龐 婧 綜述,徐文堅(jiān) 審校
2011年度北美放射年會(huì)(RSNA)共有骨關(guān)節(jié)系統(tǒng)影像學(xué)研究文章457篇,其中關(guān)節(jié)影像學(xué)研究文章118篇,膝、髖、肩等大關(guān)節(jié)周圍韌帶、肌腱損傷及關(guān)節(jié)軟骨方面研究,以MRI為主。四肢末端小關(guān)節(jié)及關(guān)節(jié)微結(jié)構(gòu)研究相對(duì)較少,主要為MRI與MR關(guān)節(jié)造影對(duì)比研究。筆者對(duì)以上方面進(jìn)行簡要綜述,以期對(duì)今后關(guān)節(jié)影像學(xué)研究提供些許幫助。
髖關(guān)節(jié)病變的影像學(xué)研究以MRI為主,MR關(guān)節(jié)造影多用于關(guān)節(jié)周圍韌帶及髖關(guān)節(jié)盂唇病變的顯示。
股骨頭圓韌帶(ligamentum teres,LT)損傷是引起髖關(guān)節(jié)疼痛的原因之一,關(guān)節(jié)鏡術(shù)前MRI檢查可提示LT損傷。Aihara等[1]根據(jù)MRI特點(diǎn),指出骨關(guān)節(jié)炎、髖關(guān)節(jié)脫位、髖臼骨折、股骨頭血管改變等均可引起LT損傷。Choi等[2]則對(duì)162例LT的MR關(guān)節(jié)造影行回顧研究,認(rèn)為MR關(guān)節(jié)造影對(duì)LT有無損傷的評(píng)估具有高度特異性。
股骨髖臼撞擊綜合征(femoroacetabular impingement,F(xiàn)AI)是股骨頸部或髖臼邊緣異常、在髖關(guān)節(jié)旋轉(zhuǎn)活動(dòng)時(shí)引起反復(fù)創(chuàng)傷,導(dǎo)致的髖臼盂唇和關(guān)節(jié)軟骨損傷。Rodriguez等[3]對(duì)FAI的成像方法進(jìn)行了評(píng)價(jià),指出常規(guī)X線檢查和MRI檢查可診斷髖臼盂唇邊緣變性,MR關(guān)節(jié)造影可以準(zhǔn)確評(píng)估盂唇撕裂和關(guān)節(jié)軟骨破壞。Magerkurth等[4]用3D T1WI關(guān)節(jié)造影對(duì)15例股骨頭頸結(jié)合部進(jìn)行了研究,結(jié)果顯示3D MR股骨頭頸結(jié)合部短軸重建可全面評(píng)估Cam型FAI。
常規(guī)MRI在髖臼盂唇成像方面具有局限性,故常用MR關(guān)節(jié)造影以更好顯示盂唇病變。Fiona[5]對(duì)55例57側(cè)髖關(guān)節(jié)行MR關(guān)節(jié)造影,結(jié)果顯示其對(duì)髖臼盂唇撕裂診斷具有高度敏感性,但對(duì)軟骨破壞程度和盂唇分離無明顯作用。Binkhamis等[6]對(duì)18例患者行1.5 T MR間接髖關(guān)節(jié)造影,盡管其無創(chuàng)傷,但結(jié)果顯示間接造影在髖臼盂唇撕裂診斷中診斷價(jià)值有限。髖關(guān)節(jié)反復(fù)損傷可導(dǎo)致無創(chuàng)傷性髖關(guān)節(jié)疼痛及不穩(wěn),Magerkurth等[7]對(duì)27例受試者的MR關(guān)節(jié)造影橫軸面T1WI與手術(shù)進(jìn)行對(duì)照,研究證實(shí)髖關(guān)節(jié)松弛時(shí),髖關(guān)節(jié)前間隙明顯增寬,且增寬>5 mm時(shí),可提示髖關(guān)節(jié)囊松弛。Kim等[8]對(duì)9例化膿性關(guān)節(jié)炎和11例一過性滑膜炎患者行動(dòng)態(tài)增強(qiáng)MRI (dynamic contrast-enhanced MRI, DCE-MRI)檢查,評(píng)估了DCEMRI在這2種疾病診斷中的敏感性及特異性,證實(shí)DCE-MRI對(duì)于鑒別關(guān)節(jié)化膿性關(guān)節(jié)炎與一過性滑膜炎是有效的。
在髖關(guān)節(jié)置換術(shù)后金屬偽影去除方面,Sandhu等[9]對(duì)159例髖關(guān)節(jié)金屬置換術(shù)后髖關(guān)節(jié)疼痛患者行MR MARS 成像,證實(shí)MR MARS成像可使髖關(guān)節(jié)金屬置換術(shù)后金屬偽影減小到最小程度,進(jìn)而更好的顯示周圍軟組織。
膝關(guān)節(jié)損傷研究主要以MR新技術(shù)評(píng)估軟骨病變,尤其半月板病變?yōu)橹鳎诩s12篇關(guān)于半月板病變的研究中,有9篇針對(duì)半月板撕裂。
