曾雪妮,李 靖
(呼吸疾病國(guó)家重點(diǎn)實(shí)驗(yàn)室 廣州醫(yī)科大學(xué)附屬第一醫(yī)院 變態(tài)反應(yīng)科,廣州 510120)
變應(yīng)原特異性免疫治療(allergen specific immunotherapy,ASIT)至今已有100多年的歷史,從開始用于臨床歷經(jīng)數(shù)十年的研究,于1998年因其可以改變變態(tài)反應(yīng)性疾病的自然進(jìn)程,被視為唯一的針對(duì)病因的療法而被世界衛(wèi)生組織推薦為過(guò)敏性疾病的有效治療方法[1]。隨著變變態(tài)反應(yīng)性疾病發(fā)病率的增高、變應(yīng)原疫苗的標(biāo)準(zhǔn)化、治療程序規(guī)范化及長(zhǎng)期療效得到廣泛的認(rèn)識(shí),ASIT近年受到高度重視。李靖等[2]多位專家發(fā)表了關(guān)于ASIT的治療共識(shí),以普及和規(guī)范ASIT的臨床應(yīng)用。關(guān)于ASIT的作用機(jī)制一直是備受關(guān)注的問(wèn)題,從20世紀(jì)30年代發(fā)現(xiàn)“封閉抗體”到目前關(guān)于調(diào)節(jié)性T細(xì)胞的研究,也已經(jīng)有70余年的歷史。本文旨在歸納國(guó)內(nèi)外專家發(fā)表的研究成果,討論目前主要的幾種ASIT作用機(jī)制學(xué)說(shuō)。
完成分化的T細(xì)胞分成效應(yīng)T細(xì)胞、調(diào)節(jié)T細(xì)胞(T regulatory cell,Treg)和記憶T細(xì)胞3類,Treg細(xì)胞通常不對(duì)抗原的刺激直接反應(yīng),而是以效應(yīng)細(xì)胞為作用對(duì)象,調(diào)控后者介導(dǎo)的免疫應(yīng)答,在反饋性調(diào)節(jié)中據(jù)核心地位。Treg細(xì)胞可分為天然型Treg細(xì)胞(CD4+CD25+nTreg細(xì)胞)和獲得性Treg細(xì)胞(aTreg細(xì)胞)。CD4+CD25+nTreg細(xì)胞在胸腺中產(chǎn)生,占外周血及其他外周淋巴組織中CD4+T細(xì)胞的5%~10%,其特異性標(biāo)志物為叉頭狀轉(zhuǎn)錄因子p3(forkhead Box p3,F(xiàn)OXP3)。有研究證實(shí),F(xiàn)OXP3選擇性地表達(dá)于人和鼠的nTreg細(xì)胞,nTreg細(xì)胞表達(dá)FOXP3是靜息和活化的普通T細(xì)胞表達(dá)FOXP3的100倍。FOXP3對(duì)CD4+CD25+nTreg細(xì)胞誘導(dǎo)外周免疫耐受功能的維持起重要作用[3],其在體外通過(guò)細(xì)胞間接觸發(fā)揮對(duì)適應(yīng)性T細(xì)胞反應(yīng)的抑制效應(yīng)[4]。
aTreg細(xì)胞一般在外周由初始T細(xì)胞接觸樹突狀細(xì)胞(dendritic cells,DCs)提呈的抗原后產(chǎn)生,也可從nTreg分化而來(lái),亦可來(lái)自其他初始T細(xì)胞,一般不表達(dá)CD25分子和FOXP3。aTreg細(xì)胞的分化和發(fā)揮功能必須有特定細(xì)胞因子的參與。aTreg細(xì)胞又可分為Ⅰ型調(diào)節(jié)性T細(xì)胞(T regulatory cell 1,Tr1)和輔助T3細(xì)胞(T helper cell 3,Th3)細(xì)胞,分別通過(guò)白介素(interleukin,IL)-10和轉(zhuǎn)化生長(zhǎng)因子(transforming growth factor,TGF)-β介導(dǎo)免疫抑制作用。
