亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        矩陣方程組(AX=B, XC=D)的Hermitian反自反反Hermitian反自反最小二乘解及其最佳逼近

        2012-12-04 08:15:02碩,霖,
        關(guān)鍵詞:定義

        周 碩, 王 霖, 王 雯

        (東北電力大學(xué) 理學(xué)院, 吉林 吉林 132012)

        0 引 言

        近年來(lái), 關(guān)于矩陣方程組AX=B,XC=D求解問(wèn)題的研究已有許多結(jié)果[1-5]. 本文研究矩陣方程組AX=B,XC=D的Hermitian反自反(反Hermitian反自反)最小二乘解.

        記Cm×n表示m×n階復(fù)矩陣集合,UCn×n表示n×n階酉陣集合;AH,A+和‖A‖分別表示矩陣A的共軛轉(zhuǎn)置矩陣、 Moore-Penrose廣義逆矩陣和矩陣A的Frobenius范數(shù);In表示n階單位矩陣;S表示反序單位陣, 即In=(e1,e2,…,en), 則S=(en,en-1,…,e1); 對(duì)全體A,B∈Cm×n, 定義內(nèi)積〈A,B〉=tr(BHA), 對(duì)?A,B∈Cm×n,A*B=(aijbij)表示矩陣A和B的Hadamard乘積,Cm×n是完備的內(nèi)積空間并且該內(nèi)積空間下的矩陣范數(shù)為Frobenius范數(shù).

        定義1如果一個(gè)n×n矩陣J滿足JH=J,J2=In, 則稱(chēng)J為n階廣義反射矩陣.

        定義2給定一個(gè)廣義反射矩陣J, 矩陣A∈Cn×n是Hermitian反自反矩陣當(dāng)且僅當(dāng)AH=A,A=-JAJ. 所有n階Hermitian反自反矩陣的全體記為HAJn×n.

        定義3給定一個(gè)廣義反射矩陣J, 矩陣A∈Cn×n是反Hermitian反自反矩陣當(dāng)且僅當(dāng)AH=-A,A=-JAJ, 所有n階反Hermitian反自反矩陣的全體記為AHAJn×n.

        問(wèn)題1給定A,B∈Cm×n,C,D∈Cn×s, 求X∈HAJn×n(或X∈AHAJn×n), 使得

        ‖AX-B‖2+‖XC-D‖2=min.

        這里SE是問(wèn)題1的解集合.

        本文研究矩陣X∈HAJn×n(或X∈AHAJn×n)的特殊性質(zhì), 應(yīng)用這些性質(zhì)及文獻(xiàn)[4-8], 得到了問(wèn)題1的一般解, 并當(dāng)SE為非空集合時(shí), 給出了問(wèn)題2的解.

        當(dāng)J=S時(shí), 本文研究結(jié)果可轉(zhuǎn)化為矩陣方程組AX=B,XC=D的對(duì)稱(chēng)次反對(duì)稱(chēng)(反對(duì)稱(chēng)次對(duì)稱(chēng))最小二乘解. 當(dāng)C,D=0時(shí), 本文研究結(jié)果可轉(zhuǎn)化為矩陣方程AX=B的對(duì)稱(chēng)次反對(duì)稱(chēng)(反對(duì)稱(chēng)次對(duì)稱(chēng))最小二乘解[9-10].

        1 問(wèn)題1的求解

        先討論n×n廣義反射矩陣J的結(jié)構(gòu)和集合HAJn×n(AHAJn×n). 因?yàn)镴2=In, 所以J可能的特征值只有+1和-1. 假設(shè)特征值+1是r重的. 因?yàn)镴H=J, 則+1對(duì)應(yīng)的特征子空間也是r維的, 它的正交補(bǔ)空間(顯然是n-r維的)是-1對(duì)應(yīng)的. 因此, 易得:

        引理1給定一個(gè)n×n廣義反射矩陣J, 則存在酉矩陣U, 使得

        (1)

        由定義2、 定義3及引理1, 可得矩陣集合HAJn×n和AHAJn×n的如下結(jié)果.

        引理3給定矩陣A∈Cn×n, 廣義反射矩陣J的譜分解由式(1)給出, 則矩陣A∈AHAJn×n當(dāng)且僅當(dāng)

        證明: 可參考引理2的證明.