在半月板撕裂的常規(guī)診斷方面,Nguyen等[10],De[11]分別通過MR及3D成像,將半月板撕裂類型與關(guān)節(jié)鏡進(jìn)行對(duì)照,Pandey等[12]同樣與關(guān)節(jié)鏡對(duì)照,并對(duì)半月板撕裂的命名標(biāo)準(zhǔn)進(jìn)行了規(guī)范。Altahawi等[13]、Lee等[14]、Magee[15]分別用MR多平面重組(MPR)、三維各向同性中間加權(quán)快速自旋回波序列(isotropiintermediate-weighted turbo spin-echo sequence, TSE-SPACE)和3 T 3D XETA (Extended Echo-train)成像,對(duì)膝關(guān)節(jié)半月板撕裂進(jìn)行評(píng)估,認(rèn)為上述新技術(shù)更有助于顯示半月板撕裂及類型,有助于指導(dǎo)手術(shù)。Sung[16]則對(duì)21例30個(gè)半月板行PDTSE成像,認(rèn)為半月板出現(xiàn)MR高信號(hào)并非完全由半月板撕裂引起,半月板退變和膝關(guān)節(jié)腔放射狀纖維束等也同樣可以引起信號(hào)增高。
對(duì)于不典型半月板撕裂,Kristen等[17]對(duì)71例不典型半月板撕裂研究后指出,關(guān)節(jié)軟骨缺失、半月板擠壓、半月板旁軟組織水腫、半月板囊腫、關(guān)節(jié)積液和軟骨下骨髓水腫等繼發(fā)征象有助于不典型半月板撕裂的診斷。
在半月板術(shù)后評(píng)估方面,Hwang等[18]對(duì)12例半月板移植患者于術(shù)后不同時(shí)期進(jìn)行了T2 mapping檢查,認(rèn)為T2定量測量有助評(píng)估半月板移植后關(guān)節(jié)軟骨修復(fù)情況。
相對(duì)于成人,青少年膝關(guān)節(jié)影像學(xué)研究相對(duì)較少,Bosemani等[19]對(duì)近100例年齡為14~20歲,平均年齡為16歲的青少年行膝關(guān)節(jié)3 T MRI檢查,研究證實(shí)盡管3 T MRI對(duì)青少年半月板病變的敏感性較低,但其對(duì)軟骨病變的敏感性和特異性較低場強(qiáng)MRI高,故3 T MRI可用于青少年膝關(guān)節(jié)軟骨病變檢查,進(jìn)而指導(dǎo)軟骨病變關(guān)節(jié)鏡治療。
膝關(guān)節(jié)前、后交叉韌帶是維持膝關(guān)節(jié)穩(wěn)定性的重要結(jié)構(gòu),而對(duì)交叉韌帶的MRI研究不僅包括韌帶受損的病因,更多研究關(guān)注于交叉韌帶損傷所引起的周圍結(jié)構(gòu)改變和韌帶損傷術(shù)后組織結(jié)構(gòu)的MRI表現(xiàn)。Gupta等[20]對(duì)前交叉韌帶(anterior cruciate ligament, ACL)損傷的機(jī)制和類型進(jìn)行歸納,闡述了MRI對(duì)可疑ACL損傷、完全和不全ACL損傷、ACL再造術(shù)中的診斷價(jià)值,并對(duì)MRI參數(shù)的優(yōu)化進(jìn)行了初步探討。Botchu[21]對(duì)95例膝關(guān)節(jié)內(nèi)紊亂患者的MRI進(jìn)行回顧性研究,分析股骨滑車發(fā)育異常與ACL損傷的相關(guān)性,證實(shí)ACL損傷與Dejour(尤其A型)滑車發(fā)育不良雖無明顯相關(guān)性,但可以推測Dejour A型滑車發(fā)育不良可誘發(fā)ACL損傷。Wissman等[22]對(duì)70例急性ACL撕裂患者行膝關(guān)節(jié)MRI檢查,得出只有在急性ACL撕裂并出現(xiàn)內(nèi)側(cè)副韌帶損傷時(shí),才會(huì)伴有內(nèi)側(cè)髕股韌帶損傷,故當(dāng)急性ACL撕裂后,若在MRI檢查中發(fā)現(xiàn)內(nèi)側(cè)副韌帶損傷,應(yīng)同時(shí)注意有無內(nèi)側(cè)髕股韌帶損傷。