Radulovic等[5]研究顯示,草花粉患者經(jīng)ASIT后鼻黏膜表達(dá)FOXP3的CD4+CD25+T細(xì)胞明顯增多,同時(shí)可檢測(cè)到表達(dá)IL-10的Tr1細(xì)胞,且與癥狀改善相關(guān)。Lou等[6]關(guān)于變應(yīng)性鼻炎患兒ASIT的治療研究也顯示,外周血Tr1細(xì)胞的上調(diào)在ASIT中起了重要作用,提示Tr1細(xì)胞可能是變應(yīng)性鼻炎ASIT成功的有效指標(biāo),但并未發(fā)現(xiàn)ASIT后患者外周血中CD4+CD25+FOXP3+Treg細(xì)胞增多。Tsai等[7]的研究顯示,經(jīng)過(guò)1年屋塵螨ASIT治療的患者其Treg細(xì)胞水平顯著高于未進(jìn)行ASIT的對(duì)照組,且NF-κB表達(dá)的下調(diào)也更甚于對(duì)照組。目前,關(guān)于nTreg細(xì)胞在ASIT中的作用仍無(wú)一致的看法,這可能與實(shí)驗(yàn)設(shè)計(jì)、采集標(biāo)本部位有關(guān)。Treg細(xì)胞可以在DCs周圍聚集,阻止DCs成熟并下調(diào)其共刺激分子,以達(dá)到免疫抑制效應(yīng)。 在小鼠實(shí)驗(yàn)中,Treg被證實(shí)可以通過(guò)OX40-OX40L的相互作用抑制肥大細(xì)胞脫顆粒[8]。
T細(xì)胞的2個(gè)亞群Th1和Th2是在20多年前由Mosmann等首先提出的,關(guān)于Th2與支氣管哮喘的相關(guān)性也被報(bào)道了近20年。二十世紀(jì)末,關(guān)于ASIT作用機(jī)制的觀點(diǎn)是ASIT可以造成Th1Th2平衡紊亂,既由分泌IL-4為主的Th2型轉(zhuǎn)化為分泌γ-干擾素(interferon-γ,IFN-γ)為主的Th1型。然而,上述觀點(diǎn)并未得到統(tǒng)一。一些臨床實(shí)驗(yàn)顯示,ASIT后患者Th2反應(yīng)降低,但Th1反應(yīng)并未像預(yù)想的上調(diào)。另外一些研究則發(fā)現(xiàn),ASIT后患者Th1和Th2反應(yīng)均下降[9]。動(dòng)物實(shí)驗(yàn)觀察到Th1反應(yīng)的存在與臨床癥狀的改善相關(guān),但也并不是所有研究都有相似結(jié)果。近年來(lái),免疫偏倚至Th1反應(yīng)型機(jī)制已經(jīng)被Treg細(xì)胞誘導(dǎo)外周T細(xì)胞耐受學(xué)說(shuō)所替代。
研究證明,ASIT后患者IgE會(huì)出現(xiàn)短暫上升、再逐漸下降;但也有研究發(fā)現(xiàn),IgE在ASIT過(guò)程中沒(méi)有任何改變,且IgE的改變與臨床癥狀改善無(wú)關(guān)。然而,IgEIgG4比例在ASIT后6個(gè)月至3年是顯著下降的。IgEIgG4比例可作為Th2Treg轉(zhuǎn)化的典型代表,其比例的降低意味著Th2優(yōu)勢(shì)向Treg優(yōu)勢(shì)轉(zhuǎn)化[10]。
與IgE不同,IgG4在ASIT期間是持續(xù)升高的,其水平在停止ASIT治療后仍可維持很長(zhǎng)時(shí)間。IgG4活性強(qiáng),在IgG亞群中具有特殊的結(jié)構(gòu)和功能,IgG4可通過(guò)一條重鏈和附著的輕鏈進(jìn)行持續(xù)的Fab-臂交換,從而形成“雙特異性”[11]。IgG4與其受體Fcγ受體的親和力低,且不激活補(bǔ)體,可抑制其他同型免疫復(fù)合物,從而在ASIT中扮演重要的抗炎作用。肖曉雄等[12]的研究證明,屋塵螨ASIT后,患者IgG4顯著上升,且增長(zhǎng)水平與治療時(shí)間呈正相關(guān)。但亦有研究證明,IgG水平與臨床癥狀改善并不一致。