        引理4[7]給定矩陣A,B∈Ch×r,C,D∈Cr×l, 矩陣A和C的奇異值分解如下:

        則極小化問(wèn)題‖AX-B‖2+‖XC-D‖2=min, 解的形式為

        ?X22∈C(r-r1)×(r-s1),

        由引理1和引理2知, 求解矩陣方程組AX=B,XC=D的Hermitian反自反解可等價(jià)地表示為

        (2)

        這里:A1,B1∈Cm×r;A2,B2∈Cm×(n-r);C1,D1∈Cr×s;C2,D2∈C(n-r)×s, 可得

        (3)

        求解式(3)等價(jià)于求解矩陣方程組AX=B,XC=D的Hermitian反自反解.

        同理, 由引理1和引理3知, 求解矩陣方程組AX=B,XC=D的反Hermitian反自反解等價(jià)于求解

        (4)

        (5)

        (6)

        (7)

        (8)

        (9)

        (10)

        由于矩陣方程組AX=B,XC=D等價(jià)于式(3)或(4). 因此易得如下定理.

        定理1如果AU,BU,UHC,UHD的分塊形式由式(2)給出, 則問(wèn)題1在HAJn×n中的最小二乘解可以表示為

        (11)

        (12)

        證明: 由引理1和引理2有

        因此, 問(wèn)題1等價(jià)于

        (13)

        由引理4與式(5)~(8)可知,X12可以表示為式(12), 進(jìn)而, 可以得到問(wèn)題1在HAJn×n中解的表達(dá)式(11).

        定理2如果AU,BU,UHC,UHD的分塊形式由式(2)給出, 則問(wèn)題1在AHAJn×n中的最小二乘解可表示為

        (14)

        (15)

        證明: 類(lèi)似定理1的證明.

        2 問(wèn)題2的求解

        由式(11), 易證問(wèn)題1有解X∈HAJn×n(AHAJn×n), 則SE為一閉凸集. 因此, 對(duì)任意給定矩陣X*∈Cn×n, 問(wèn)題2存在X*的唯一最佳逼近解.

        定理3對(duì)任意矩陣X*∈Cn×n, 其他符號(hào)與定理1相同, 如果

        (16)

        (17)

        這里

        (18)

        證明: 當(dāng)SE非空時(shí), 由式(11)易證SE是閉凸集,Cn×n在Frobenius范數(shù)下構(gòu)成Banach空間, 因此問(wèn)題2有唯一的解, 故有

        可知問(wèn)題2的‖X*-X‖2=min等價(jià)于

        (19)

        進(jìn)而

        這里

        證明: 類(lèi)似于定理2及定理1的證明.

        例1已知矩陣

        根據(jù)定理1和定理3, 應(yīng)用MATLAB程序, 可計(jì)算問(wèn)題2的最佳逼近解為

        [1] Mitra S K. A Pair of Simultaneous Linear Matrix EquationsA1XB1=C1,A2XB2=C2and a Matrix Programming Problem [J]. Linear Algebra and Its Appl, 1990, 131(1): 107-123.

        [2] Chu K W E. Singular Value and Generalized Singular Value Decomposition and the Solution of Linear Matrix Equation [J]. Linear Algebra and Its Appl, 1987, 88/89: 83-98.

        [3] CHEN Yong-lin. The Iterative Method for Solving the Set of Matrix EquationsAX=C,XB=D[J]. Journal of Nanjing Normal University: Natural Science, 1999, 22(1): 1-3. (陳永林. 求解矩陣方程組AX=C,XB=D的迭代法 [J]. 南京師大學(xué)報(bào): 自然科學(xué)版, 1999, 22(1): 1-3.)

        [4] LI Fan-liang, HU Xi-yan, ZHANG Lei. The Generalized Reflexive Solution for a Class of Matrix Equations(AX=B,XC=D) [J]. Acta Mathmatica Scientia: Ser B, 2008, 28(1): 185-193.

        [5] LI Fan-lian, HU Xi-yan, ZHANG Lei. The Generalized Anti-reflexive Solution for a Class of Matrix Equations (BX=C,XD=E) [J]. Computational and Applied Mathematics, 2008, 27(1): 31-46.