對(duì)ACL損傷再造術(shù)后膝關(guān)節(jié)功能的研究亦引起較多關(guān)注。膝前關(guān)節(jié)囊松弛MRI征象對(duì)先天和再造后ACL撕裂有高度特異性和敏感性,Gupta等[20]對(duì)49例前交叉韌帶完全移植再造后的膝關(guān)節(jié)行MRI研究,對(duì)膝關(guān)節(jié)松弛的MRI征象(包括脛骨前移、后交叉韌帶線狀影、股骨后線、后交叉韌帶和曲率、外側(cè)半月板剝脫等)進(jìn)行評(píng)估,發(fā)現(xiàn)完全ACL移植患者膝關(guān)節(jié)松弛的MRI征象相對(duì)于臨床膝關(guān)節(jié)松弛的敏感性較低且變異性較大,膝關(guān)節(jié)松弛的MRI表現(xiàn)可能是由于ACL移植時(shí)拉伸不足使膝關(guān)節(jié)正常生物力學(xué)改變所致。Cha等[23]對(duì)100例應(yīng)用殘束保護(hù)技術(shù)行關(guān)節(jié)鏡ACL再造和36例應(yīng)用單束保護(hù)技術(shù)ACL再造的術(shù)后膝關(guān)節(jié)MRI進(jìn)行了對(duì)比分析,證實(shí)2種手術(shù)方式后ACL前壁局限性纖維化的MRI征象均為在矢狀面上中等信號(hào)強(qiáng)度的結(jié)節(jié)樣突出于髁間窩的病變,且兩者發(fā)生率并無明顯差異,這一對(duì)比分析可以有助放射醫(yī)師依據(jù)MRI征象更好的診斷局限性纖維化。
后交叉韌帶(posterior cruciate ligament, PCL)在屈膝時(shí)緊張,可防止脛骨后移。Song等[24]對(duì)173例PCL撞擊患者行MRI冠狀掃描,以評(píng)估PCL撞擊的發(fā)病率及MRI上PCL撞擊和其他膝關(guān)節(jié)韌帶損傷之間的關(guān)系。研究結(jié)果表明,PCL撞擊在統(tǒng)計(jì)學(xué)上與PCL撕裂和腘肌撕裂有顯著相關(guān)性,而與ACL、內(nèi)側(cè)副韌帶(medial collateral ligament, MCL)、腓側(cè)副韌帶( fibular collateral ligament, FCL)和內(nèi)外側(cè)半月板損傷無明顯相關(guān)性。因此,若在膝關(guān)節(jié)MRI冠狀面上觀察到PCL撞擊,提示可能有PCL和腘肌撕裂。
MCL構(gòu)成膝關(guān)節(jié)囊內(nèi)側(cè)壁,對(duì)維持膝關(guān)節(jié)穩(wěn)定性起到重要作用。Pirani等[25]對(duì)42例無外傷史但存在MCL水腫的患者行MRI研究,證實(shí)MCL水腫并非韌帶扭傷所特有,內(nèi)側(cè)關(guān)節(jié)腔骨關(guān)節(jié)病或內(nèi)側(cè)半月板撕裂亦可致MCL水腫;而在無外傷史且無上述病史時(shí),肥胖所致承重增大或膝關(guān)節(jié)生物力學(xué)改變同樣可致MCL水腫。
腘肌是膝關(guān)節(jié)中相對(duì)較小但較重要的肌肉,可使膝關(guān)節(jié)屈曲并使小腿內(nèi)旋。腘肌病變往往不像半月板和韌帶那樣受到重視,但可以為膝關(guān)節(jié)的其他損傷提供診斷線索。診斷不及時(shí)可導(dǎo)致膝關(guān)節(jié)功能退化,其炎性改變可引起膝關(guān)節(jié)疼痛,故在影像學(xué)研究中應(yīng)加強(qiáng)對(duì)其認(rèn)識(shí)。Jadhav等[26]從腘肌解剖、功能、影像及病理相關(guān)性等方面應(yīng)用三維圖解描述腘肌病變的影像學(xué)特點(diǎn),并對(duì)MRI中易誤診病變進(jìn)行了闡述。
髕骨參與膝關(guān)節(jié)構(gòu)成,具有保護(hù)膝關(guān)節(jié),避免股四頭肌對(duì)股骨髁軟骨面摩擦,且可維持膝關(guān)節(jié)穩(wěn)定性和防止膝關(guān)節(jié)過度活動(dòng)。膝前疼痛及髕骨對(duì)合不良是臨床行X線和CT檢查最常見的原因之一,盡管髕骨定比測量在X線上研究較多,但在CT和MRI上關(guān)于髕骨高度的參照尺度尚無統(tǒng)一結(jié)論。Lee等[27]對(duì)43例受試者同時(shí)行膝關(guān)節(jié)X線、CT和MRI檢查,結(jié)果顯示髕骨高度比指數(shù)在X線、CT和MRI上差異微小,故X線髕骨定比測量方法同樣適用于CT和MRI。Cobo等[28]指出髕骨不穩(wěn)雖為一種臨床診斷,但影像學(xué)表現(xiàn)在治療中起重要作用,對(duì)髕骨不穩(wěn)患者行動(dòng)態(tài)CT研究顯示,動(dòng)態(tài)CT可評(píng)估大腿伸縮和膝關(guān)節(jié)屈曲時(shí)的髕骨運(yùn)動(dòng)情況,可更好地對(duì)髕骨半脫位及其嚴(yán)重性和傾向因素進(jìn)行評(píng)估。Padua等[29]則對(duì)MRI在髕骨軟化癥中的意義進(jìn)行了探討,分析了最佳成像序列和成像模式,可為放射醫(yī)師提供髕骨軟化癥診斷的解剖和分類依據(jù)。
