作者簡介:焦建民(1977—),男,陜西寶雞人,講師,碩士,研究方向:控制理論(E-mail:jmjiao@126.com)。
摘要:針對一類具有區(qū)間時變時滯和線性分式參數(shù)不確定性的離散奇異系統(tǒng), 研究魯棒穩(wěn)定性問題?;贚yapunov穩(wěn)定性理論, 應用線性矩陣不等式方法, 給出不確定離散奇異時滯系統(tǒng)的新的時滯相關(guān)型穩(wěn)定性準則。所給準則相比于已有一些結(jié)果, 包含較少的矩陣變量, 且具有較小的保守性。數(shù)值實例表明所得結(jié)果的有效性。
關(guān)鍵詞:離散奇異系統(tǒng); 區(qū)間時變時滯; 線性分式參數(shù)不確定性; 魯棒穩(wěn)定性; 線性矩陣不等式(LMI)
中圖分類號:TP 273 文獻標識碼:A
1引言
時滯與不確定性廣泛存在于各類實際系統(tǒng)之中,它們是引起系統(tǒng)不穩(wěn)定和性能變差的主要因素,因此對時滯系統(tǒng)的穩(wěn)定性分析和控制問題的研究是十分必要和具有重要意義的,并取得了不少成果[1]。在離散時滯系統(tǒng)方面,文獻[2-4]通過構(gòu)造適當?shù)腖yapunov泛函,給出了系統(tǒng)的一些穩(wěn)定性結(jié)果。另一方面,由于奇異系統(tǒng)比正常系統(tǒng)具有更為廣泛的應用背景,因此奇異系統(tǒng)在近幾年引起了人們的普遍關(guān)注,一些關(guān)于正常系統(tǒng)的研究結(jié)果也被成功的推廣到了奇異系統(tǒng)之中[5]。對于離散奇異時滯系統(tǒng),文獻[6-8]通過建立基于二次型的有限和不等式,給出了系統(tǒng)的一些穩(wěn)定性結(jié)果。近兩年,關(guān)于離散時滯系統(tǒng)的研究仍然是控制領(lǐng)域的一個研究熱點,隨著人們對原有研究方法的改進,關(guān)于離散時滯系統(tǒng)一些新的穩(wěn)定性結(jié)果和控制律設(shè)計方法相繼被給出。例如,通過考慮Lyapunov泛函差分中更多的時滯信息,文獻[9]和[10]分別給出了離散奇異時滯系統(tǒng)和離散時滯系統(tǒng)的新的穩(wěn)定性準則,進一步地,文獻[11]研究了離散奇異時滯系統(tǒng)的H∞控制問題,文獻[12]研究了離散時滯系統(tǒng)的保性能控制問題。為了得到保守性較小的結(jié)果,文獻[13]應用自由權(quán)矩陣方法,文獻[14]應用時滯分割方法研究了奇異時滯系統(tǒng)的穩(wěn)定性問題,文獻[15]應用增廣Lyapunov泛函方法研究了離散時滯系統(tǒng)的穩(wěn)定性問題,這些方法的使用往往需要引入較多的矩陣變量,帶來了計算上的負擔。
本文研究了一類具有區(qū)間時變時滯和線性分式參數(shù)不確定性的離散奇異系統(tǒng)的穩(wěn)定性問題。將文獻[16,17]中研究連續(xù)正常時滯系統(tǒng)的思想引入到了離散奇異時滯系統(tǒng)之中,并結(jié)合二次型有限和公式,給出了系統(tǒng)一個新的時滯相關(guān)型穩(wěn)定性準則。該準則以嚴格線性矩陣不等式(LMI)表示,可以方便求解;同時,它比已有一些結(jié)果包含更少的矩陣變量,這樣減少了計算的復雜性;最后,數(shù)值實例表明,該準則比已有一些結(jié)果具有更小的保守性。
5結(jié)語
針對具有區(qū)間時變時滯和線性分式參數(shù)不確定性的離散奇異系統(tǒng),研究了系統(tǒng)魯棒穩(wěn)定性問題。利線性矩陣不等式處理方法,并保留了Lyapunov泛函差分中的有用信息,得到了系統(tǒng)的一個新的魯棒穩(wěn)定性結(jié)果。該結(jié)果從包含變量個數(shù)和保守性方面改進了已有一些結(jié)果,為離散奇異時滯系統(tǒng)的進一步研究提供了參考。
參考文獻
[1]Gu K Q, Kharitonov V L, Chen J. Stability of timedelay systems [M]. Boston: Birkhauser, 2003.