一般認(rèn)為,IgG4通過(guò)以下及2種機(jī)制發(fā)揮免疫抑制功能。(1)直接與變應(yīng)原特異性IgE競(jìng)爭(zhēng)結(jié)合變應(yīng)原。IgG4可在變應(yīng)原達(dá)到效應(yīng)細(xì)胞結(jié)合IgE之前將其捕獲,從而防止肥大細(xì)胞和嗜堿粒細(xì)胞激活,抑制組胺釋放。IgG4也可直接與抗原表位相結(jié)合,導(dǎo)致其與IgE競(jìng)爭(zhēng)結(jié)合變應(yīng)原,發(fā)揮其“封閉抗體”的功能[13]。ASIT誘導(dǎo)產(chǎn)生的IgG4具有抑制IgE介導(dǎo)反應(yīng)的功能已被廣泛證實(shí)。通過(guò)流式細(xì)胞儀技術(shù)測(cè)定IgE與過(guò)敏原的結(jié)合能力發(fā)現(xiàn),ASIT誘導(dǎo)的IgG抗體功能的改變可使IgE與過(guò)敏原的結(jié)合力下降,這提示ASIT不僅與IgG的數(shù)量有關(guān),更與其封閉能力有關(guān)[14]。小鼠模型研究顯示,IgG4的封閉作用是通過(guò)FcγRⅡB介導(dǎo)的[15]。但在1項(xiàng)關(guān)于人的“封閉抗體”研究中發(fā)現(xiàn),用抗CD23單抗封鎖FcγRⅡB的下游信號(hào)并不能抑制IgG介導(dǎo)的封閉功能,這意味著人類IgG發(fā)揮封閉功能是通過(guò)與IgE競(jìng)爭(zhēng)抗原實(shí)現(xiàn)的,而非小鼠模型的阻斷IgE受體信號(hào)。(2)阻斷IgE的促抗原提呈作用。 van Neerven等[16]研究發(fā)現(xiàn),經(jīng)過(guò)ASIT的患者血清可以抑制IgE通過(guò)B細(xì)胞的促抗原提呈作用,致使抗原被提成至抗原特異性T細(xì)胞的活性減弱,導(dǎo)致T細(xì)胞擴(kuò)增及釋放細(xì)胞因子減少。
目前,關(guān)于ASIT中發(fā)揮抑制性免疫調(diào)節(jié)作用的細(xì)胞因子的研究最為透徹的是IL-10和TGF-β。IL-10由以Th2、巨噬細(xì)胞和CD8+T細(xì)胞為主的多種細(xì)胞產(chǎn)生,具有廣泛的抑制促炎性細(xì)胞因子的作用[17],是公認(rèn)的介導(dǎo)免疫抑制的細(xì)胞因子。IL-10以同源二聚體的形式發(fā)揮效應(yīng),可抑制Th細(xì)胞應(yīng)答及其細(xì)胞因子合成、抑制巨噬細(xì)胞的抗原提呈能力及其細(xì)胞因子的合成,并促進(jìn)B細(xì)胞增殖分化及抗體產(chǎn)生。IL-10可下調(diào)IgE依賴的肥大細(xì)胞的活性,減少肥大細(xì)胞釋放促炎性因子,下調(diào)嗜酸粒細(xì)胞的功能、活性及存活時(shí)間,抑制Th0和Th2細(xì)胞釋放IL-5。IL-10可通過(guò)抑制CD2、CD28和可誘導(dǎo)性刺激分子共刺激信號(hào)來(lái)抑制針對(duì)不同變應(yīng)原的外周T細(xì)胞擴(kuò)增,并在抑制CD28與下游信號(hào)分子結(jié)合誘導(dǎo)T細(xì)胞無(wú)能中起重要作用[18]。除了抑制T細(xì)胞擴(kuò)增,IL-10也能通過(guò)抑制共刺激分子和下調(diào)主要組織相容性復(fù)合物(major histocompatibility complex,MHC)Ⅱ類分子和下調(diào)抗原提呈細(xì)胞對(duì)單核細(xì)胞和DCs發(fā)揮抑制效應(yīng),且可抑制大量促炎性因子、趨化因子及其受體的表達(dá)[19]。IL-10在ASIT期間持續(xù)分泌,對(duì)IgG4和IgE的調(diào)節(jié)表現(xiàn)為相反作用,即強(qiáng)烈抑制特異性IgE產(chǎn)生的同時(shí)促進(jìn)IgG4產(chǎn)生,從而降低變應(yīng)性炎性反應(yīng)。由此可見,IL-10在同型轉(zhuǎn)化中也起了重要作用。 另外,IL-10還可促進(jìn)nTreg細(xì)胞轉(zhuǎn)錄因子FOXP3的表達(dá)[20]。致耐受性的DCs誘導(dǎo)Tr1細(xì)胞分化必須通過(guò)依賴IL-10的免疫球蛋白樣轉(zhuǎn)錄物-4人白細(xì)胞抗原-G途徑[21]。