踝關(guān)節(jié)韌帶損傷易導(dǎo)致關(guān)節(jié)不穩(wěn),但顯示及辨認(rèn)困難。Sheibanifar[30]用1.5 T MR對(duì)127例踝關(guān)節(jié)行3D PDWI,結(jié)果顯示3D PDWI可清楚顯示踝關(guān)節(jié)韌帶損傷。Song等[31]對(duì)44例踝關(guān)節(jié)用3T MR 3D FSTSE-SPACE與常規(guī)2D TSE成像對(duì)比,證實(shí)2種成像方式均可用于踝關(guān)節(jié)慢性側(cè)副韌帶撕裂診斷。Chang等[32]應(yīng)用3 T MR超短TE(ultrashort TE,UTE)成像對(duì)10例無癥狀志愿者跟腱進(jìn)行了T2值定量評(píng)估,研究顯示UTE T2技術(shù)可評(píng)價(jià)早期肌腱退變和肌腱修復(fù)。Tuan[33]則應(yīng)用X線成像及MRI對(duì)9例踝關(guān)節(jié)扭傷患者進(jìn)行隨訪,指出早期發(fā)現(xiàn)踝關(guān)節(jié)韌帶鈣化可以使病變得到早期修復(fù),而對(duì)于診斷標(biāo)準(zhǔn)以下的韌帶聯(lián)合損傷識(shí)別其早期損傷征象如脛腓后韌帶骨化等,可以使診療變得更加精準(zhǔn)。
在踝關(guān)節(jié)術(shù)后偽影去除方面,Lee等[34]對(duì)21例踝關(guān)節(jié)術(shù)后有金屬植入物患者行多種序列對(duì)比分析,指出盡管IDEAL成像沒有明顯改善韌帶的顯示,但可有效減少金屬固定物引起的偽影,改善圖像質(zhì)量,利于臨床治療及護(hù)理。
肩關(guān)節(jié)結(jié)構(gòu)復(fù)雜,MRI可清晰顯示骨質(zhì)、盂唇、韌帶、肌肉、肌腱等結(jié)構(gòu)及病變,已被公認(rèn),而常規(guī)X線檢查可發(fā)現(xiàn)病變伴發(fā)征象,從而具有輔助診斷作用。
肩袖病變?nèi)匀皇羌珀P(guān)節(jié)影像學(xué)研究中的焦點(diǎn)問題。Pandey等[35]對(duì)195例肩關(guān)節(jié)X線圖像進(jìn)行研究,指出充分外旋和Grashey位時(shí)肱骨大結(jié)節(jié)骨皮質(zhì)不規(guī)則改變對(duì)于提示岡上肌腱病變具有高度特異性,但敏感性有限。Magee[36]對(duì)150例常規(guī)MRI和MR關(guān)節(jié)造影進(jìn)行比較,結(jié)果顯示MR關(guān)節(jié)造影對(duì)岡上肌腱撕裂的顯示優(yōu)于常規(guī)MRI。有關(guān)兒童肩袖撕裂患者文獻(xiàn)報(bào)道較少見,Maeder等[37]對(duì)56例男性(平均年齡15歲)和42例女性(平均年齡16歲)行肩關(guān)節(jié)X線、MRI及MR關(guān)節(jié)造影等研究,指出兒童肩袖撕裂比文獻(xiàn)報(bào)道的要常見,且易發(fā)生在骺板愈合時(shí)期,撕裂的部位和分布與成人相似,故對(duì)所有肩關(guān)節(jié)痛兒童患者均應(yīng)行MRI檢查。
在肢體大關(guān)節(jié)中,肘關(guān)節(jié)影像學(xué)研究較少。Jasti等[38]對(duì)500例肘關(guān)節(jié)疾病患者的MRI及臨床資料進(jìn)行了回顧研究,初步觀察了肘關(guān)節(jié)疾病的發(fā)病率和疾病類型,指出41~60歲易發(fā)生肌肉及肌腱撕裂,以肱二頭肌腱撕裂伴發(fā)肱三頭肌腱損傷常見,多發(fā)生于男性。該作者進(jìn)一步指出,盡管肘關(guān)節(jié)MRI約有20%為正常,但90%以上的肘關(guān)節(jié)病變需要依靠MRI診斷。
腕關(guān)節(jié)體積小而結(jié)構(gòu)復(fù)雜,顯示及辨認(rèn)同樣存在困難。Abdelfattah[39]對(duì)50例慢性尺側(cè)腕關(guān)節(jié)疼痛患者的1.5 T MRI及病理對(duì)照分析,指出MRI可用于術(shù)前鑒別尺側(cè)腕關(guān)節(jié)疼痛的病因,包括三角纖維軟骨(triangular fibrocartilage complex,TFCC)撕裂,尺側(cè)腕伸肌病變、遠(yuǎn)側(cè)尺橈關(guān)節(jié)松弛、腱鞘囊腫、神經(jīng)纖維瘤、巨細(xì)胞瘤、滑膜囊腫、骨軟骨瘤、尺骨撞擊綜合征、尺腕撞擊、鉤月撞擊、滑膜肉瘤等。Raja等[40]對(duì)189例無癥狀志愿者行1.89 T MR腕關(guān)節(jié)成像,結(jié)果表明大多數(shù)(65%)的腕關(guān)節(jié)無癥狀志愿者M(jìn)RI存在尺側(cè)腕伸肌肌腱異常,然而此結(jié)論需與患者真實(shí)臨床癥狀相關(guān)聯(lián)以確定兩者是否真正相關(guān)。
