影響
Fig.5 Transmission spectrum whenωc,b=0.1GHz~40GHz
2.4 填充率、入射角和介電常數(shù)對禁帶影響
填充率f=b/d=0.01~0.95的LCP和RCP透射頻譜如6圖所示。與參考文獻(xiàn)[10]比較可知,禁帶低頻區(qū)展寬,透射率峰值減小直至消失。高頻區(qū)新模式形成窄禁帶數(shù)目增加,透射率峰值逐漸減小。
Fig.6 Transmission spectrum when f=0.01~0.95
入射角θ分別為0°~89°的LCP和RCP透射頻譜如圖7所示。與參考文獻(xiàn)[10]比較知,ω<15GHz,禁帶寬隨θ增大而增大,透射率峰值逐漸減??;ω>15GHz,禁帶寬隨θ增大先減小后增大,透射率峰值逐漸減小。
Fig.7 Transmission spectrum whenθ=0°~89°
介電常數(shù)比pc=εc,1/εc,2=0.26~6的LCP和RCP透射頻譜如圖8所示。與參考文獻(xiàn)[10]比較可知,隨著pc增大,兩禁帶寬(或數(shù)目)變寬(或增多),透射率峰值逐漸減小。這使得該P(yáng)PC不引入缺陷即可實現(xiàn)多模濾波。
Fig.8 Transmission spectrum when pc=0.26~6
隨著ωc,p增大,散射使LCP和RCP的禁帶展寬減小0.09GHz,禁帶中心頻率向高頻區(qū)域移動增大0.48GHz。隨著νc,p,f,θ和pc增大,散射對兩禁帶寬有一定且明顯的調(diào)諧作用。
[1]HOJO H,MASE A.Dispersion relation of electromagnetic wave in one-dimensional plasma photonic crystals[J].Journal of Plasma and Fusion,2004,80(2):89-92.
[2]LIU Sh B,ZHU Ch X,YUAN N Ch.FDTD simulation for plasma photonic crystals[J].Acta Physica Sinica,2005,54(6):2804-280(in Chinese).
[3]LIU Sh B,GU Ch G,ZHOU JH,et al.TDFD simulation formagnetized plasma photonic Crystals[J].Acta Physica Sinica,2006,55(3):1283-1288(in Chinese).
[4]ZHANGX J,WANG JZ.Effectof adiabatic dust charge fluctuation on three-dimensional solitary waves in inhomogeneous dusty plasmas[J].Acta Optica Sinica,2009,29(2):464-467(in Chinese).
[5]SHIJP,DONG K X,HUANG Y,et al.Second harmonic generation and effect factors in silica photonic crystalwaveguide[J].Acta Optica Sinica,2009,29(2):506-510(in Chinese).
[6]SAKAIO,TACHIBANA K.Properties of electromagnetic wave propagation emerging in 2-D periodic plasma structure[J].IEEE Transaction on Plasma Science,2007,35(5):1267-1272.
[7]JOHN S.Localization of photons in certain disordered dialectric superlattices[J].Physical Review Letters,1987,58(23):2486-2489.
[8]YABLONOVITCH E.Inhibited spontaneous emission in solidstate physics and electronics[J].Physics Review Letters,1987,58(23):2059-2063.
[9]SAKAI O,SAKAGUCHI T,TACHIBANA K.Verification of a plasma photonic crystal for microwaves of millimeter wavelength range using two dimensional array of columnarro-plasmas[J].Applied Physics Letters,2005,87(24):241505.
[10]ZHANG H F,MA L,LIU Sh B.Effects of plasma temperature and density to the characteristic ofband gap structure for un-magnetized plasma photonic crystals[J].Journal of Nanchang University(Natural Science Edition),2007,31(6):540-544(in Chinese).
[11]MIU G L,ZHANGH F,MA L.Temperature and density properties of prohibit band gaps for one dimension time-varying un-magnetized plasma photonic crystals[J].Journal of Nanchang University(Natural Science Edition),2010,34(1):66-74(in Chinese).
[12]LIF J,HAO D Sh.Influence of Compton scattering on the band gaps for one-dimensional ternary magnetized plasma photonic crystals[J].Laser&Infrared,2012,42(7):799-804(in Chinese).
[13]YU D Ch,HAO X F,HAOD Sh.Influence of filterwave of plasma photonic crystals with tunable defect produced by Compton scattering[J].Chinese Journal of Lasers,2011,38(10):1006001(in Chinese).
[14]KONG Q,ZHU L J,WANG JX,et al.Electron dynamics in the extra-intense stationary laser field[J].Acta Physica Sinica,1999,48(4):650-660(Chinese).
[15]WANG H,LIY P.Computation on band gap structure of photonic crystals using characteristic matrix means[J].Acta Physica Sinica,2001,50(11):2172-2178(in Chinese).
Effect of Com pton scattering on prohibited band gaps for 1-D ternary un-magnetized plasma photonic crystals
HAO Dong-shan
(Department of Information Engineering,Zhengzhou Huaxin University,Xinzheng 451100,China)
In order to study the effect of Compton scattering on TE wave prohibited band gaps of 1-D ternary unmagnetized plasma photonic crystals,based on themodel of Compton scattering and transfermatrix method,some important data was obtained after the theoretical analysis and experimental verification.The broadening width of prohibited band gap of the left circle polarization wave and the right circle polarization wave were decreased 0.09GHz along with the increasing of plasma frequency after Compton scattering.Themovement from the central frequency area of prohibited band gap to the high frequency areawas increased 0.48GHz.The change of prohibited band gapswidths of the left circle polarization wave and the right circle polarization wave happened along with the increasing of plasma collision frequency.The significant tuning effect of prohibited band gaps of the left circle polarization wave and the right circle polarization wavewas induced by Compton scattering along with the increasing of plasma circle frequency,filling index,light incident angle and relative dielectric constant.The result is helpful for the application of the plasma photonic crystals.
nonlinear optics;band gap;transfermatrixmethod;plasma photonic crystal
O437;O53
A
10.7510/jgjs.issn.1001-3806.2013.04.022
1001-3806(2013)04-0515-04
河南省基礎(chǔ)與前沿技術(shù)研究基金資助項目(092300410227)
郝東山(1949-),男,教授,主要從事激光物理與光纖通信基礎(chǔ)理論研究。
E-mail:haodongshan1948@126.com
2012-09-17;
2012-11-20