TGF-β主要由淋巴細(xì)胞、巨噬細(xì)胞和上皮細(xì)胞產(chǎn)生,是多功能細(xì)胞因子。有報(bào)道TGF-β與變應(yīng)性哮喘的嚴(yán)重程度呈負(fù)相關(guān)[22]。TGF-β在哮喘中的作用十分復(fù)雜,在氣道炎性中,TGF-β1由活化的的嗜酸粒細(xì)胞、巨噬細(xì)胞和T淋巴細(xì)胞等多種細(xì)胞產(chǎn)生并同時(shí)介導(dǎo)這些細(xì)胞因子的抑制作用。有人認(rèn)為,局部TGF-β主要促進(jìn)炎性反應(yīng)發(fā)生,而全身性TGF-β則可能具有抑制炎性反應(yīng)的作用。TGF-β的多功能性表現(xiàn)為可抑制多種類型細(xì)胞生長(zhǎng),并刺激另一些細(xì)胞的生長(zhǎng);在不同的培養(yǎng)條件下,TGF-β可對(duì)同一類細(xì)胞即發(fā)揮抑制作用也發(fā)揮刺激作用。TGF-β能拮抗淋巴細(xì)胞反應(yīng)、抑制淋巴細(xì)胞增殖、抑制細(xì)胞毒T細(xì)胞成熟、抑制巨噬細(xì)胞激活、抑制促炎性反應(yīng)細(xì)胞因子,并可作為信號(hào)關(guān)閉免疫應(yīng)答及炎性反應(yīng),因此將其視為免疫抑制性細(xì)胞因子。TGF-β具有強(qiáng)效的調(diào)節(jié)功能,對(duì)CD4+T細(xì)胞的自體耐受具有重要意義。TGF-β對(duì)T淋巴細(xì)胞的調(diào)節(jié)作用是通過(guò)絲氨酸蘇氨酸蛋白激酶使轉(zhuǎn)錄因子Smad3發(fā)生磷酸化,抑制T細(xì)胞增殖,同時(shí)抑制轉(zhuǎn)錄因子T-bet和GATA-3的表達(dá)、抑制Th1和Th2的細(xì)胞分化,導(dǎo)致T細(xì)胞分化時(shí)缺少Th1和Th2細(xì)胞的極化而造成Treg細(xì)胞產(chǎn)生[23]。也可通過(guò)FOXP3途徑誘導(dǎo)Treg細(xì)胞產(chǎn)生[24]。TGF-β對(duì)CD4+CD25+T細(xì)胞的體內(nèi)擴(kuò)增和發(fā)揮免疫抑制功能也是必要的[25]。TGF-β可以誘導(dǎo)Treg細(xì)胞表達(dá)細(xì)胞毒T淋巴細(xì)胞相關(guān)抗原-4,從而抑制外周T細(xì)胞的激活[26]。TGF-β可調(diào)節(jié)IgE、FcεRⅠ在朗格漢斯細(xì)胞(Langerhans cell)表面的表達(dá),導(dǎo)致抗體同型轉(zhuǎn)化為非炎性IgA抗體[27]。
DCs是目前已知功能最強(qiáng)大的抗原提呈細(xì)胞,也是唯一能激活初始T細(xì)胞的抗原提呈細(xì)胞,是適應(yīng)性免疫應(yīng)答的啟動(dòng)者。同時(shí),因其具有誘導(dǎo)免疫耐受的潛在能力,DCs在ASIT中扮演著重要角色。在過(guò)去的10余年里,DCs通過(guò)促進(jìn)aTreg細(xì)胞的產(chǎn)生,使其在不同變應(yīng)原引起的免疫反應(yīng)調(diào)節(jié)中的重要作用被逐漸認(rèn)識(shí)。