相對(duì)常規(guī)MRI,Spencer[41]證實(shí)MR關(guān)節(jié)造影可為先天性腕關(guān)節(jié)不穩(wěn)和韌帶撕裂提供良好的診斷依據(jù),可提供清楚的解剖顯示。Koskinen等[42]、Bierry等[43]研究顯示在患者禁行MRI或常規(guī)多排螺旋CT時(shí),新型移動(dòng)專用肢體錐束CT在腕關(guān)節(jié)韌帶和關(guān)節(jié)軟骨損傷方面可提供良好的成像質(zhì)量。DTI以往多用于腦白質(zhì)纖維束成像,Andreisek[44]應(yīng)用3 T MR對(duì)45例健康志愿者和15例腕管綜合征(carpal tunnel syndrome,CTS)的正中神經(jīng)進(jìn)行了DTI,結(jié)果顯示正中神經(jīng)擴(kuò)散值與年齡和解剖位置有關(guān),正常人和CTS患者之間有明顯不同。Lindberg等[45]和Lobo等[46]分別對(duì)16例和8例CTS松解術(shù)后復(fù)發(fā)患者進(jìn)行了DTI,結(jié)果顯示DTI定量測量可用于復(fù)發(fā)性CTS患者的正中神經(jīng)評(píng)估。
相對(duì)于大關(guān)節(jié)影像學(xué)研究,對(duì)小關(guān)節(jié)的影像學(xué)研究相對(duì)較少。Welsch等[47]應(yīng)用關(guān)節(jié)軟骨釓對(duì)比劑延遲強(qiáng)化MRI(delayed Gadolinium MRI of cartilage,dGEMRC)對(duì)類風(fēng)濕性關(guān)節(jié)炎(rheumatoid arthritis,RA)患者指間關(guān)節(jié)進(jìn)行了評(píng)測,并將T1 mapping所得T1值與患者病程、C-反應(yīng)蛋白、ESR、DAS28、RF、CCP等臨床及實(shí)驗(yàn)室檢查資料相對(duì)照,研究表明RA患者指間關(guān)節(jié)軟骨dGEMRC T1值的降低與病程有關(guān)(病程≥5年),RA活動(dòng)性和RF、CCP陽性與RA患者掌指關(guān)節(jié)軟骨蛋白聚糖丟失有關(guān)。足部扭傷后距下關(guān)節(jié)不穩(wěn)可致足部疼痛,其最常見原因?yàn)樽銉?nèi)翻和足外翻,但此類病變臨床評(píng)估困難,目前為止文獻(xiàn)中無可靠的影像診斷標(biāo)準(zhǔn),Lux等[48]對(duì)15例足部扭傷后慢性疼痛患者和15名健康志愿者距下關(guān)節(jié)行動(dòng)態(tài)CT檢查,測量距跟前角、跟骨后軟骨表面剝脫、跟骨載距突和距骨后突內(nèi)側(cè)結(jié)節(jié)之間幅度及最大距跟間距,結(jié)果顯示動(dòng)態(tài)CT檢查可以對(duì)結(jié)構(gòu)復(fù)雜的距下關(guān)節(jié)進(jìn)行生物力學(xué)評(píng)估,并能為距下關(guān)節(jié)病變,尤其是距下關(guān)節(jié)不穩(wěn),提供更為客觀的診斷標(biāo)準(zhǔn)。
關(guān)節(jié)軟骨UTE成像可選擇性突出顯示短T2成分。Du等[49]應(yīng)用3 T雙梯度MR 2D UTE(8 μs)多回波序列對(duì)5名健康志愿者膝關(guān)節(jié)軟骨及半月板中長T2成分(結(jié)合水)、短T2成分(自由水)進(jìn)行量化研究,結(jié)果顯示多回波UTE可對(duì)半月板和關(guān)節(jié)軟骨自由水和結(jié)合水進(jìn)行定量顯示,有助于骨關(guān)節(jié)炎的早期診斷。
T2 mapping是基于T2弛豫時(shí)間的成像技術(shù),可更直觀地顯示不同體素T2值的后處理圖像。有學(xué)者用3.0 T MR 8通道腕關(guān)節(jié)線圈,對(duì)8例健康者腕關(guān)節(jié)軟骨T2弛豫時(shí)間進(jìn)行測量,發(fā)現(xiàn)腕關(guān)節(jié)旋轉(zhuǎn)運(yùn)動(dòng)對(duì)橈腕關(guān)節(jié)和尺橈遠(yuǎn)側(cè)關(guān)節(jié)軟骨T2值有一定影響。
