周 濤,王朝立
(1.山東理工大學(xué) 商學(xué)院,山東 淄博 255049;2.煙臺(tái)正海電子網(wǎng)板股份有限公司,山東 煙臺(tái) 264006)
目前物流配送問(wèn)題被廣泛地應(yīng)用在各個(gè)行業(yè),如牛奶站的牛奶配送、超級(jí)市場(chǎng)的商品供應(yīng)、郵件的遞送等。這類配送問(wèn)題主要針對(duì)一系列配送中心和多個(gè)接收站點(diǎn),組織適當(dāng)?shù)呐渌吐肪€,在滿足貨物需求量、交發(fā)貨時(shí)間、車輛容量限制、行駛里程限制、時(shí)間限制等約束條件下,達(dá)到路程最短、費(fèi)用最小、時(shí)間盡量少、使用車輛數(shù)盡量少等目標(biāo)[1]。許多學(xué)者對(duì)此進(jìn)行了大量的研究。文獻(xiàn)[1]研究了多輛車完成多項(xiàng)任務(wù)的情況下,如何實(shí)現(xiàn)車輛運(yùn)行時(shí)間之和最小且車輛的載重利用率最大的車輛調(diào)度問(wèn)題;文獻(xiàn)[2]建立了追求總體效益最優(yōu)的車輛調(diào)度多目標(biāo)決策模型,并設(shè)計(jì)了分派-節(jié)約啟發(fā)式算法求解該模型;文獻(xiàn)[3]對(duì)物流中心貨物配裝進(jìn)行了優(yōu)化分析;文獻(xiàn)[4]研究了帶回程車輛的運(yùn)輸路徑優(yōu)化及定價(jià)問(wèn)題,并采用改進(jìn)的遺傳算法對(duì)其求解;文獻(xiàn)[5]建立了帶時(shí)間窗的車輛路徑問(wèn)題模型,并研究了此模型的最優(yōu)解。本文主要研究單個(gè)配送中心在單車多任務(wù)和多車多任務(wù)情況下,實(shí)現(xiàn)物流優(yōu)化配送的問(wèn)題。
配送中心(以0表示)需要向n個(gè)站點(diǎn)(以1,2,…,n表示)配送貨物,各站點(diǎn)貨物需求量為qj(j=1,2,…,n)。配送中心有k輛同類型的配送車輛,每輛車的最大載重量為G。配送中心與各站點(diǎn)之間以及各個(gè)站點(diǎn)之間的距離為sij(i=0,1,…,n;j=0,1,…,n)。配送車輛從配送中心出發(fā),沿一條或多條行車路線把所有貨物送到各站點(diǎn)后,返回配送中心。要求每個(gè)站點(diǎn)所需貨物只能由一輛車來(lái)提供,且站點(diǎn)需要貨物準(zhǔn)時(shí)送達(dá),既不能過(guò)早也不能過(guò)晚。于是上述問(wèn)題便轉(zhuǎn)化為,如何選擇行車路線實(shí)現(xiàn)運(yùn)費(fèi)最省、時(shí)間成本最低和車輛空載率最小的優(yōu)化配送問(wèn)題[2]。
配送中心在物流配送過(guò)程中會(huì)發(fā)生多項(xiàng)成本,其中運(yùn)輸成本、送達(dá)時(shí)間成本和空載成本尤為重要,本文通過(guò)優(yōu)化該三項(xiàng)成本,期望實(shí)現(xiàn)物流配送效率的顯著提高。
運(yùn)輸成本是物流配送過(guò)程中的一項(xiàng)重要成本。在配送中心與各站點(diǎn)距離一定、配送車輛類型一定的情況下,選擇最短的配送線路是降低運(yùn)輸成本的關(guān)鍵。由于各地區(qū)公路四通八達(dá),兩點(diǎn)之間的運(yùn)輸線路有多種選擇,所以首先應(yīng)該保障車載貨物運(yùn)輸方向的一致性,然后設(shè)計(jì)一條距離最短的路徑,該路徑從配送中心出發(fā),途經(jīng)車載貨物的各站點(diǎn),最后回到配送中心。
送達(dá)時(shí)間成本指車輛未按照站點(diǎn)規(guī)定的時(shí)間將貨物送到所發(fā)生的費(fèi)用。通常各站點(diǎn)要求車輛在規(guī)定的時(shí)間內(nèi)將貨物送到,車輛早到,或者需要等候造成配送方人員的閑置成本,或者卸貨增加站點(diǎn)的庫(kù)存成本;車輛晚到,給站點(diǎn)需求方造成損失,按照配送中心與站點(diǎn)的合同規(guī)定需對(duì)其進(jìn)行懲罰。因此配送中心需要對(duì)配送線路進(jìn)行合理設(shè)計(jì),保障貨物在站點(diǎn)需要的時(shí)間內(nèi)準(zhǔn)時(shí)送到。
空載成本指車輛在配裝過(guò)程中由于受到貨物體積和形狀的限制未能實(shí)現(xiàn)滿載運(yùn)輸所造成的機(jī)會(huì)成本損失。滿載率越高,空載成本越小。配送中心根據(jù)站點(diǎn)的需求信息,對(duì)某種貨物的裝載可以分為整車裝載和不滿整車配載兩種類型。整車裝載是指站點(diǎn)對(duì)貨物的需求量超過(guò)了車輛的最大載重量,需要多輛滿載的車輛進(jìn)行直達(dá)運(yùn)輸,對(duì)于不能滿載剩余的貨物再與其他站點(diǎn)的貨物配載運(yùn)輸;不滿整車配載是指在某一運(yùn)輸線路上的各站點(diǎn)對(duì)貨物的需求量不滿一車,通過(guò)裝配一車實(shí)現(xiàn)運(yùn)輸成本優(yōu)化的方式。車輛配載的合理化就是在既定的產(chǎn)量形勢(shì)和載重量下使貨物裝載的綜合利用率最高。