DCs是引發(fā)免疫反應(yīng)還是免疫耐受取決于其成熟階段,致耐受性DCs是半成熟狀態(tài),表達(dá)MHCⅡ類分子和CD86較多而表達(dá)CD40較少,且缺乏促炎性細(xì)胞因子IL-6和腫瘤壞死因子-α[28],可誘導(dǎo)高分泌IL-10的aTreg細(xì)胞產(chǎn)生[29]。DCs在IL-2的參與下可通過(guò)抗原依賴或非依賴的互相作用誘導(dǎo)Treg細(xì)胞擴(kuò)增[30]。最近有研究顯示,ASIT可加強(qiáng)已經(jīng)在變應(yīng)性疾病患者中被損害的DC-TLR9介導(dǎo)的固有免疫反應(yīng)。這項(xiàng)研究通過(guò)對(duì)屋塵螨過(guò)敏的患者進(jìn)行ASIT,隨后發(fā)現(xiàn)孤立漿細(xì)胞樣樹突狀細(xì)胞誘導(dǎo)的固有免疫反應(yīng)被重建,導(dǎo)致其對(duì)CpG刺激后產(chǎn)生的IFN-γ提升3~5倍[31]??傊?,外周血DCs數(shù)量和表型的改變與ASIT所致變應(yīng)性炎性反應(yīng)的抑制作用密切相關(guān)。除此之外,最近的研究還顯示,DCs可通過(guò)高表達(dá)色氨酸分解酶吲哚胺2,3-加雙氧酶(IDO)誘導(dǎo)aTreg細(xì)胞產(chǎn)生[32]。表達(dá)IDO的DCs可在體外抑制T細(xì)胞的擴(kuò)增,在體內(nèi)促進(jìn)免疫耐受。而IDO在免疫耐受中的作用是通過(guò)誘導(dǎo)Treg細(xì)胞表達(dá)細(xì)胞毒T淋巴細(xì)胞相關(guān)抗原-4,也可能通過(guò)消耗色氨酸或其代謝產(chǎn)物而直接抑制T細(xì)胞擴(kuò)增[33]。
ASIT可有效調(diào)節(jié)肥大細(xì)胞、嗜堿粒細(xì)胞的閾值,降低IgE介導(dǎo)的組胺釋放[34]。ASIT也可降低募集至炎性部位的活化嗜酸粒細(xì)胞,降低嗜酸粒細(xì)胞和中性粒細(xì)胞釋放的嗜酸性陽(yáng)離子蛋白和其它趨化因子,從而降低氣道反應(yīng)性,使臨床癥狀得以改善。有研究發(fā)現(xiàn),在ASIT的過(guò)程中,炎性細(xì)胞釋放介質(zhì)(如組胺)雖有減少,但并未停止釋放。然而,對(duì)昆蟲毒液過(guò)敏的個(gè)體在被叮咬后不會(huì)再次出現(xiàn)全身過(guò)敏反應(yīng)則歸因于致耐受性組胺受體。目前,已發(fā)現(xiàn)了4種組胺受體,其中組胺受體2——HR2通過(guò)耦合腺苷酸環(huán)化酶和磷酸肌酸第二信使發(fā)揮致耐受作用[35]。
ASIT可能是目前針對(duì)變態(tài)反應(yīng)性疾病最有效的方法,其作用機(jī)制主要是通過(guò)阻礙DCs成熟,誘導(dǎo)Treg細(xì)胞產(chǎn)生,釋放大量免疫抑制性細(xì)胞因子IL-10和TGF-β,促進(jìn)B細(xì)胞產(chǎn)生抗體同型轉(zhuǎn)化為IgG4,IgG4通過(guò)其“封閉抗體”能力及抑制IgE促抗原提呈功能,抑制IgE與效應(yīng)細(xì)胞(肥大細(xì)胞、嗜堿粒細(xì)胞)表面IgE高親和力受體FcεRⅠ結(jié)合,抑制效應(yīng)細(xì)胞脫顆粒,減少炎性介質(zhì)的釋放,從而達(dá)到緩解臨床癥狀的效果。然而,關(guān)于ASIT的作用機(jī)制仍有許多未被闡明,且不同變應(yīng)原疫苗及佐劑、不同給藥方式都會(huì)使ASIT的效果不同。ASIT作用機(jī)制的明確將會(huì)給治療帶來(lái)新的策略,這需要更多臨床及實(shí)驗(yàn)室研究去探討。
[1]WHO. Position paper allergen immunotherapy:therapeutic vaccines for allergic diseases[J]. Allergy,1998, Suppl:1-42.