Schuetz[50]用車載1.5 T MR T2 mapping技術(shù)對(duì)22例馬拉松運(yùn)動(dòng)員進(jìn)行了不同時(shí)段動(dòng)態(tài)MRI檢查,結(jié)果顯示所有受試者在最初2 km比賽后即刻,股骨、脛骨和髕骨表層軟骨信號(hào)強(qiáng)度明顯增高,而深層軟骨未見信號(hào)增高;在后2 km比賽中后即刻,增高的信號(hào)強(qiáng)度減弱;關(guān)節(jié)軟骨厚度在比賽過程中未見差異。賽后6個(gè)月復(fù)查,顯示T2*信號(hào)完全恢復(fù)。作者認(rèn)為受訓(xùn)運(yùn)動(dòng)員進(jìn)行超負(fù)荷運(yùn)動(dòng)對(duì)其肢體軟骨并無不良影響。
23Na MRI技術(shù)近年來被用于軟骨損傷的研究,由于軟骨組織中Na離子以糖胺聚糖的形式存在,對(duì)軟骨糖胺聚糖含量的檢測可以推斷軟骨的退變、損傷和修復(fù),以評(píng)估和指導(dǎo)臨床相關(guān)治療。23Na MRI技術(shù)可以根據(jù)Na分布圖像間接顯示蛋白多糖崩解的區(qū)域。Mayerhoefer[51]應(yīng)用7 T MRI對(duì)9例膝關(guān)節(jié)骨髓刺激(bone marrow stimulation,BMS)治療后患者和9例自體軟骨細(xì)胞移植(matrix-associated autologous chondrocyte transplantation,MACT)治療后患者進(jìn)行研究,結(jié)果顯示MACT治療后患者軟骨糖胺聚糖含量較BMS治療后患者多,MACT治療后患者軟骨修復(fù)能力強(qiáng)于BMS治療后患者,作者認(rèn)為7 T MR23Na成像可作為非侵入性檢查用于關(guān)節(jié)軟骨修復(fù)的評(píng)估。
縱觀2011年RSNA骨關(guān)節(jié)系統(tǒng)影像學(xué)研究報(bào)道,關(guān)節(jié)影像學(xué)研究約占1/4,研究內(nèi)容以髖、膝等大關(guān)節(jié)為主,包括關(guān)節(jié)周圍韌帶、關(guān)節(jié)軟骨及關(guān)節(jié)術(shù)后影像學(xué)評(píng)估,成像技術(shù)多以CT及MRI,尤以MRI新技術(shù)應(yīng)用研究為主,包括DWI、DTI、T2 mapping、超短TE成像、MR動(dòng)態(tài)增強(qiáng)、MR關(guān)節(jié)造影等,值得國內(nèi)學(xué)者學(xué)習(xí)借鑒。
[References]
[1] Aihara AY, Paulo S, Yanaguizawa M, et al. Ligamentum teres: anatomy review and imaging evaluation. Chicago:RSNA, 2011: LL-MKE2046.
[2] Choi J, Cha J, Lee G. et al. Evaluation of ligamentum teres (LT) on MR arthrography (MRA) in patients with clinically suspected FAI: with arthroscopi correlation.Chicago: RSNA, 2011: LL-MKS-WE2A.
[3] Rodriguez VB, Olalla C, Guadilla AJ, et al.Femoroacetabular impingement: imaging strategies and characteristics. Chicago: RSNA, 2011: LL-MKE2036.
[4] Magerkurth O, Jacobson JA, Morag Y, et al.Femoroacetabular CAM type impingement: assessment of the femoral head neck junction on a single image with 3D MR. Chicago: RSNA, 2011: LL-MKS-TH6A.
[5] Fiona C. Utility of Magnetic Resonance Arthrography of the Hip, in the Diagnosis of Labral and Chondral Pathology. Chicago: RSNA, 2011: MSVS41.
[6] Binkhamis SM, Schweitzer ME, Beaule PE, et al. The accuracy of indirect mr arthrography of the hip in detecting acetabular labral tears. Chicago: RSNA, 2011: LL-MKSWE5A.