為了簡(jiǎn)化問(wèn)題,設(shè)立如下假設(shè)條件:①模型中只存在一個(gè)配送中心,通過(guò)該配送中心向各站點(diǎn)配送貨物;②配送中心擁有車輛的類型相同,因此運(yùn)輸車輛的載重量和運(yùn)輸成本等均相同;③每個(gè)站點(diǎn)的貨物只由一輛車配送。雖然站點(diǎn)的貨物需求量可能會(huì)超過(guò)車輛的載重量,實(shí)現(xiàn)多車運(yùn)輸,但整車裝載的貨物可通過(guò)直達(dá)方式來(lái)實(shí)現(xiàn),不存在成本優(yōu)化的可能性,模型中未予考慮;本模型主要研究站點(diǎn)中不能整車裝載的貨物和其他站點(diǎn)貨物配載實(shí)現(xiàn)優(yōu)化運(yùn)輸?shù)牟糠?,因此假設(shè)每個(gè)站點(diǎn)的貨物只由一輛車配送;④每輛車從配送中心出發(fā),沿著運(yùn)輸線路完成所有送貨任務(wù)后返回到出發(fā)點(diǎn);⑤每個(gè)站點(diǎn)要求貨物必須在規(guī)定的時(shí)間范圍內(nèi)到達(dá)。
(1)模型參數(shù)定義。設(shè)c0為車輛單位距離的運(yùn)輸費(fèi)用;Tij為車輛由i站點(diǎn)到j(luò)站點(diǎn)所花費(fèi)的時(shí)間;ETj、LTj為車輛到達(dá)j站點(diǎn)的最早時(shí)間和最晚時(shí)間;z為指定車輛到達(dá)j站點(diǎn)的次序,z=1,2,…,n;c1j為車輛提前到達(dá)j站點(diǎn)所發(fā)生的單位時(shí)間機(jī)會(huì)成本;c2j為車輛延遲到達(dá)j站點(diǎn)所發(fā)生的單位時(shí)間懲罰成本。
l=1,2,…,n+1;i,j=0,1,…,n
(2)構(gòu)建模型如下:
在上述表達(dá)式中,約束條件(1)、(2)表示每個(gè)站點(diǎn)車輛只經(jīng)過(guò)一次;(3)表示車輛按順序經(jīng)過(guò)n個(gè)站點(diǎn),返回到配送中心;(4)表示車輛從配送中心開(kāi)始出發(fā);(5)表示車輛返回到配送中心;(6)表示n個(gè)站點(diǎn)物資需求總量不超過(guò)車輛最大載重量。
(1)模型參數(shù)定義。c0、Tij、ETj、LTj、c1j、c2j定義同上;c3為車輛未能滿載的單位空載費(fèi)用;kz為指定車輛k到達(dá)j站點(diǎn)的次序,kz=1,2,…,n;k=1,2,…,m。
(2)構(gòu)建模型如下:
在上述表達(dá)式中,約束條件(7)、(8)表示每個(gè)站點(diǎn)每輛車只經(jīng)過(guò)一次;(9)表示車輛不重復(fù)經(jīng)過(guò)n個(gè)站點(diǎn),返回到配送中心;(10)表示所有車輛都從配送中心開(kāi)始出發(fā);(11)表示每輛車都返回到配送中心;(12)表示每輛車的配送總量不超過(guò)車輛最大載重量。
該模型的構(gòu)建不僅考慮了物流企業(yè)配送過(guò)程中的傳統(tǒng)運(yùn)輸成本,而且深入分析了車輛空載的機(jī)會(huì)成本和車輛是否準(zhǔn)時(shí)送達(dá)的時(shí)間成本問(wèn)題,使模型的研究更貼近物流企業(yè)運(yùn)作實(shí)際,對(duì)指導(dǎo)物流企業(yè)優(yōu)化物流環(huán)節(jié)、提高配送效率、降低物流成本具有一定的實(shí)踐意義。
[1]李雪芹,豐偉.車輛優(yōu)化調(diào)度的遺傳算法求解[J].鐵道運(yùn)輸與經(jīng)濟(jì),2007,(1):73-75.
[2]李顯生,趙魯華,李文斐,等.城市配送車輛調(diào)度模型及算法設(shè)計(jì)[J].吉林大學(xué)學(xué)報(bào)(工學(xué)版),2006,(4):618-621.
[3]李曉萍.城市物流中心貨物配裝的優(yōu)化模型[J].財(cái)經(jīng)界,2006,(3):56-57.
[4]董媛媛,陶緒林,周晶.帶回程的車輛運(yùn)輸路徑優(yōu)化及定價(jià)模型[J].現(xiàn)代交通技術(shù),2006,(4):42-45.
[5]喬均儉,王愛(ài)茹,周靜.帶時(shí)間窗車輛路徑問(wèn)題的最優(yōu)解[J].商場(chǎng)現(xiàn)代化,2007,(1):128-129.