[2]李靖,孔維佳,林江濤,等. 中國(guó)特異性免疫治療的臨床實(shí)踐專家共識(shí)[J].中華結(jié)核和呼吸雜志, 2012, 35:163-166.
[3]Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor FOXP3[J]. Science, 2003, 299:1057-1061.
[4]Fehervari Z, Sakaguchi S. Development and function of CD25+CD4+regulatory T cells[J]. Curr Opin Immunol, 2004, 16:203-208.
[5]Radulovic S, Jacobson MR, Durham SR, et al. Nouri-Aria. Grass pollen immunotherapy induces Foxp3-expressing CD4+CD25+cells in the nasal mucosa[J]. J Allergy Clin Immunol, 2008,121:1467-1472.
[6]Lou W, Wang CS, Wang Y, et al. Responses of CD4+CD25+Foxp3+and IL-10-secreting type I T regulatory cells to cluster-specific immunotherapy for allergic rhinitis in children[J]. Pediatr Allergy Immunology, 2012, 23:140-149.
[7]Tsai YG, Chiou YL, Chien JW, et al. Induction of IL-10+CD4+CD25+regulatory T cells with decreased NF-kappaB expression during immunotherapy[J]. Pediatr Allergy Immunol, 2010, 21:166-173.
[8]Gri G, Piconese S, Frossi B et al. CD4+CD25+regulatory T cells suppress mast cell degranulation and allergic responses through OX40-OX40L interaction[J]. Immunity, 2008, 29:771-781.
[9]Akdis CA, Akdis M, Blesken T, et al. Epitope-specific T cell tolerance to phospholipase A2 in bee venom immunotherapy and recovery by IL-2 and IL-15 in vitro[J]. J Clin Invest, 1996, 98:1676-1683.
[10] Meiler F, Klunker S, Zimmermann M, et al. Distinct regulation of IgE, IgG4 and IgA by T regulatory cells and Toll-like receptors[J]. Allergy, 2008, 63:1455-1463.
[11] Aalberse RC, Stapel SO, Schuurman J, et al. Immunoglobulin G4: an odd antibody [J]. Experimental Allergy, 2009, 39:469-477.
[12] 肖曉雄,黃東明,崔碧云,等. 屋塵螨脫敏治療對(duì)變應(yīng)性鼻炎及哮喘患者血清粉塵螨特異性IgG4抗體的影響[J].中華臨床免疫和變態(tài)反應(yīng)雜志, 2009,3:34-38.
[13] Mothes N, Heinzkill M, Drachenberg KJ, et al. Allergen-specific immunotherapywith a monophosphoryl lipid A-adjuvanted vaccine: reduced seasonally boosted immunoglobulin E production and inhibition of basophil histamine release by therapy-induced blocking antibodies[J]. Clin Exp Allergy, 2003, 33:1198-1208.
[14] Daeron M, Malbec O, Latour S, et al. Regulation of high-affinity IgE receptor-mediated mast cell activation by murine low-affinity IgG receptors[J]. J Clin Invest, 1995, 95:577-585.
[15] Kepley CL, Taghavi S, Mackay G, et al. Co-aggregation of FcgammaRII with FcepsilonRI on human mast cells inhibits antigen-induced secretion and involves SHIP-Grb2-Dok complexes[J]. J Biol Chem, 2004, 279:35139-35149.
[16] van Neerven RJ, Wikborg T, Lund G, et al. Blocking antibodies induced by specific allergy vaccination prevent theactivation of CD41 T cells by inhibiting serum-IgE-facilitated allergen presentation[J]. J Immunol, 1999, 163:2944-2952.