[7] Magerkurth O, Jacobson JA, Morag Y. Capsular laxity of the hip: findings at MR arthrography. Chicago: RSNA,2011: LL-MKS-WE5B.
[8] Kim E, Kwack K, Cho J, et al. Usefulness of dynamic contrast-enhanced MRI in differentiating between septic arthritis and transient synovitis in the hip joint. Chicago:RSNA, 2011:SSG09.
[9] Sandhu R, Satchithanada K, Hart A, et al. Metal artefact reduction sequence (MARS) MRI of painful metal-onmetal hips: beyond the pseudotumor. Chicago: RSNA,2011: LL-MKE2146.
[10] Nguyen JC, Rosas HG, De SA, et al. What is in a tear:diagnosis and classification of meniscal tears. Chicago:RSNA, 2011: LL-MKE2057.
[11] De S. MR imaging appearance of the types of meniscal tears with arthroscopic correlation. Chicago: RSNA, 2011:MSVS31.
[12] Pandey S, Wong E, Roth CG, et al. Vertical? Vertical-Longitudinal? Longitudinal? What do I call the tear? A review of meniscal tear nomenclature and a proposed standardized Nomenclature. Chicago: RSNA, 2011: LLMKE2193.
[13] Altahawi F, Saluan P, Subhas N, et al. Display tool for radial multiplanar reconstructions of isotropic knee MR:development and initial experience. Chicago: RSNA, 2011:SSE15.
[14] Lee S, Jee W, Jung J, et al. Isotropic 3D intermediateweighted turbo spin-echo MR imaging of the knee at 3.0 T: fat-suppression vs without fat-suppression. Chicago:RSNA, 2011: SSE15.
[15] Magee TH. Comparison of 3 tesla 3D XETA MR imaging of the knee vs conventional MR imaging of the knee.Chicago: RSNA, 2011: SSE15.
[16] Sung H. Causes of high signal intensity changes of the meniscus on MR images: correlation with histologic examination. Chicago: RSNA, 2011: MSVS31.
[17] Kristen E, Roth CG, Zoga AC, et al. "Borderline" Meniscal tears: incidence of secondary soft tissue and osseous findings on MRI. Chicago: RSNA, 2011: MSVS31.
[18] Hwang Y, Lee S, Chung H, et al. T2 mapping of articular cartilage in patients of meniscus transplantation:comparison between immediate postoperation and sixmonth follow-up. Chicago: RSNA, 2011: SSA14.
[19] Bosemani T, Durand D, Huisman T, et al. 3 T MRI of pediatric adolescent knees: our initial experience. Chicago:RSNA, 2011: LL-MKS-MO7B.
[20] Gupta SK, White LM, Jacks L, et al. Magnetic resonance imaging (MRI) signs of anterior knee laxity in the presence of an intact graft following anterior cruciate ligament(ACL) reconstruction. Chicago: RSNA, 2011: SSE15.
[21] Botchu R. Trochlea dysplasia: association with ACL injuries. Chicago: RSNA, 2011: MSVS31.
[22] Wissman RD, Kapur S, Hendry DS, et al. Extensor mechanism injuries in acute anterior cruciate ligament tears. Chicago: RSNA, 2011: LL-MKS-MO7A
[23] Cha J, Choi S, Kwon JW, et al. Analysis of Cyclops lesions after different anterior cruciate ligament reconstructions:a comparison of the single-bundle and remnant bundle preservation techniques. Chicago: RSNA, 2011: MSVS31.
[24] Song Y, Lee S, Joo K, et al. Impingement of posterior cruciate ligament on coronal scans of knee MRI: is this a secondary sign of tear or normal variant inthe posterior cruciate ligament? Chicago: RSNA, 2011: MSVS31.
[25] Pirani Y, Shukla M, Malhotra AD, et al. The role of obesity in super ficial medial collateral ligament edema in the atraumatic setting. Chicago: RSNA, 2011: LL-MKSTU4A.
[26] Jadhav SP, More SR, Riascos R, et al. Popliteus: a comprehensive review of anatomy, function, and imaging of popliteus and associated pathologies with 3D illustrations. Chicago: RSNA, 2011: LL-MKE2038.
[27] Lee PP, Chalian M, Thawait GK, et al. Multimodality measurements of patellar height on X-ray, CT, and MRI.Chicago: RSNA, 2011: LL-MKS-TU5B.
[28] Cobo RM, Salazar C, Sabaneeff A, et al. Dynamic CT imaging of patellar instability: characterization and predisposing anatomic factors. Chicago: RSNA, 2011: LLMKE2137.
[29] Padua SO, Lopez-Alvarez YM, Baussan S, et al.Navigating the pits and crevasses of the patellar surface: a primer on patellar chondromalacia. Chicago: RSNA, 2011:LL-MKE2162.