        [6] PENG Zhen-yun, HU Xi-yan. The Reflexive and Anti-reflexive Solutions of the Matrix EquationAX=B[J]. Linear Algebra and Its Appilications, 2003, 375(1): 147-155.

        [7] ZHANG Lei, XIE Dong-xiu. A Class of Inverse Eigenvalue Problem [J]. Acta Mathematiea Scientia, 1993, 13(1): 94-99. (張磊, 謝冬秀. 一類(lèi)逆特征值問(wèn)題 [J]. 數(shù)學(xué)物理學(xué)報(bào), 1993, 13(1): 94-99.)

        [8] PENG Zhen-yun. The Inverse Eigenvalue Problem for Hermitian Anti-reflexive Matrices and Its Approximation [J]. Applied Mathematics and Computation, 2005, 162(3): 1377-1389.

        [9] XIE Dong-xiu, LIAO An-ping. The Least-Squares Solution of Inverse Problerm over Anti-symmetric and Persymmetric Matrices [J]. Journal of Numerical Methods and Computer Applications, 2003(4): 304-313. (謝冬秀, 廖安平. 一類(lèi)反對(duì)稱(chēng)次對(duì)稱(chēng)矩陣反問(wèn)題的最小二乘解 [J]. 數(shù)值計(jì)算與計(jì)算機(jī)應(yīng)用, 2003(4): 304-313.)

        [10] SHENG Yan-ping, XIE Dong-xiu. The Solvability Conditions for the Inverse Problem of Symmetric and Sub-anti-symmetric Matrices [J]. Mathematica Numerica Sinica, 2004, 26(1): 73-80. (盛炎平, 謝冬秀. 一類(lèi)對(duì)稱(chēng)次反對(duì)稱(chēng)矩陣反問(wèn)題解存在的條件 [J]. 計(jì)算數(shù)學(xué), 2004, 26(1): 73-80.)

        猜你喜歡
        定義
        以愛(ài)之名,定義成長(zhǎng)
        活用定義巧解統(tǒng)計(jì)概率解答題
        例談橢圓的定義及其應(yīng)用
        題在書(shū)外 根在書(shū)中——圓錐曲線第三定義在教材和高考中的滲透
        永遠(yuǎn)不要用“起點(diǎn)”定義自己
        海峽姐妹(2020年9期)2021-01-04 01:35:44
        嚴(yán)昊:不定義終點(diǎn) 一直在路上
        定義“風(fēng)格”
        成功的定義
        山東青年(2016年1期)2016-02-28 14:25:25
        有壹手——重新定義快修連鎖
        修辭學(xué)的重大定義
        国产精品一区成人亚洲| 少妇私密会所按摩到高潮呻吟| 亚洲精品乱码久久久久久蜜桃图片 | 国产免费a∨片在线软件| 国产999精品久久久久久| 久久青青草原国产精品最新片| 天堂精品人妻一卡二卡| 日本三级香港三级人妇99| 一夲道无码人妻精品一区二区 | 国产精品国产午夜免费福利看 | 五月天无码| 一本色道88久久加勒比精品| 欧洲美女熟乱av| 国产色a在线观看| 国产精品亚洲ΑV天堂无码| 日韩av在线手机免费观看| 成人免费无码大片a毛片抽搐色欲| 乱码精品一区二区三区| 亚洲AV永久无码精品一区二国| 一区二区三区四区黄色av网站| 扒开腿狂躁女人爽出白浆| 玩弄放荡人妻一区二区三区| 精品人妻一区二区三区蜜桃 | 亚洲av无码日韩av无码网站冲| 亚洲国产成人精品无码区99 | 国产成人亚洲综合二区| 免费观看成人欧美www色| 国产乱妇乱子视频在播放| 久久亚洲精彩无码天堂| 久久日韩精品一区二区| 人妻av无码一区二区三区| a毛片全部免费播放| 国产内射视频在线观看| av影院在线免费观看不卡| 日韩少妇内射免费播放| 国产精品美女黄色av| 亚洲成人av一区免费看| 最近中文字幕免费完整版| 澳门毛片精品一区二区三区| 国产91大片在线观看| 亚洲va久久久噜噜噜久久天堂|