[17] Conti P, Kempuraj D, Kandere K, et al. IL-10, an inflammatoryinhibi tory cytokine, but not always[J ]. Immunol Lett, 2003, 86:123.
[18] Taylor A, Akdis M, Joss A, et al. IL-10 inhibits CD28 and ICOS costimulations of T cells via src homology 2 domain-containing protein tyrosine phosphatase 1[J]. J Allergy Clin Immunol, 2007,120:76-83.
[19] Akdis CA, Blesken T, Akdis M, et al. Role of interleukin 10 in specific immunotherapy[J]. J Clin Invest, 1998,102:98-106.
[20] Karagiannidis C, Akdis M, Holopainen P, et al. Glucocorticoids upregulate FOXP3 expression and regulatory T cells in asthma[J]. J Allergy Clin Immunol, 2004, 114:1425-1433.
[21] Gregori S, Tomasoni D, Pacciani V, et al. Differentiation of type 1 T regulatory cells (Tr1) by tolerogenic DC-10 requires theIL-10-dependent ILT4HLA-G pathway[J]. Blood, 2010,116:935-944.
[22] Gorelik L, Constant S, Flavell RA. Mechanism of transforming growth factor b-induced inhibition of T helper type 1 differentiation[J]. J Exp Med, 2002, 195:1499-1505.
[23] Gorelik L, Fields PE, Flavell RA. Cutting edge: TGF-b inhibits Th type 2 development through inhibition of GATA-3 expression[J]. J Immunol, 2000, 165:4773.
[24] Chen W, Jin W, Hardegen N, et al. Conversion of peripheral CD4+CD25-naive T cells to CD4+CD25+regulatory T cells by TGF-b induction of transcription factor Foxp3[J]. J Exp Med, 2003, 198:1875-1886.
[25] Huber S, Schramm C, Lehr HA, et al. Cutting edge: TGF-beta signaling is required for the in vivo expansion and immunosuppressive capacity of regulatory CD4+CD25+T cells[J]. J Immunol, 2004,173):6526-6531.
[26] Oida T, Xu L, Weiner HL, et al. TGF-b-mediated suppression by CD4+CD25+T cells is facilitated by CTLA-4 signaling[J]. J Immunol, 2006, 177:2331-2339.
[27] Lutz MB, Schuler G. Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? [J]. Trends Immunol, 2002, 23:445-449.
[28] Jonuleit H, Schmitt E, Steinbrink K, et al. Dendritic cells as a tool to induce anergic and regulatory T cells[J]. Trends Immunol, 2001, 22:394-400.
[29] Zou T, Caton AJ, Koretzky GA, et al. Dendritic cells induce regulatory T cell proliferation through antigen-dependent and -independent interactions[J]. J Immunol, 2010, 185:2790-2799.
[30] Tversky JR, Bieneman AP, Chichester KL, et al. Subcutaneous allergen immunotherapy restores human dendritic cell innate immune function[J]. Clin Exp Allergy, 2010, 40:94-102.
[31] Belladonna ML, Grohmann U, Guidetti P, et al. Kynurenine pathway enzymes in dendritic cells initiate tolerogenesis in the absence of functional IDO[J]. J Immunol, 2006, 177:130-137.
[32] Frumento G, Rotondo R, Tonetti M, et al. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase[J]. J Exp Med, 2002, 196:459-468.
[33] Terness P, Bauer TM, Rose L, et al. Inhibition of allogeneic T cell proliferation by indoleamine2,3-dioxygenase-expressing dendritic cells: mediation of suppression by tryptophan metabolites[J]. J Exp Med, 2002, 196:447-457.
[34] Pierkes M, Bellinghausen I, Hultsch T, et al. Decreased release of histamine and sulfidoleukotrienes by human peripheral blood leukocytes after was Pvenom immunotherapy is partially due to induction of IL-10 and IFNgamma production of T cells[J]. J Allergy Clin Immunol, 1999, 103:326-332.
[35] Meiler F, Zumkehr J, Klunker S, et al. In vivo switch to IL-10-secreting T regulatory cells in high dose allergen exposure[J]. J Exp Med, 2008, 205:2887-2898.
中華臨床免疫和變態(tài)反應(yīng)雜志2013年3期