[2]Gao Huijun, Lam J, Wang Changhong, et al. Delaydependent outputfeedback stabilization of discretetime systems with timevarying state delay [J]. Control Theory and Applications, 2004, 151(6): 691-698.
[3]Gao Huijun, Chen Tongwen. New results on stability of discrete-time systems with timevarying state delays [J]. IEEE Transactions on Automatic Control, 2007, 52(2): 328-334.
[4]Zhang Baoyong, Xu Shengyuan, Zou Yun. Improved stability criterion and its applications in delayed controller design for discretetime systems[J].Automatica,2008,44(11): 2963-2967.
[5]Dai L. Singular control systems [M]. Berlin: SpringerVerlag, 1989.
[6]Ma Shuping, Cheng Zhaolin, Zhang Chenhui. Delaydependent robust stability and stabilization for uncertain discrete singular systems with timevarying delay [J]. IET Control Theory and Applications, 2007, 1(4): 1086-1095.
[7]Du Zhaoping, Qiu Zhanzhi, Zhang Qingling, et al. New delaydependent robust stability of discrete singular systems with timevarying delay [C]. In Proceeding of the 17th World Congress on Intelligent Control and Automation, Chongqing, PRC: IEEE, 2008, 6359-6364.
[8]Wang Huijiao, Zhao Xiaodong, Xue Anke, et al. Delaydependent robust control for uncertain discrete singular systems with timevarying delay [J]. Journal of Zhejiang University Science A, 2008, 9(8): 1034-1042.
[9]Fang Mei. Delaydependent stability analysis for discrete singular systems with timevarying delays [J]. Acta Automatica Sinica, 2010, 36(5): 751–755.
[10]Ramakrishnan K, Ray G. Robust stability criteria for a class ofuncertain discretetime systems with timevarying delay [J]. Applied Mathematical Modelling, 2013, 37(3): 1468- 1479.
[11]Zhang Dan, Yu Li, Wang Qingguo, et al. Exponential H
filtering for discretetime switched singular systems with timevarying delays[J]. Journal of the Franklin Institute, 2012, 349(7): 2323- 2342.
[12]Fernando T L, Phat V N, Trinh H M. Output feedback guaranteed cost control of uncertain linear discrete systems with interval timevarying delays[J]. Applied Mathematical Modelling, 2013, 37(3): 1580-1589.
[13]Jiao Jianmin. Robust stability and stabilization of discrete singular systems with interval time-varying delay and linear fractional uncertainty [J]. Internal Journal of Automation and Computing, 2012, 9(1): 8–15.
[14]Wu Zhengguang, Park J H, Su hongye, et al. Admissibility and dissipativity analysis for discretetime singular systems with mixed timevarying delays [J]. Applied Mathematics and Computation, 2012, 218(13): 7128–7138.
[15]Kwon O M, Park M J, Park J H, et al. Stability and stabilization for discretetime systems with timevarying delays via augmented LyapunovKrasovskii functional [J]. Journal of the Franklin Institute, 2013, 350(3): 521-540.
[16]Park P G, Ko J W, Jeong C. Reciprocally convex approach to stability of systems with timevarying delays [J]. Automatica, 2011, 47(1): 235-238.
[17]Jiao Jianmin. Delaydependent stability criteria for singular systems with interval timevarying delay[J]. Mathematical Problems in Engineering, 2012, 2012: 1-16.
[18]Zhou Shaosheng, Lam J. Robust stabilization of delayed singular systems with linear fractional parametric uncertainties [J]. Circuits, Systems, and Signal processing, 2003, 22(6): 579- 588.