[30] Sheibanifar M. Optimized 3D sequence on MRI for the ankle ligamentary lesions: 2 years of experience. Chicago:RSNA, 2011: LL-MKE2076.
[31] Song H, Jee W, Jung J, et al. Chronic lateral collateral ligament tears of the ankle: diagnosis with 3D isotropic turbo spin-echo SPACE sequence vs conventional 2D TSE sequences at 3.0 T. Chicago: RSNA, 2011: SSJ15.
[32] Chang EY, Bae WC, Biswas R, et al. To provide a noninvasive quantitative means of evaluating achilles tendon T2 values using 3 T MR UTE techniques in asymptomatic volunteers: quantitative MRI characterization of the achilles tendon—T2 measurements using ultrashort echo time (UTE) MR. Chicago: RSNA,2011: SSA14.
[33] Tuan A. Hindsight is 20/20: ossification of the posterior tibiofibular ligament on follow-up ankle radiographs reclassifies traumatic ankle injury from a low to high sprain. Chicago: RSNA, 2011: LL-MKS-WE4B.
[34 ] Lee J, Cha J, Lee M, et al. Usefulness of IDEAL MR imaging in reducing metallic artifacts in the postoperative ankles with metallic hardware. Chicago: RSNA, 2011:SSJ15.
[35] Pandey S, Driban JB, Huang TL. et al. Does shoulder radiography predict rotator cuff abnormality? Examination of greater tuberosity cortical irregularity as an indicator for surpaspinatus pathology. 2011: LL-MKS-TH5B .
[36] Magee TH. MR vs MR arthrography in detection of supraspinatus tendon tears in patients without previous shoulder surgery. Chicago: RSNA, 2011: LL-MKS-WE3A.
[37] Maeder M, Zbojniewicz AM, Emery KH, et al. Spectrum and incidence of rotator cuff tears in pediatric patients at a large tertiary care hospital. Chicago: RSNA, 2011: SSQ14.
[38] Jasti S, Badillo K, Farouga AF, et al. Distribution of disease around the elbow on MRI: preliminary observations.Chicago: RSNA, 2011: LL-MKS-TU7A.
[39] Abdelfattah S. Diagnostic role of MRI in assessing patients with ulnar sided wrist pain. Chicago: RSNA, 2011:MSVS41.
[40] Raja FS, Garvin GJ, Osman S. Prevalence and spectrum of magnetic resonance imaging (MRI) findings involving the extensor carpi ulnaris (ECU) tendon in asymptomatic wrists. Chicago: RSNA, 2011: LL-MKS-WE6A.
[41] Spencer C. Demonstration of the anatomy of the extrinsic carpal ligaments of the wrist using MR arthrography.Chicago: RSNA, 2011: LL-MKE1057.
[42] Koskinen SK, Haapam?ki V, Salo J, et al. CT arthrography of the wrist using a novel mobile dedicated extremity cone beam CT (CBCT). Chicago: RSNA, 2011: LL-MKSTU1A.
[43] Bierry G, Ramdhian-Wihlm R, Minor JL, et al. Conebeam computed tomography arthrography: an innovative alternative to MDCT arthrography of the wrist? Chicago:RSNA, 2011: LL-MKS-TU1B.
[44] Andreisek G. Diffusion tensor imaging of the median nerve at 3.0 tesla: normative and pathologic diffusion values.Chicago: RSNA, 2011: SSK10.
[45] Lindberg P, Feydy AA, Drape J, et al. Relation between diffusion tensor imaging, electromyography, and grip force control in patients with recurrent carpal tunnel syndrome after surgical release. Chicago: RSNA, 2011: SSK10.
[46] Lobo LG, White LM, Khanna M, et al. Diffusion tensor imaging of the median nerve before and after carpal tunnel release in patients with carpal tunnel syndrome: feasibility study. Chicago: RSNA, 2011: LL-MKS-WE6B.
[47] Welsch GH, Renner N, Janka R, et al. Imaging of microstructural cartilage changes in the finger joints of patients with rheumatoid arthritis by means of delayed gadolinium MRI of cartilage (dGEMRIC): initial clinical results.Chicago: RSNA, 2011: LL-MKS-WE7A .
[48] Lux G, Souza MR, Osemont B, et al. dynamic computed tomography of the subtalar joint. Chicago: RSNA, 2011:SSJ15.
[49] Du J, Bae WC, Pauli C, et al. In vivo ultrashort TE (UTE)imaging of the knee joint with bi-component analysis.Chicago: RSNA, 2011: SSA14.
[50] Schuetz UH. Changes of cartilage surface in knee, ankle,and hindfoot joints in ultra-endurance runners during 4.487 km trans europe foot race measured by mobile MRI on a truck. Chicago: RSNA, 2011: SSA14.
[51] Mayerhoefer. Evaluation of23Na (Sodium) content in native hyaline cartilage and repair tissue after two cartilage repair techniques in the knee with 7 T MR imaging.Chicago: RSNA, 2011: MSVS31.